A KPI-Based Framework for Evaluating Sustainable Agricultural Practices in Southern Angola
Abstract
1. Introduction
- To provide scientific evidence on the impact of KPIs on the selection of GAPs in the agricultural sector and to promote farmers’ income from agricultural production in southern Angola.
- To contribute to the scientific knowledge of agricultural science professors and researchers who discuss the promotion of the agricultural sector through the institutionalization of KPIs and GAPs in southern Angola.
- To identify the environmental, technological, economic, and social KPIs that have made it possible to quantify different sustainable agricultural practices in various countries and to replicate them for the agricultural practices currently developed in southern Angola.
2. Methods
3. Good Agricultural Practices in Angola
- Drip irrigation: This GAP involves lateral drip tape irrigation with a spacing significantly greater than 20 cm, in comparison with the intermittent irrigation control treatment, which uses a fixed five-day irrigation interval [13,14,15]. It is a GAP that conserves water in regions facing scarcity, as all the irrigation water is directed precisely to the plant and meets the plant’s needs [13];
- Crop rotation: Crop rotation involves growing leguminous and non-leguminous crops on the same plot of agricultural land. For example, different crops grown by farmers alter the microbial activity and decomposition rates of organic material in the cultivated area, consequently significantly affecting the levels of the soil’s organic carbon fractions [14]. Crop rotation is a good GAP that can help mitigate the negative impacts that can be achieved by some crops that are not resistant to a long period of water absence, thus contributing to the sustainability of agricultural systems. By applying this practice, farmers contribute to soil improvement and conservation, but it can also influence soil organic carbon fractions and arsenic content [15];
- Inorganic fertilizers: The application of fertilizers (e.g., nitrogen and potassium) depends on the type of crop and the availability of water for irrigation to each hectare of agricultural land, e.g., 270 kg of nitrogen are applied to a hectare of herbaceous crops (artificially irrigated), while 110 kg are applied to the same plot of land for woody crops [16];
- Organic fertilizers: Once organic matter has reached the right level of growth, farmers collect it, such as grass, tree branches, and fruit scraps, and deposit it in the growing areas to fertilize the soil. The organic matter contained in organic fertilizers improves the structure and nutrient composition of the soil and gives the soil a high water and nutrient retention capacity. Microbial activity is stimulated by the presence of organic fertilizers in the soil, which improves the processes of decomposition of crop residues, plant growth, and the general cycle of nutrients, contributing to the strengthening of agricultural sustainability and respect for the environment [17,18]. Organic fertilizers are the most economical, and policies should be created to support farmers to adhere to organic GAP, contributing to environmental protection, and the sustainability of alternative development projects [19,20].
4. Scoring Specific and Measurable Main Agricultural KPIs
KPI | Description | |
---|---|---|
Economic | Financial strength | With this indicator, it is possible to assess the annual income of suppliers of products from the field so that they can adhere to payment by check. It also assesses the investments made in large land holdings so that sub-suppliers can be provided with product storage facilities to avoid difficulties when selling [33]. |
Farmer’s income | The quantification of the yield of each hectare of land is carried out by subtracting the modelled fixed costs of production and the total variables from the total income, including subsidies for organic farming [34]. | |
Gross margin | It allows you to quantify the gross benefit (the total market value of production) minus the total costs paid (cost of inputs purchased and labor hired) [35]. | |
Net profit | Net profit (NP) is quantified from the marginal profit (MP) for an irrigated olive grove, considering the current cost of irrigation water for the olive grove and a high cost of water [36]. | |
Payments for environmental and climate measures | Payments related to the area for agro-environment–climate measures (AECM) and the type of production, in organic and conventional farming [37]. | |
Profit for the producer caused by irrigation | Allows the product of the economic productivity of irrigation water to be quantified in cubic meters of irrigation water applied to the field [38]. | |
Environmental | Soil conservation | This indicator was calculated by adding up the areas covered by native grasslands, swamps, woodlands, or native forests and dividing by the area of the cadastral unit [39]. |
Primary production of inputs | The amount of energy generated by the agricultural system in the form of the production of different products per unit of energy produced during farming by farmers [10]. | |
Energy use efficiency | This is calculated by applying the crop yield in combination with its coefficient and energy equivalent. This indicator allows farmers to assess the degree of sustainability of different products in the cultivation system of crop varieties, i.e., from an energy point of view, the actual ratio of the energy input of each component to the total energy output for each treatment [40]. | |
Water use efficiency | This KPI allows farmers to quantify the ratio between crop yield and evapotranspiration for each season [41]. | |
Nitrogen use efficiency | Nitrogen use efficiency is quantified based on total N absorption in the fertilized treatment, total N absorption in the unfertilized treatment, and the rate of N fertilizer application [42]. | |
Social | Percentage of agricultural area irrigated | The ratio between the area of irrigated land and the total area of land cultivated by farmers [43]. |
Land tenure | This is access to state land and how this land is owned or traded. Land tenure refers to the rights and origins of land and its functions, duties, laws, responsibilities, transition, ownership, and security [44]. | |
Technological | Agricultural machinery | It is relatively more efficient and economical than labor and has a positive impact on farmers’ agricultural income [9]. |
Machine energy | During their manufacture, agricultural machinery involves indirect energy. This indicator quantifies the sum of the total weight of the machine, the specific number of working hours for each run, and the number of applications in field operation divided by the useful life of the machine [45]. |
KPI | Specific (S) | Measurable (M) | |
---|---|---|---|
Economic | Financial strength | Not available | Not available |
Farmer’s income | Not available | Not available | |
Profit for the producer caused by irrigation | Not available | Not available | |
Gross margin | Drip irrigation | The cultivation gross margin varies for maize from 638.5 to 1151.7 EUR/ha [46,47] potato from 1396.19 to 2605.90 EUR/ha [48] tomato from 2609.19 to 7104.78 EUR/ha [48,49] | |
Net profit | Drip irrigation | The growing net profit varies for maize from 279.6 to 4944 EUR/ha [50,51] potato from 1706.65 to 2933.95 EUR/ha [52] tomato from 1652.27 to 6352.18 EUR/ha [48,53] | |
Payments for environmental and climate measures | Not available | Not available | |
Environmental | Soil conservation | Not available | Not available |
Primary production with internal inputs | Not available | Not available | |
Energy use efficiency | Not available | Not available | |
Water use efficiency | Drip irrigation | Water use efficiency in cultivation varies for maize from 23.70 to 49% [41] potato from 40 to 46.1% [54,55] tomato from 7.8 to 21.4 [56,57] | |
Nitrogen use efficiency | Drip irrigation | Nitrogen use efficiency in cultivation varies for maize from 66.2 to 90% [58,59] potato from 48.60 to 81.67% [60] tomato from 50 to 73% [61] | |
Social | Percentage of agricultural area irrigated | Not available | Not available |
Land tenure | Not available | ||
Technological | Agricultural machinery | Not available | Not available |
Machine energy | Drip irrigation | Machine energy use in cultivation varies for maize from 15,340 to 21,146 MJ/ha [62] potato from 64.8 to 6880 MJ/ha [63,64] tomato from 728.7 to 11,791.7 MJ/ha [65,66] |
KPI | Specific (S) | Measurable (M) | |
---|---|---|---|
Economic | Financial strength | Not available | Not available |
Farmer’s income | Not available | Not available | |
Profit for the producer caused by irrigation | Not available | Not available | |
Gross margin | Crop rotation | The gross margin in cultivation varies for maize from 1000 to 6000 EUR/ha [67] potato from 1000 to 5056 EUR/ha [68] tomato from 500 to 3000 EUR/ha [69] | |
Net profit | Crop rotation | The growing net profit varies for maize from 122.63 to 379.77 EUR/ha [70,71] potato from 20 to 8100 EUR/ha [72,73] tomato from 484.40 to 7185.2 EUR/ha [74] | |
Payments for environmental and climate measures | Not available | Not available | |
Environmental | Soil conservation | Not available | Not available |
Primary production with internal inputs | Not available | Not available | |
Energy use efficiency | Not available | Not available | |
Water use efficiency | Crop rotation | Water use efficiency in cultivation varies for maize from 8 to 18% [75] potato from 12.5 to 35.3% [76,77] tomato from 15.5 to 23.4% [78] | |
Nitrogen use efficiency | Crop rotation | Nitrogen use efficiency in cultivation varies for maize from 46 to 85% [79] potato from 6.14 to 50% [80,81] tomato from 12.5 to 64% [82,83] | |
Social | Percentage of agricultural area irrigated | Not available | Not available |
Land tenure | Not available | Not available | |
Technological | Agricultural machinery | Not available | Not available |
Machine energy | Crop rotation | Machine energy in maize cultivations varies for maize from 1000 to 8000 MJ/ha [84] potato from 1120 to 2780 MJ/ha [85,86] tomato from 826.70 to 1067.56 MJ/ha [87] |
KPI | Specific (S) | Measurable (M) | |
---|---|---|---|
Economic | Financial strength | Not available | Not available |
Farmer’s income | Not available | Not available | |
Profit for the producer caused by irrigation | Not available | Not available | |
Gross margin | Inorganic fertilizers | The gross margin in cultivation varies for maize from 706 to 1187 EUR/ha [88] potato from 412 to 1537 EUR/ha [89] tomato from 1419.26 to 8332.87 EUR/ha [90,91]. | |
Net profit | Inorganic fertilizers | Net profit cultivation varies for maize from 1220.56 to 1853.01 EUR/ha [92] potato from 621.38 to 2414.26 EUR/ha [93] tomato from 2218.38 to 3904.15 EUR/ha [94]. | |
Payments for environmental and climate measures | Not available | Not available | |
Environmental | Soil conservation | Not available | Not available |
Primary production with internal inputs | Not available | Not available | |
Energy use efficiency | Not available | Not available | |
Water use efficiency | Inorganic fertilizers | Water use efficiency in cultivation varies for maize from 60 to 80% [95] potato from 5.9 to 47.8% [96] tomato from 22.63 to 62% [97,98] | |
Nitrogen use efficiency | Inorganic fertilizers | Nitrogen use efficiency in cultivation varies for maize from 42 to 68% [82] potato from 48.60 to 81.67% [99] tomato from 15 to 69% [100] | |
Social | Percentage of agricultural area irrigated | Not available | Not available |
Land tenure | Not available | Not available | |
Technological | Agricultural machinery | Not available | Not available |
Machine energy | Inorganic fertilizers | Machine energy in cultivations varies for maize from 589.38 to 1739.5 MJ/ha [45] potato from 866 to 950 [101] tomato from 142.69 to 530.3 MJ/ha [102,103] |
KPI | Specific (S) | Measurable (M) | |
---|---|---|---|
Economic | Financial strength | Not available | Not available |
Farmer’s income | Not available | Not available | |
Profit for the producer caused by irrigation | Not available | Not available | |
Gross margin | Organic fertilizers | The cultivation gross margin varies for maize from 24.97 to 139.21 EUR/ha potato from 2850 to 6288 EUR/ha [104] tomato from 355.57 to 3640.28 EUR/ha [105] | |
Net profit | Organic fertilizers | Net profit from cultivation varies for maize from 812.81 to 3500.97 EUR/ha [50] potato from 830.2 to 7211.96 EUR/ha [106,107] tomato from 6339.29 to 9248.59 EUR/ha [108]. | |
Payments for environmental and climate measures | Not available | Not available | |
Environmental | Soil conservation | Not available | Not available |
Primary production with internal inputs | Not available | Not available | |
Energy use efficiency | Not available | Not available | |
Water use efficiency | Organic fertilizers | Water use efficiency in cultivation varies for maize from 9.9 to 58.4% [50] potato from 31 to 77% [109,110] tomato from 25 to 40% [111] | |
Nitrogen use efficiency | Organic fertilizers | Nitrogen use efficiency in cultivation varies for maize from 20 to 45% [112] potato from 33 to 44.1% [113,114] tomato from 10 to 69% [115] | |
Social | Percentage of agricultural area irrigated | Not available | Not available |
Land tenure | Not available | Not available | |
Technological | Agricultural machinery | Not available | Not available |
Machine energy | Organic fertilizers | Machine energy in cultivation varies for maize from 237.60 to 6217.4 MJ/ha [116,117] potato from 1582.61 to 3206.48 MJ/ha [116,118] tomato from 835 to 13,006 MJ/ha [119] |
5. Mathematical Formulation
- -
- Select a maximum, max(xi), and a minimum, min(xi), for each indicator separately for the value ranges of these values (minimum and maximum).
- -
- Evaluate the increase and decrease in Sij as xij grows. The indicator directionality allows us to classify each KPI as either a benefit (positive indicator, where higher values are desirable) or a cost (negative indicator, where lower values are preferable).
6. Application of the Graphical Tool Developed to Case Studies
6.1. Evaluation of the Standardized KPIs for the Maize Crop
- (1)
- The high gross margin required to grow maize with GAPs of drip irrigation, crop rotation and the use of inorganic fertilizers lowers its sustainability indices.
- (2)
- The low gross margin required to grow maize with GAPs that use organic fertilizers contributes to the sustainability index compared to GAPs that use drip irrigation, crop rotation, and inorganic fertilizers.
- (3)
- Maize cultivation with GAPs that use organic fertilizers and drip irrigation produces higher profits, which increases its indicator value.
- (4)
- The low net profit values in maize cultivation with inorganic fertilizers and crop rotation contribute to its low sustainability index.
- (5)
- Sustainability in maize production with organic and inorganic fertilizer GAPs in maize cultivation is based on water use efficiency compared to drip irrigation and crop rotation GAPs.
- (6)
- The low amount of nitrogen supplied via fertilizers in the maize crop in the crop rotation and drip irrigation GAPs contributes to low sustainability.
- (7)
- The overall sustainability indices for maize cultivation systems with drip irrigation, inorganic fertilizer use, and crop rotation are based on water use efficiency, compared to other GAPs.
- (8)
- The reduced machine energy requirements in maize cultivation with GAPs that use organic and inorganic fertilizers, and drip irrigation, also influence its overall sustainability index concerning the crop rotation GAP.
6.2. Evaluation of Standardized KPIs for Potato Cultivation
- (1)
- The high gross margin required for potato cultivation with GAPs of crop rotation and use of organic fertilizers lowers its sustainability indices.
- (2)
- The low gross margin required for potato cultivation with GAPs in the application of drip irrigation and inorganic fertilizers contributes to the sustainability index compared to other GAPs.
- (3)
- Potato cultivation with GAPs in the use of drip irrigation, and inorganic fertilizers produces higher profits, benefiting its sustainability indicator value compared to other GAPs.
- (4)
- The sustainability of potato production with the organic fertilizer GAP is based on water use efficiency compared to the GAPs of drip irrigation, crop rotation, and inorganic fertilizers.
- (5)
- The high amount of nitrogen supplied via fertilizers concerning drip irrigation GAPs and the utilization of inorganic fertilizers which promotes their overall sustainability indices.
- (6)
- The lower sustainability index of the crop rotation and inorganic fertilizer GAPs in potato production has low nitrogen use efficiency compared to the other GAPs.
6.3. Evaluation of Standardized KPIs for Tomato Cultivation
- (1)
- Growing tomatoes with GAPs using crop rotation and organic fertilizers produces higher profits, which benefits their indicator value.
- (2)
- The capital costs required to grow tomatoes with GAPs using inorganic fertilizers, and drip irrigation penalize their sustainability indices, conditioning farmers to not adhere to these GAPs and opt for more sustainable GAPs.
- (3)
- The value of water use efficiency in tomato cultivation in rotation with other crops is one of the indicators that promotes the sustainability of this practice, and increases the overall index in relation to the drip irrigation GAP.
- (4)
- The amount of nitrogen supplied via fertilizers (nitrogen use efficiency) in tomato cultivation in the drip irrigation, crop rotation and organic fertilizer GAPs contributes to high sustainability.
- (5)
- Low machine energy use in tomato cultivation with GAPs in the use of organic and inorganic fertilizers, and crop rotation influences its overall sustainability index in relation to the drip irrigation GAP.
7. Discussion
- Net profit: This quantifies the company’s income after paying the workers’ wages, and the cost of buying seeds, farmyard manure, weed control, and pesticides. For example, a cost of EUR 85.936 for corn production using organic fertilizers on a one-hectare plot of land generates a total return of EUR 3520.6 and a net profit of EUR 2661.25 [50].
- Nitrogen use efficiency: This allows the yield per unit of nutrient absorbed to be quantified. The average value of nitrogen absorption in maize cultivation with organic fertilizers generates a nitrogen use efficiency of 40.9% [170].
- Machine energy: This allows the machine’s energy on each hectare during cultivation operations, the success of the tool’s and machine’s work to be quantified [187]. It allows the calculation of the total diesel used during various agricultural activities, such as creating seedbeds, planting crops, harvesting, threshing, and transportation [45]. For example, it was possible to quantify the machine energy value of 871 MJ/ha in the tomato and rice rotation in Marvdasht in Iran [87].
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Serial Number | Year | Title of the Paper | Type of Paper | Source | Source Country | Reference |
---|---|---|---|---|---|---|
1 | 2024 | Group decision-making model for selection of performance indicators for sustainable supplier evaluation in agro-food supply chain. | Journal | International Journal of Production Economics | China | [33] |
2 | 2024 | A comprehensive analysis of the environmental performance of the Uruguayan agricultural sector. | Journal | Ecological Indicators | Uruguay | [39] |
3 | 2019 | Performance indicators used to study the sustainability of farms. Case study from Poland. | Journal | Ecological Indicators | Poland | [10] |
4 | 2023 | Agroecosystem multifunctionality of apple orchards in relation to agricultural management and landscape context. | Journal | Ecological Indicators | Belgium | [34] |
5 | 2024 | Maximizing potato tuber yields and nitrogen use efficiency in semi-arid environments by precision fertilizer depth application. | Journal | European Journal of Agronomy | China | [42] |
6 | 2024 | Exploring the poverty-reduction benefits of agricultural machinery socialization services in China: implications for the sustainable development of farmers. | Journal | Heliyon | China | [9] |
7 | 2019 | Comparative assessment of irrigation systems’ performance: case study in the Triffa agricultural district, NE Morocco. | Journal | Agricultural Water Management | Morocco | [43] |
8 | 2022 | Optimal irrigation levels can improve maize growth, yield, and water use efficiency under drip irrigation in Northwest China, | Journal | Water | Vietnam, Thailand, China, Indonesia, Myanmar, and Sri Lanka | [41] |
9 | 2021 | Water productivity and net profit of high-density olive orchards in San Juan, Argentina, | Journal | Agricultural Water Management | Argentina | [36] |
10 | 2022 | Intensification of rice–pasture rotations with annual crops reduces the stability of sustainability across productivity, economic, and environmental indicators. | Journal | Agricultural Systems | Uruguay | [35] |
11 | 2024 | Impact of ET and biomass model choices on economic irrigation water productivity in water-scarce basins. | Journal | Agricultural Water Management | Lebanon | [38] |
12 | 2023 | Enhancing energy efficiency and reducing carbon footprint in organic soybean production through no-tillage and rye cover crop integration. | Journal | Journal of Cleaner Production | Japan | [40] |
13 | 2022 | Agricultural land tenure system in Iran: an overview. | Journal | Land Use Policy | Iran | [44] |
14 | 2024 | Exploring the poverty-reduction benefits of agricultural machinery socialization services in China: implications for the sustainable development of farmers. | Journal | Heliyon | China | [9] |
References
- Pisante, M.; Stagnari, F.; Grant, C.A. Agricultural Innovations for Sustainable Crop Production Intensification. Ital. J. Agron. 2012, 7, e40. [Google Scholar] [CrossRef]
- FAO. Angola e FAO Parceria Para a Resiliencia e o Desenvolvimento Rural Sustentável; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2018; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/cd3bd7c7-9e30-48ee-b5db-b1c5ab5c51da/content (accessed on 4 July 2024).
- FAO. The Republic of Angola. Drought Expected to Significantly Reduce Cereal Production and Pasture Availability, with Severe Consequences for Food Security in 2021; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2021; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/5c197934-219c-4f56-9c7b-d1305fb629f2/content (accessed on 14 October 2024).
- INE. Relatório dos Resultados das Explorações Agropecuária e Aquícolas Familiares, Relatório dos Resultados das Explorações Agropecuária; Instituto Nacional de Estatística (INE): Luanda, Angola, 2022; Available online: https://www.ine.gov.ao/Arquivos/arquivosCarregados//Carregados/Publicacao_638096614135388083.pdf (accessed on 15 October 2024).
- Bélanger, V.; Vanasse, A.; Parent, D.; Allard, G.; Pellerin, D. Development of agri-environmental indicators to assess dairy farm sustainability in Quebec, Eastern Canada. Ecol. Indic. 2012, 23, 421–430. [Google Scholar] [CrossRef]
- Binder, C.R.; Feola, G.; Steinberger, J.K. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ. Impact Assess. Rev. 2010, 30, 71–81. [Google Scholar] [CrossRef]
- FAO. Proportion of Agricultural Area Produtive and Sustainable e Agriculture; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2017; Available online: https://www.fao.org/fileadmin/templates/es/SDG/SDG_2.4.1_Methodological_concept_note.pdf (accessed on 15 October 2024).
- FAO. Compendium of Agricultural—Environmental Indicators; Ballayan, D., DeSantis, G., Narain, P., Barre, M., Gordon, A., Eds.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2003; Available online: https://www.fao.org/fileadmin/templates/ess/documents/other_statistics/compendium/agr_env_indic.pdf (accessed on 15 February 2025).
- Qiu, H.; Feng, M.; Zhang, X.; Song, Z.; Luo, M.; Wang, J.; Ye, F. Exploring the poverty-reduction benefits of agricultural machinery socialization services in China: Implications for the sustainable development of farmers. Heliyon 2024, 10, e32636. [Google Scholar] [CrossRef]
- Lewandowska, C.A.; Piernik, A.; Nienartowicz, A. Performance indicators used to study the sustainability of farms. Case Study from Poland. Ecol. Indic. 2019, 99, 51–60. [Google Scholar] [CrossRef]
- Swart, R.; Cristãs, A.; Davis, J.T.; Verburg, P.H. Meta-analyses reveal the importance of socio-psychological factors for farmers’ adoption of sustainable agricultural practices. One Earth 2023, 6, 1771–1783. [Google Scholar] [CrossRef]
- INE. Relatório dos Resultados das Explorações Agropecuária e Aquícolas Empresariais. Relatório de Quadros—Volume V(C); Food and Agriculture Organization of the United Nations (FAO): Luanda, Angola, 2022; Available online: https://www.ine.gov.ao/Arquivos/arquivosCarregados//Carregados/Publicacao_638096713703719191.pdf (accessed on 4 July 2024).
- Adhikari, J.; Thapa, R. Determinants of the adoption of different good agricultural practices (GAP) in the command area of PMAMP apple zone in Nepal: The case of Mustang district. Heliyon 2023, 9, e17822. [Google Scholar] [CrossRef]
- Slijper, T.; Tensi, A.F.; Ang, F.; Ali, B.M. Investigating the relationship between knowledge and the adoption of sustainable agricultural practices: The case of Dutch arable farmers. J. Clean. Prod. 2023, 1471, 138011. [Google Scholar] [CrossRef]
- Kama, R.; Ele, J.; Nabi, F.; Aidara, M.; Faye, B.; Diatta, S.; Ma, C.; Li, H. Crop rotation and green manure type enhance organic carbon fractions and reduce soil arsenic content. Agric. Ecosyst. Environ. 2025, 378, 109287. [Google Scholar] [CrossRef]
- Pérez-Martín, M.A.; Arora, M.; Monreal, T.E. Defining the maximum nitrogen surplus in water management plans to recover nitrate polluted aquifers in Spain. J. Environ. Manag. 2024, 356, 120770. [Google Scholar] [CrossRef]
- FAO. Training Manual for Organic Agriculture; Scialabba, N., Gomez, I., Thivant, L., Eds.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2015; Available online: https://www.fao.org/fileadmin/templates/nr/sustainability_pathways/docs/Compilation_techniques_organic_agriculture_rev.pdf (accessed on 14 July 2024).
- UN; UNEP. Organic Agriculture and Food Security in Africa; United Nations (UN): New York, NY, USA; United Nations Environment Programme (UNEP): Geneva, Switzerland, 2008; Available online: https://www.fao.org/family-farming/detail/en/c/285510/ (accessed on 24 December 2024).
- UNODC. Practical Guide Alternative Development and the Environment; United Nations Office on Drugs and Crime (UNODC): Vienna, Austria, 2023; Available online: https://www.unodc.org/documents/alternative-development/Practical_Guide_Report_web.pdf (accessed on 24 December 2024).
- FAO. Organic. In Agriculture and Food Security; Niggli, U., Earley, J., Ogorzalek, K., Eds.; Food and Agriculture Organization of the United Nations (FAO): Geneva, Switzerland, 2007; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/0576c3d0-fe53-4804-bf0d-7edd4785d8b5/content (accessed on 1 June 2024).
- Chopin, P.; Blazy, J.M.; Guindé, L.; Tournebize, R.; Doré, T. A novel approach for assessing the contribution of agricultural systems to the sustainable development of regions with multi-scale indicators: Application to Guadeloupe. Land Use Policy 2017, 62, 132–142. [Google Scholar] [CrossRef]
- FAO. Indicators to Monitor and Evaluate the Sustainnability of Bioeconomy; Food and Agriculture Organization of the Nation (FAO): Rome, Italy, 2019; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/95937318-a0be-40d5-82b2-2277dd98add5/content (accessed on 15 June 2024).
- Sinisterra-Solís, N.K.; Sanjuán, N.; Ribal, J.; Estruch, V.; Clemente, G. From farm accountancy data to environmental indicators: Assessing the environmental performance of Spanish agriculture at a regional level. Sci. Total Environ. 2023, 894, 164937. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Tian, H.; Wang, C. Economic indicator accuracy and corporate ESG performance. Econ. Lett. 2024, 243, 111907. [Google Scholar] [CrossRef]
- Adilov, N.; Alexander, P.J.; Braun, V.; Cunningham, B.M. An economic indicator of the orbital debris environment. J. Spac. Safet. Eng. 2024, 11, 539–545. [Google Scholar] [CrossRef]
- Marrucci, L.; Daddi, T.; Iraldo, F. Creating environmental performance indicators to assess corporate sustainability and reward employees. Ecol. Indic. 2024, 158, 111489. [Google Scholar] [CrossRef]
- Alonso-Martínez, D.; Jiménez-Parra, B.; Cabeza-García, L. Theoretical framework to foster and assess sustainable agriculture practices: Drivers and key performance indicators. Environ. Indic. Sustain. 2024, 23, 100434. [Google Scholar] [CrossRef]
- Shah, W.U.H.; Hao, G.; Yasmeen, R.; Yan, H.; Qi, Y. Impact of agricultural technological innovation on total-factor agricultural water usage efficiency: Evidence from 31 Chinese Provinces. Agric. Water Manag. 2024, 299, 108905. [Google Scholar] [CrossRef]
- FAO. Indicators, Agricultural Science and Technology Institutionalization and New National Data Collection Approach; Food and Agriculture Organization of the United Nations (FAO): Johannesburg, South Africa, 2023; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/8056c757-91ae-4e47-851a-a91a422f0f50/content (accessed on 12 October 2024).
- Cappiello, C.; Comuzzi, M.; Plebani, P.; Fim, M. Assessing and improving measurability of process performance indicators based on quality of logs. Inform. Syst. 2022, 103, 101874. [Google Scholar] [CrossRef]
- UN. Performance Indicators to Monitor and Evaluate the Effectiveness of the Implementation of the Technology Transfer Framework; United Nations (UN): Guimarães, Portugal, 2009; Available online: https://unfccc.int/resource/docs/2009/sb/eng/01.pdf (accessed on 2 October 2024).
- UN. Developing the Most Significant and Suitable Smart City Indicators for Smart City Pilot in Knowledge Oasis Muscat (KOM), Sultanate of Oman; United Nations (UN): Guimarães, Portugal, 2019; Available online: https://i.unu.edu/media/egov.unu.edu/event/4886/Presentation-slides.pdf (accessed on 2 October 2024).
- Sharma, R.; Kannan, D.; Darbari, J.D.; Jha, P.C. Group Decision Making Model for Selection of Performance Indicators for Sustainable Supplier Evaluation in Agro-Food Supply Chain. Economics 2024, 277, 109353. [Google Scholar] [CrossRef]
- Daelemans, R.; Hulsmans, E.; Fockaert, L.; Vranken, L.; Bruyn, L.D.; Honnay, O. Agroecosystem multifunctionality of apple orchards in relation to agricultural management and landscape context. Ecol. Indic. 2023, 154, 110496. [Google Scholar] [CrossRef]
- Macedo, I.; Roel, Á.; Velazco, J.I.; Bordagorri, A.; Terra, J.A.; Pittelkow, C.M. Intensification of rice-pasture rotations with annual crops reduces the stability of sustainability across productivity, economic, and environmental indicators. Agric. Syst. 2022, 202, 103488. [Google Scholar] [CrossRef]
- Serman, F.V.; Orgaz, F.; Starobinsky, G.; Capraro, F.; Elias, F. Water productivity and net profit of high-density olive orchards in San Juan, Argentina. Agric. Water Manag. 2021, 252, 106878. [Google Scholar] [CrossRef]
- Löw, P.; Osterburg, B. Evaluation of nitrogen balances and nitrogen use efficiencies on farm level of the German agricultural sector. Agric. Syst. 2024, 2013, 103796. [Google Scholar] [CrossRef]
- Hazimeh, R.; Jaafar, H. Impact of ET and biomass model choices on economic irrigation water productivity in water-scarce basins. Agric. Water Manag. 2024, 292, 108651. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Sans, G.C.; Gallego, F.; Baldassini, P.; Staiano, L.; Baeza, S.; Dieguez, H. A comprehensive analysis of the environmental performance of the Uruguayan agricultural sector. Ecol. Indic. 2024, 166, 112385. [Google Scholar] [CrossRef]
- Huang, Q.; Gong, Y.; Dewi, R.K.; Li, P.; Wang, X.; Hashimi, R.; Komatsuzaki, M. Enhancing energy efficiency and reducing carbon footprint in organic soybean production through no-tillage and rye cover crop integration. J. Clean. Prod. 2023, 419, 138247. [Google Scholar] [CrossRef]
- Liu, M.; Wang, G.; Liang, F.; Li, Q.; Tian, Y.; Jia, H. Optimal Irrigation Levels Can Improve Maize Growth, Yield, and Water Use Efficiency under Drip Irrigation in Northwest China. Water 2022, 14, 3822. [Google Scholar] [CrossRef]
- Zhang, N.; Luo, H.; Li, H.; Bao, M.; Liu, E.; Shan, W.; Ren, X.; Jia, Z.; Siddique, K.H.; Zhang, P. Maximizing potato tuber yields and nitrogen use efficiency in semi-arid environments by precision fertilizer depth application. Eur. J. Agron. 2024, 156, 127147. [Google Scholar] [CrossRef]
- Alonso, A.; Feltz, N.; Gaspart, F.; Vanclooster, M. Comparative assessment of irrigation systems’ performance: Case study in the Triffa agricultural district, NE Morocco. Agric. Water Manag. 2019, 212, 338–348. [Google Scholar] [CrossRef]
- Shirzad, H.; Barati, A.A.; Ehteshammajd, S.; Goli, I.; Siamian, N.; Moghaddam, S.M.; Para, M.; Tan, R.; Janečková, K.; Sklenička, P.; et al. Agricultural land tenure system in Iran: An overview. Land Use Policy 2022, 123, 106375. [Google Scholar] [CrossRef]
- Isaak, M.; Yahya, A.; Razif, M.; Mat, N. Mechanization status based on machinery utilization and workers’ workload in sweet corn cultivation in Malaysia. Comput. Electron. Agric. 2020, 169, 105208. [Google Scholar] [CrossRef]
- Lima, F.A.; Córcoles, J.I.; Tarjuelo, J.M.; Martínez-Romero, A. Model for management of an on-demand irrigation network based on irrigation scheduling of crops to minimize energy use (Part II): Financial impact of regulated deficit irrigation. Agric. Water Manag. 2019, 2015, 44–54. [Google Scholar] [CrossRef]
- López-Mata, E.; Tarjuelo, J.M.; Juan, J.A.; Ballesteros, R.; Domínguez, A. Effect of irrigation uniformity on the profitability of crops. Agric. Water Manag. 2010, 98, 190–198. [Google Scholar] [CrossRef]
- Engindeniz, S. Economic analysis of pesticide use on processing tomato growing: A case study for Turkey. Crop Protec. 2006, 15, 534–541. [Google Scholar] [CrossRef]
- Oulmane, A.; Chebil, A.; Frija, A.; Benmehaia, A. Water-Saving Technologies and Total Factor Productivity Growth in Small Horticultural Farms in Algeria. Agric. Res. 2020, 9, 585–591. [Google Scholar] [CrossRef]
- El-Wahed, M.A.; Ali, E. Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit. Agric. Water Manag. 2013, 120, 64–71. [Google Scholar] [CrossRef]
- Moursy, M.; ElFetyany, M.; Meleha, A.M.I.; El-Bialy, M.A. Productivity and profitability of modern irrigation methods through the application of on-farm drip irrigation on some crops in the Northern Nile Delta of Egypt. Alex. Eng. J. 2023, 62, 349–356. [Google Scholar] [CrossRef]
- Tang, J.; Xiao, D.; Wang, J.; Fang, Q.; Zhang, J.; Bai, H. Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China. Agric. Water Manag. 2021, 253, 106945. [Google Scholar] [CrossRef]
- Dou, Z.; Feng, H.; Zhang, H.; Abdelghany, A.E.; Zhang, F.; Li, Z.; Fan, J. Silicon application mitigated the adverse effects of salt stress and deficit irrigation on drip-irrigated greenhouse tomato. Agric. Water Manag. 2023, 289, 108526. [Google Scholar] [CrossRef]
- Badr, M.A.; Hussein, S.D.A.; El-Tohamy, W.A.; Gruda, N. Efficiency of Subsurface Drip Irrigation for Potato Production Under Different Dry Stress Conditions. Gesun. Pflan. 2010, 62, 63–70. [Google Scholar] [CrossRef]
- Wang, X.; Yang, B.; Jiang, L.; Zhao, S.; Liu, M.; Xu, X.; Jiang, R.; Zhang, J.; Duan, Y.; He, P.; et al. Organic substitution regime with optimized irrigation improves potato water and nitrogen use efficiency by regulating soil chemical properties rather than microflora structure. Field Crops Res. 2024, 316, 109512. [Google Scholar] [CrossRef]
- Luo, H.; Li, F. Tomato yield, quality and water use efficiency under different drip fertigation strategies. Sci. Hortic. 2018, 135, 181–188. [Google Scholar] [CrossRef]
- Shabbir, A.; Mao, H.; Ullah, I.; Buttar, N.A.; Ajmal, M.; Lakhiar, I.A. Effects of Drip Irrigation Emitter Density with Various Irrigation Levels on Physiological Parameters, Root, Yield, and Quality of Cherry Tomato. Agronomy 2020, 10, 1685. [Google Scholar] [CrossRef]
- Sandhu, O.; Gupta, R.; Pense, H.; Jat, M.; Sidhu, H.; Singh, Y. Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India. Agric. Water Manag. 2019, 219, 19–26. [Google Scholar] [CrossRef]
- Gupta, N.; Singh, Y.; Jat, H.S.; Singh, L.K.; Choudhary, K.M.; Sidhu, H.S.; Gathala, M.K.; Jat, M.L. Precise irrigation water and nitrogen management improve water and nitrogen use efficiencies under conservation agriculture in the maize-wheat systems. Sci. Rep. 2023, 13, 12060. [Google Scholar] [CrossRef]
- Shrestha, B.; Darapuneni, M.; Stringam, B.L.; Lombard, K.; Djaman, K. Irrigation Water and Nitrogen Fertilizer Management in Potato (Solanum tuberosum L.): A Review. Agronomy 2023, 13, 2566. [Google Scholar] [CrossRef]
- Zotarelli, L.; Dukes, M.; Scholberg, J.M.S.; Muñoz-Carpena, R.; Icerman, J. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manag. 2009, 96, 1247–1258. [Google Scholar] [CrossRef]
- Jackson, T.M.; Khan, S.; Hafeez, M. A comparative analysis of water application and energy consumption at the irrigated field level. Agric. Water Manag. 2010, 97, 1477–1485. [Google Scholar] [CrossRef]
- Chandel, R.; Raj, R.; Kaur, A.; Singh, K.; Kataria, S.K. Energy and yield optimization of field and vegetable crops in heavy crop residue for Indian conditions-climate smart techniques for food security. Energy 2024, 287, 129555. [Google Scholar] [CrossRef]
- Brar, A.; Buttar, G.; Thind, H.; Singh, K. Improvement of water productivity, economics and energetics of potato through straw mulching and irrigation scheduling in Indian Punjab. Potato Res. 2019, 62, 465–484. [Google Scholar] [CrossRef]
- Nita, K.; Soni, P.; Shivakoti, G.P. Comparative energy input–output and financial analyses of greenhouse and open field vegetables production in West Java, Indonesia. Energy 2013, 53, 83–92. [Google Scholar] [CrossRef]
- Çetin, B.; Vardar, A. An economic analysis of energy requirements and input costs for tomato production in Turkey. Renew. Energy 2008, 33, 428–433. [Google Scholar] [CrossRef]
- González-García, S.; Almeida, F.; Moreira, M.T.; Brandão, M. Evaluating the environmental profiles of winter wheat rotation systems under different management strategies. Sci. Total Environ. 2021, 770, 145270. [Google Scholar] [CrossRef]
- Silva, J.V.; Reidsma, Y.; Ittersum, M.K. Yield gaps in Dutch arable farming systems: Analysis at crop and crop rotation level. Agric. Syst. 2017, 158, 78–92. [Google Scholar] [CrossRef]
- Nabahungu, N.; Visser, S. Contribution of wetland agriculture to farmers’ livelihood in Rwanda. Ecol. Indic. 2011, 71, 4–12. [Google Scholar] [CrossRef]
- Boansi, D.; Owusu, V.; Donkor, E. Impact of integrated soil fertility management on maize yield, yield gap and income in northern Ghana. Sustain. Futures 2024, 7, 100185. [Google Scholar] [CrossRef]
- Garbelini, L.G.; Debiasi, H.; Junior, A.A.B.; Franchini, J.C.; Coelho, A.E.; Telles, T.S. Santo. Diversified crop rotations increase the yield and economic efficiency of grain production systems. Eur. J. Agron. 2022, 137, 126528. [Google Scholar] [CrossRef]
- Kik, M.; Claassen, G.; Ros, G.; Meuwissen, M.; Smit, A. FARManalytics—A bio-economic model to optimize the economic value of sustainable soil management on arable farms. Eur. J. Agron. 2024, 157, 127192. [Google Scholar] [CrossRef]
- Nasrallah, A.; Belhouchette, H.; Baghdadi, N.; Mhawej, M.; Darwish, T.; Darwich, S.; Faour, G. Performance of wheat-based cropping systems and economic risk of low relative productivity assessment in a sub-dry Mediterranean environment. Eur. J. Agron. 2020, 133, 125968. [Google Scholar] [CrossRef]
- Xu, J.; Min, J.; Haijun, S.; Singh, B.P.; Wang, H.; Shi, W. Biostimulants decreased nitrogen leaching and NH3 volatilization but increased N2O emission from plastic-shed greenhouse vegetable soil. Environ. Sci. Pollut. 2021, 29, 6093–6102. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Li, Z.; Sun, T.; Zhang, F.; Wu, Q.; Du, M.; Sheng, T. Modeling long-term water use and economic returns to optimize alfalfa-corn rotation in the corn belt of northeast China. Field Crops Res. 2022, 276, 108379. [Google Scholar] [CrossRef]
- Xiao, G.; Zhang, Q.; Yao, Y.; Yang, S.; Wang, R.; Xiong, Y.; Sun, Z. Effects of temperature increase on water use and crop yields in a pea–spring wheat–potato rotation. Agric. Water Manag. 2007, 91, 86–91. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; An, P.; Ren, W.; Pan, Z.; Dong, Z.; Han, G.; Pan, Y.; Pan, S.; Tian, H. Enhancing soil drought induced by climate change and agricultural practices: Observational and experimental evidence from the semiarid area of northern China. Agric. For. Meteorol. 2017, 243, 74–83. [Google Scholar] [CrossRef]
- Yu, T.; Mahe, L.; Li, Y.; Wei, X.; Deng, X.; Zhang, D.; Zhang, D. Benefits of Crop Rotation on Climate Resilience and Its Prospects in China. Agronomy 2022, 12, 436. [Google Scholar] [CrossRef]
- Zhu, X.; Ros, G.H.; Xu, M.; Cai, Z.; Sun, N.; Duan, Y.; de Vries, W.H. Long-term impacts of mineral and organic fertilizer inputs on nitrogen use efficiency for different cropping systems and site conditions in Southern China. Eur. J. Agron. 2023, 146, 126797. [Google Scholar] [CrossRef]
- Guitarra, H.I.; Karanja, N.N.; Gachene, C.K.; Kamau, S.; Sharma, K.; Schulte-Geldermann, E. Nitrogen and phosphorous uptake by potato (Solanum tuberosum L.) and their use efficiency under potato-legume intercropping systems. Field Crops Res. 2018, 222, 78–84. [Google Scholar] [CrossRef]
- Liang, K.; Jiang, Y.; Nyiraneza, J.; Fuller, K.; Murnaghan, D.; Meng, F. Nitrogen dynamics and leaching potential under conventional and alternative potato rotations in Atlantic Canada. Field Crops Res. 2018, 242, 107603. [Google Scholar] [CrossRef]
- Valenzuela, H. Optimizing the Nitrogen Use Efficiency in Vegetable Crops. Nitrogen 2024, 5, 106–146. [Google Scholar] [CrossRef]
- Jalpa, L.; Mylavarapu, R.S.; Hochmuth, G.J.; Wright, A.L.; Santen, E. Apparent Recovery and Efficiency of Nitrogen Fertilization in Tomato Grown on Sandy Soils. HortTechnology 2020, 30, 204–211. [Google Scholar] [CrossRef]
- Rathke, G.W.; Wienhold, B.J.; Wilhelm, W.W.; Diepenbrock, W. Tillage and rotation effect on corn–soybean energy balances in eastern Nebraska. Soil Tillage Res. 2007, 97, 60–70. [Google Scholar] [CrossRef]
- Khakbazan, M.; Mohr, R.M.; Huang, J.; Xie, R.; Volkmar, K.M.; Tomasiewicz, D.J.; Moulin, A.P.; Derksen, D.A.; Irvine, B.R.; McLaren, D.L.; et al. Effects of crop rotation on the energy use efficiency of potatoes irrigated with cereals, canola and alfalfa over a 14-year period in Manitoba, Canada. Soil Tillage Res. 2019, 195, 104357. [Google Scholar] [CrossRef]
- Hülsbergen, K.J.; Feil, B.; Biermann, S.; Rathke, G.W.; Kalk, W.D.; Diepenbrock, W. A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agric. Ecosyst. Environ. 2001, 86, 303–321. [Google Scholar] [CrossRef]
- Houshyar, E.; Dalgaard, T.; Tarazkar, M.H.; Jørgensen, U. Energy input for tomato production what economy says, and what is good for the environment. J. Clean. Prod. 2015, 89, 99–109. [Google Scholar] [CrossRef]
- Bechini, L.; Castoldi, N. On-farm monitoring of economic and environmental performances of cropping systems: Results of a 2-year study at the field scale in northern Italy. Crop Prot. 2009, 9, 1096–1113. [Google Scholar] [CrossRef]
- Dupuis, B.; Nkuriyingoma, P.; Ballmer, T. Economic Impact of Potato Virus Y (PVY) in Europe. Potato Res. 2023, 67, 55–72. [Google Scholar] [CrossRef]
- Brown, S.; Kennedy, G. A case study of cash cropping in Nepal: Poverty alleviation or inequity? Agric. Hum. 2005, 22, 105–116. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Wu, M.; Uddin, D.; Ahmad, S.; Hanson, P. Farmer training in off-season vegetables: Effects on income and pesticide use in Bangladesh. Food Policy 2016, 61, 132–140. [Google Scholar] [CrossRef]
- Zhang, T.; Zou, Y.; Kisekka, I.; Biswas, A.; Cai, H. Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area. Agric. Water Manag. 2021, 243, 106497. [Google Scholar] [CrossRef]
- Kilonzi, J.M.; Githui, D.; Pwaipwai, P.; Kawira, C.; Otieno, S.; Kelele, J.; Ng’ang’a, N.; Nyongesa, M.; Mafurah, J.; Kibe, A. Effects of Seed Tuber Size of Potato Varieties on Fungicide Spray Regime, Weed Infestation and Net Farm Income in Potato Production. Potato Res. 2024, 68, 23–47. [Google Scholar] [CrossRef]
- Mao, X.; Gu, J.; Wang, F.; Wang, K.; Liu, R.; Hong, Y.; Wang, Y.; Han, F. Yield, Quality, and Nitrogen Leaching of Open-Field Tomato in Response to Different Nitrogen Application Measures in Northwestern China. Plants 2024, 13, 924. [Google Scholar] [CrossRef] [PubMed]
- Faloye, O.T.; Ajayi, A.E.; Babalola, T.; Omotehinse, A.O.; Adeyeri, O.E.; Adabembe, B.A.; Ogunrinde, A.T.; Okunola, A.; Fashina, A. Modelling Crop Evapotranspiration and Water Use Efficiency of Maize Using Artificial Neural Network and Linear Regression Models in Biochar and Inorganic Fertilizer-Amended Soil under Varying Water Applications. Water 2023, 15, 2294. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, K.; Khan, K.S.; Fudjoe, S.K.; Li, L.; Wang, L.; Luo, Z. Deficit Irrigation as an Effective Way to Increase Potato Water Use Efficiency in Northern China: A Meta-Analysis. Agronomy 2024, 14, 1533. [Google Scholar] [CrossRef]
- Khater, E.G.; Bahnasawy, A.H.; Shams, A.E.S.; Hassaan, M.S.; Hassaan, Y.A. Utilization of effluent fish farms in tomato cultivation. Ecol. Eng. 2015, 83, 199–207. [Google Scholar] [CrossRef]
- Daoud, B.; Pawelzik, E.; Naumann, M. Different potassium fertilization levels influence water-use efficiency, yield, and fruit quality attributes of cocktail tomato—A comparative study of deficient-to-excessive supply. Sci. Hortic. 2020, 2072, 109562. [Google Scholar] [CrossRef]
- Wang, C.; Zang, H.; Liu, J.; Shi, X.; Li, S.; Chen, F.; Chu, Q. Optimum nitrogen rate to maintain sustainable potato production and improve nitrogen use efficiency at a regional scale in China. A meta-analysis. Agron. Sustain. Dev. 2020, 40, 37. [Google Scholar] [CrossRef]
- Badr, M.; Abou-Hussein, S.; El-Tohamy, W. Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region. Agric. Water Manag. 2016, 169, 90–97. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H.; Rajaeifar, M.A. Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran. Agric. Syst. 2014, 123, 120–127. [Google Scholar] [CrossRef]
- Amirhossein, A.; Ghahderijani, M.; Borghaee, A.; Bakhoda, H. Energy use and environmental impacts analysis of greenhouse crops production using life cycle assessment approach: A case study of cucumber and tomato from Tehran province, Iran. Energy Rep. 2023, 9, 988–999. [Google Scholar] [CrossRef]
- Ozkan, B.; Ceylan, R.F.; Kizilay, H. Energy inputs and crop yield relationships in greenhouse winter crop tomato production. Renew. Energy 2011, 36, 3217–3221. [Google Scholar] [CrossRef]
- Berentsen, P.; Asseldonk, M. An empirical analysis of risk in conventional and organic arable farming in The Netherlands. Eur. J. Agron. 2016, 79, 100–106. [Google Scholar] [CrossRef]
- Maruf, S.A.; Ahmed, J.U.; Khan, J.A. Prospect of off-seasonal vegetable production in Bangladesh: A socioeconomic diagnosis. Qual Quant 2021, 56, 3441–3463. [Google Scholar] [CrossRef]
- Timpanaro, G.; Timpanaro, G.; Branca, F.; Cammarata, M.; Falcone, G.; Scuderi, A. Life Cycle Assessment to Highlight the Environmental Burdens of Early Potato Production. Agronomy 2021, 11, 879. [Google Scholar] [CrossRef]
- Bajracharya, M.; Sapkota, M. Profitability and productivity of potato (Solanum tuberosum) in Baglung district, Nepal. Agric. Food Secur. 2017, 6, 47. Available online: https://link.springer.com/article/10.1186/s40066-017-0125-5 (accessed on 2 October 2024). [CrossRef]
- Wang, X.; Zhao, M.; Liu, B.; Zou, C.; Sun, Y.; Wu, G.; Zhang, Q.; Jin, G.; Jin, Z.; Chadwick, D.; et al. Integrated systematic approach increase greenhouse tomato yield and reduce environmental losses. J. Environ. Manag. 2020, 266, 110569. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.; Ramadã, A.A.; Alkhateed, A.A.; Ghazzawy, H.S. Mulching as a sustainable water and soil saving practice in agriculture: A review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Liu, L.; Li, F.R.; Zhou, L.M.; Zhang, R.H.; Jia, Y.; Lin, S.L.; Wang, L.J.; Siddique, K.H.M.; Li, F. Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment. Agric. Water Manag. 2013, 117, 123–132. [Google Scholar] [CrossRef]
- Alliaume, F.; Rossing, W.; Tittonell, P.; Jorge, G.; Dogliotti, S. Reduced tillage and cover crops improve water capture and reduce erosion of fine textured soils in raised bed tomato systems. Agric. Ecosyst. Environ. 2014, 183, 127–137. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, M.; Wang, B.; Yang, X.; Huan, S.; Gao, S. Long-Term Evaluation of Manure Application on Maize Yield and Nitrogen Use Efficiency in China. Nutri. Manag. Soil Plant Analy. 2011, 75, 1562–1573. [Google Scholar] [CrossRef]
- Musyoka, M.W.; Adamtey, N.; Muriuki, A.W.; Cadisch, G. Effect of organic and conventional farming systems on nitrogen use efficiency of potato, maize and vegetables in the Central highlands of Kenya. Eur. J. Agron. 2017, 86, 24–36. [Google Scholar] [CrossRef]
- Drakopoulos, D.; Scholberg, J.M.; Lantinga, E.A.; Tittonell, P.A. Influence of reduced tillage and fertilization regime on crop performance and nitrogen utilization of organic potato. Organ. Agric. 2015, 6, 75–87. [Google Scholar] [CrossRef]
- Campiglia, E.; Mancinelli, R.; Radicetti, E. Influence of no-tillage and organic mulching on tomato (Solanum lycopersicum L.) production and nitrogen use in the mediterranean environment of central Italy. Sci. Hortic. 2011, 130, 588–598. [Google Scholar] [CrossRef]
- Pimentel, D. Economics and Energetics of Organic and Conventional Farming. J. Agric. Environ. Ethi. 1993, 6, 53–60. [Google Scholar] [CrossRef]
- Ranguwal, S.; Sidana, B.K.; Singh, J.; Sachdeva, J.; Kumar, S.; Sharma, R.K.; Dhillon, J. Quantifying the energy use efficiency and greenhouse gas emissions in Punjab (India) agriculture. Energy Nexus. 2023, 11, 100238. [Google Scholar] [CrossRef]
- Mohammadi, A.; Tabatabaeefar, A.; Shahin, S.; Rafiee, S.; Keyhani, A. Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Convers. Manag. 2008, 49, 3566–3570. [Google Scholar] [CrossRef]
- Liang, L.; Ridoutt, B.G.; Wu, W.; Lal, R.; Wang, L.; Wang, Y.; Li, C.; Zhao, G. A multi-indicator assessment of peri-urban agricultural production in Beijing, China. Ecol. Indic. 2019, 97, 350–362. [Google Scholar] [CrossRef]
- Pollesch, N.; Dale, V. Normalization in sustainability assessment: Methods and implications. Econ. Ecol. 2016, 130, 195–208. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, T.; Wei, X.; Wang, H. An improved indicator standardization method for multi-indicator composite evaluation: A case study in the evaluation of ecological civilization construction in China. Environ. Impact Assess. Rev. 2024, 108, 107600. [Google Scholar] [CrossRef]
- Maisiri, N.; Senzanje, A.; Rockstrom, J.; Twomlow, S. On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system. Phys. Chem. Earth 2005, 30, 783–791. [Google Scholar] [CrossRef]
- Pascual-Seva, N.; Bautista, A.S.; López-Galarza, S.; Maroto, J.V.; Pascual, B. Response of nutsedge (Cyperus esculentus L. var sativus Boeck.) tuber production to drip irrigation based on volumetric soil water content. Irrig. Sci. 2014, 33, 31–42. [Google Scholar] [CrossRef]
- Elzaki, R.M.; Elrasheed, M.; Elmulthum, N.A. Optimal crop combination under soaring oil and energy prices in the kingdom of Saudi Arabia. Socio-Econo. Plan. Sci. 2022, 83, 101367. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Bakhsh, A.; Engel, B.A.; Ragab, R. Improving corn production by adopting efficient fertigation practices: Experimental and modeling approach. Agric. Water Manag. 2019, 221, 449–461. [Google Scholar] [CrossRef]
- Akram, M.M.; Asif, M.; Rasheed, S.; Rafique, M.A. Effect of Drip and Furrow Irrigation on Yield, Water Productivity and Economics of Potato (Solanum tuberosum L.) Grown under Semiarid Conditions. Sci. Lett. 2020, 8, 48–54. [Google Scholar] [CrossRef]
- Abduwaiti, A.; Liu, X.; Yan, C.; Xue, Y.; Jin, T.; Wu, H.; He, P.; Bao, Z.; Liu, Q. Testing Biodegradable Films as Alternatives to Plastic-Film Mulching for Enhancing the Yield and Economic Benefits of Processed Tomato in Xinjiang Region. Sustainability 2021, 13, 3093. [Google Scholar] [CrossRef]
- Li, H.; Mei, X.; Nangia, V.; Guo, R.; Liu, Y.; Hao, W.; Wan, J. Effects of different nitrogen fertilizers on the yield, water- and nitrogen-use efficiencies of drip-fertigated wheat and maize in the North China Plain. Agric. Water Manag. 2021, 243, 106474. [Google Scholar] [CrossRef]
- Qin, J.; Ramírez, D.A.; Xie, K.; Li, W.; Yactayo, W.; Jin, L.; Quiroz, R. Is Partial Root-Zone Drying More Appropriate than Drip Irrigation to Save Water in China? A Preliminary Comparative Analysis for Potato Cultivation. Potato Res. 2018, 61, 391–406. [Google Scholar] [CrossRef]
- Rasool, G.; Guo, X.; Wang, Z.; Ali, M.U.; Chen, S.; Zhang, S.; Wu, Q.; Ullah, M.S. Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato. Agric. Water Manag. 2020, 239, 106239. [Google Scholar] [CrossRef]
- Darwish, T.; Atallah, T.; Hajhasan, S. Nitrogen and water use efficiency of fertigated processing potato. Agric. Water Manag. 2006, 85, 95–104. [Google Scholar] [CrossRef]
- Li, H.; Mei, X.; Wang, J.; Huang, F.; Hao, W.; Li, B. Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China. Agric Water Manag. 2021, 244, 106534. [Google Scholar] [CrossRef]
- Jackson, T.; Hanjra, M.; Khan, S.; Hafeez, M. Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture. Agric. Syst. 2011, 104, 729–774. [Google Scholar] [CrossRef]
- Tabar, I.B.; Keyhani, A.; Rafiee, S. Energy balance in Iran’s agronomy (1990–2006). Renew. Sustain. Energy Rev. 2010, 14, 849–855. [Google Scholar] [CrossRef]
- Canakci, M.; Akinci, I. Energy use pattern analyses of greenhouse vegetable production. Energy 2006, 31, 1243–1256. [Google Scholar] [CrossRef]
- Rebolledo-Leiva, R.; Almeida-García, F.; Pereira-Lorenzo, S.; Ruíz-Nogueira, B.; Moreira, M.T.; González-García, S. Determining the environmental and economic implications of lupin cultivation in wheat-based organic rotation systems in Galicia, Spain. Sci. Total Environ. 2022, 845, 157342. [Google Scholar] [CrossRef] [PubMed]
- Dogliotti, S.; Rossing, W.; Ittersum, M. Rotat, a tool for systematically generating crop rotations. Eur. J. Agron. 2003, 19, 239–250. [Google Scholar] [CrossRef]
- Brosseau, A.; Saito, K.; Oort, P.A.; Diagne, M.; Valbuena, D.; Groot, J.C. Exploring opportunities for diversification of smallholders’ rice-based farming systems in the Senegal River Valley. Agric. Syst. 2021, 193, 103211. [Google Scholar] [CrossRef]
- Bonner, I.J.; Cafferty, K.G.; Muth, D.J.; Tomer, M.D.; James, D.E.; Porter, S.A.; Karlen, D.L. Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability. Energies 2014, 7, 6509–6526. [Google Scholar] [CrossRef]
- Munnaf, M.; Haesaert, G.; Meirvenne, S.V.; Mouazen, M. Map-based site-specific seeding of consumption potato production using high-resolution soil and crop data fusion. Comput. Electron. Agric. 2020, 178, 105752. [Google Scholar] [CrossRef]
- Nordey, T.; Basset-Mens, C.; Bon, C.D.; Martin, T.; Déletré, E.; Simon, S.; Parrot, L.; Despretz, H.; Huat, J.; Biard, Y.; et al. Protected cultivation of vegetable crops in sub-Saharan Africa: Limits and prospects for smallholders. A review. Agron. Sustain. Dev. 2017, 37, 53. [Google Scholar] [CrossRef]
- Sun, T.; Li, Z. Alfalfa-corn rotation and row placement affects yield, water use, and economic returns in Northeast China. Field Crops Res. 2019, 241, 107558. [Google Scholar] [CrossRef]
- Wang, S.; Xiong, J.; Yang, B.; Yang, X.; Du, T.; Steenhuis, T.S.; Siddique, K.H.; Kang, S. Diversified crop rotations reduce groundwater use and enhance system resilience. Agric. Water Manag. 2023, 276, 108067. [Google Scholar] [CrossRef]
- Ponsioen, T.C.; Hengsdijk, H.; Wolf, J.; van Ittersum, M.K.; Rötter, R.P.; Son, T.; Laborte, A.G. TechnoGIN, a tool for exploring and evaluating resource use efficiency of cropping systems in East and Southeast Asia. Agric. Syst. 2006, 87, 80–100. [Google Scholar] [CrossRef]
- Limon-Ortega, A.; Govaerts, B.; Sayre, K.D. Straw management, crop rotation, and nitrogen source effect on wheat grain yield and nitrogen use efficiency. Eur. J. Agron. 2008, 29, 21–28. [Google Scholar] [CrossRef]
- Shen, W.; Lin, X.; Shi, W.; Min, J.; Gao, G.; Zhang, H.; Yin, Y.; He, X. Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land. Plant Soil 2010, 337, 137–150. Available online: https://link.springer.com/article/10.1007/s11104-010-0511-2 (accessed on 2 October 2024). [CrossRef]
- Alluvione, F.; Moretti, B.; Sacco, D.; Grignani, C. EUE (energy use efficiency) of cropping systems for a sustainable agriculture. Energy 2011, 36, 4468–4481. [Google Scholar] [CrossRef]
- Soni, P.; Sinha, R.; Perret, S.R. Energy use and efficiency in selected rice-based cropping systems of the Middle-Indo Gangetic Plains in India. Energy Rep. 2018, 4, 554–564. [Google Scholar] [CrossRef]
- Canali, S.; Campanelli, G.; Ciaccia, C.; Leteo, F.; Testani, E.; Montemurro, F. Conservation tillage strategy based on the roller crimper technology for weed control in Mediterranean vegetable organic cropping systems. Eur. J. Agron. 2013, 50, 11–18. [Google Scholar] [CrossRef]
- Nascimento, N.; Schwartz, R.; Lima, F.; Lima, F.; López-Mata, E.; Domínguez, A.; Izquiel, A.; Tarjuelo, J.; Martínez-Romero, A. Effects of irrigation uniformity on yield response and production economics of maize in a semiarid zone. Agric. Water Manag. 2019, 211, 178–189. [Google Scholar] [CrossRef]
- Muchara, B.; Ortmann, G.; Mudhara, M.; Wale, E. Irrigation water value for potato farmers in the Mooi River Irrigation Scheme of KwaZulu-Natal, South Africa: A residual value approach. Agric. Water Manag. 2016, 164, 243–252. [Google Scholar] [CrossRef]
- Patthanaissaranukool, W.; Polprasert, S.; Neamhom, T. Carbon smart agriculture: Lower carbon emissions and higher economic benefits of maize production in Thailand. Intern. J. Environ. Sci. Technol. 2022, 20, 6003–6014. Available online: https://link.springer.com/article/10.1007/s13762-022-04355-w (accessed on 2 October 2024). [CrossRef]
- Li, C.; Xiong, Y.; Qu, Z.; Xu, X.; Huang, Q.; Huang, G. Impact of biochar addition on soil properties and water-fertilizer productivity of tomato in semi-arid region of Inner Mongolia, China. Geoderma 2018, 331, 100–108. [Google Scholar] [CrossRef]
- Kanga, S.; Liang, Z.; Hu, W.; Zhang, J. Water use efficiency of controlled alternate irrigation on root-divided maize plants. Agric. Water Manag. 1998, 38, 69–76. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, F.X.; Shock, C.C.; Yang, K.J.; Kang, S.Z.; Qin, J.T.; Li, S.E. Influence of different plastic film mulches and wetted soil percentages on potato grown under drip irrigation. Agric Water Manag. 2017, 180, 160–171. [Google Scholar] [CrossRef]
- Guo, L.; Yu, H.; Niu, W.; Kharbach, M. Biochar Promotes Nitrogen Transformation and Tomato Yield by Regulating Nitrogen-Related Microorganisms in Tomato Cultivation Soil. Agronomy 2021, 11, 381. [Google Scholar] [CrossRef]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of Fertilizer Nitrogen in Cereal Production: Retrospects and Prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar] [CrossRef]
- Hailu, G.; Nigussie, D.; Ali, M.; Derbew, B. Nitrogen and Phosphorus Use Efficiency in Improved Potato (Solanum tuberosum L.) Cultivars in Southern Ethiopia. Am. J. Potato Res. 2016, 94, 617–631. Available online: https://link.springer.com/article/10.1007/s12230-017-9600-6 (accessed on 2 October 2024). [CrossRef]
- Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.; Blasco, B.; Constán-Aguilar, C.; Romero, L.; Ruiz, J.M. Variation in the use efficiency of N under moderate water deficit in tomato plants (Solanum lycopersicum) differing in their tolerance to drought. Acta Phys. Plantar 2011, 33, 1861–1865. Available online: https://link.springer.com/article/10.1007/s11738-011-0729-5 (accessed on 2 October 2024). [CrossRef]
- Canakci, M.; Topakci, M.; Akinci, I.; Ozmerzi, A. Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy Convers. Manag. 2005, 46, 655–666. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.; Ghahderijani, M.; Sefeedpari, P. Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. J. Clean. Prod. 2012, 33, 183–191. [Google Scholar] [CrossRef]
- Heidari, M.; Omid, S. Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy 2011, 36, 220–225. [Google Scholar] [CrossRef]
- Adamtey, N.; Musyoka, M.W.; Zundel, C.; Cobo, J.G.; Karanja, E.; Fiaboe, K.K.; Muriuki, A.; Mucheru-Muna, M.; Vanlauwe, B.; Berset, E.; et al. Productivity, profitability and partial nutrient balance in maize-based conventional and organic farming systems in Kenya. Agric. Ecosyst. Environ. 2016, 235, 61–79. [Google Scholar] [CrossRef]
- Kanellopoulos, A.; Berentsen, P.; Ittersum, M.K.; Lansink, A.O. A method to select alternative agricultural activities for future-oriented land use studies. Eur. J. Agron. 2012, 40, 75–85. [Google Scholar] [CrossRef]
- Pacini, C.; Wossink, A.; Giesen, G.; Vazzana, C.; Huirne, R. Evaluation of sustainability of organic, integrated and conventional farming systems: A farm and field-scale analysis. Agric. Ecosyst. Env. 2003, 95, 273–288. [Google Scholar] [CrossRef]
- Wu, G.; Mingjiong, Z.; Liu, B.; Wang, X.; Yuan, M.; Wang, J.; Chen, X.; Wang, X.; Yixiang, S. Environmental impact and mitigation potentials in Greenhouse tomatoes production system in Yangtze River Delta. Plant Soil 2024, 509, 289–300. [Google Scholar] [CrossRef]
- Fandika, I.R.; Kadyampakeni, D.; Bottomani, C.; Kakhiwa, H. Comparative response of varied irrigated maize to organic and inorganic fertilizer application. Phys. Chem. Earth 2007, 32, 1107–1116. [Google Scholar] [CrossRef]
- Woldeselassie, A.; Dechassa, N.; Alemayehu, Y.; Tana, T.; Bedadi, B. Nitrogen, Phosphorus and Water Use Efficiency of Potato Under Irrigation and Fertilizer Regimes, Eastern Ethiopia. Am. J. Potato Res. 2023, 100, 413–432. Available online: https://link.springer.com/article/10.1007/s12230-023-09919-1 (accessed on 2 October 2024). [CrossRef]
- Liu, H.; Li, H.; Ning, H.; Zhang, X.; Li, S.; Pang, J.; Wang, G.; Sun, J. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agric. Water Manag. 2019, 226, 105787. [Google Scholar] [CrossRef]
- Montemurro, F.; Maiorana, M.; Ferri, D.; Convertini, G. Nitrogen indicators, uptake and utilization efficiency in a maize and barley rotation cropped at different levels and sources of N fertilization. Field Crops Res. 2006, 99, 114–124. [Google Scholar] [CrossRef]
- Swain, E.Y.; Rempelos, L.; Orr, C.H.; Hall, G.; Chapman, R.; Almadni, M.; Stockdale, E.A.; Kidd, J.; Leifert, C.; Cooper, J.M. Optimizing nitrogen use efficiency in wheat and potatoes: Interactions between genotypes and agronomic practices. Euphytica 2014, 199, 119–136. [Google Scholar] [CrossRef]
- Schmidt, S.; Krishnan, V.; Gamage, H.; Walsh, M.; Huelsen, T.; Wolf, J.; Wadewitz, P.; Jensen, P.; Das, B.; Robinson, N. Enabling the circular nitrogen economy with organic and organo-mineral fertilisers. Nutr. Cycl. Agroecos. 2024, 130, 33–48. [Google Scholar] [CrossRef]
- Deike, S.; Pallutt, B.; Christen, O. Investigations on the energy efficiency of organic and integrated farming with specific emphasis on pesticide use intensity. Eur. J. of Agron. 2008, 28, 461–470. [Google Scholar] [CrossRef]
- Zangeneh, Z.; Omid, M.; Akram, A. A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran. Energy 2010, 35, 2927–2933. [Google Scholar] [CrossRef]
- Ferreira de Souza, J.F.; Fernandes, B.D.; Rotta, I.; Visacri, M.B.; Lima, T.M. Key performance indicators for pharmaceutical services: A systematic review. Expl. Res. Clinical. Soci. Pharm. 2024, 14, 100441. [Google Scholar] [CrossRef]
- Eliseu, E.; Lima, T.M.; Gaspar, P.D. Sustainable Development Strategies and Good Agricultural Practices for Enhancing Agricultural Productivity: Insights and Applicability in Developing Contexts—The Case of Angola. Sustainability 2024, 16, 9878. [Google Scholar] [CrossRef]
- Culas, R.J.; Anwar, M.R.; Maraseni, T.N. A framework for evaluating benefits of organic fertilizer use in agriculture. J. Agric. Food Res. 2025, 19, 101576. [Google Scholar] [CrossRef]
- Alzamel, N.; Taha, E.M.; Bakr, A.A.; Loutfy, N. Effect of Organic and Inorganic Fertilizers on Soil Properties, Growth Yield, and Physiochemical Properties of Sunflower Seeds and Oils. Sustainability 2022, 14, 12928. [Google Scholar] [CrossRef]
- Durham, T.C.; Mizik, T. Comparative Economics of Conventional, Organic, and Alternative Agricultural Production Systems. Economies 2021, 9, 64. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Zhang, K.; Jeong, J.; Zeng, Z.; Zang, H. Does crop rotation yield more in China? A meta-analysis. Field Crops Res. 2020, 245, 107659. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Li, Y.; Liu, Z.; Chen, F.; Bi, Z.; Sun, C.; Tang, C.; Yao, P.; Yuan, A.; et al. Impact of extended dryland crop rotation on sustained potato cultivation in Northwestern China. Resou. Conserv. Recy. 2023, 197, 107114. [Google Scholar] [CrossRef]
- Hernández, T.; Chocano, C.; Moreno, J.L.; García, C. Towards a more sustainable fertilization: Combined use of compost and inorganic fertilization for tomato cultivation. Agric. Ecosyst. Environ. 2014, 196, 178–184. [Google Scholar] [CrossRef]
- Megali, L.; Glauser, G.; Rasmann, S. Fertilization with beneficial microorganisms decreases tomato defenses against insect pests. Agron. Sustain. Dev. 2013, 34, 649–656. Available online: https://link.springer.com/article/10.1007/s13593-013-0187-0 (accessed on 2 October 2024). [CrossRef]
- Victor, S.; Farooq, A. Dashboard visualisation for healthcare performance management: Balanced scorecard metrics. Asi. Paci. J. Health Manag. 2021, 16, 1833–3818. [Google Scholar] [CrossRef]
- Wongnaa, C.A.; Akuriba, M.A.; Ebenezer, A.; Danquah, K.S.; Ofosu, D.A. Profitability and constraints to urban exotic vegetable production systems in the Kumasi metropolis of Ghana: A recipe for job creation. J. Global Entrep. Res. 2019, 9, 33. [Google Scholar] [CrossRef]
- Seciu, A.M.; Oancea, A.; Gaspar, A.; Moldovan, L.; Craciunescu, O.; Stefan, L.; Petrus, V.; Georgescu, F. Water Use Efficiency on Cabbage and Cauliflower Treated with a New Biostimulant Composition. Agri. Agricult. Sci. Proced. 2016, 10, 475–484. [Google Scholar] [CrossRef]
- Gezer, I.; Acaro, M.; Haciseferoǧullari, H.H. Use of energy and labour in apricot agriculture in Turkey. Biom. Bioen. 2003, 24, 215–219. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Nepalês, J.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farm Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Rajput, T.; Patel, N. Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments. Agric. Water Manag. 2016, 73, 293–311. [Google Scholar] [CrossRef]
- Liu, X.; Lehtonen, H.; Purola, T.; Pavlova, Y.; Rötter, R.; Palosuo, T. Dynamic economic modelling of crop rotations with farm management practices under future pest pressure. Agric. Syst. 2016, 144, 65–76. [Google Scholar] [CrossRef]
- Chemura, A. The growth response of coffee (Coffea arabica L.) plants to organic manure, inorganic fertilizers and integrated soil fertility management under different irrigation water supply levels. Inter. J. Recy. Orga. Waste Agric. 2014, 3, 59. [Google Scholar] [CrossRef]
- Nordey, T.; Ochieng, J.; Ernest, Z.; Mlowe, N.; Mosha, I.; Fernandes, P. Is vegetable cultivation under low tunnels a profitable alternative to pesticide use? The case of cabbage cultivation in northern Tanzania. Crop Prot. 2020, 134, 105169. [Google Scholar] [CrossRef]
- Malobane, M.E.; Nciizah, A.D.; Mudau, F.N.; Wakindiki, I.I. Tillage, Crop Rotation and Crop Residue Management Effects on Nutrient Availability in a Sweet Sorghum-Based Cropping System in Marginal Soils of South Africa. Agronomy 2020, 10, 776. [Google Scholar] [CrossRef]
Inclusion | Exclusion |
---|---|
The document discussed and focused on GAPs; | The document does not discuss and focus on GAPs; |
Studies performed in the agricultural sector; | Studies have not been performed in the agricultural sector; |
Studies related to environmental, technological, economic, and social KPIs in the agricultural sector; | Studies related to environmental, technological, economic, and social KPIs in other sectors; |
Studies performed in developed and underdeveloped countries; | Studies performed in developed and underdeveloped countries are not available; |
Publication date between 2019 and 2024; | Published outside the defined range; |
Studies and scenarios of GAPs and KPIs in the agricultural sector are written in English. | Studies and scenarios of GAPs and KPIs in the agricultural sector are written in a language other than English. |
KPIs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Economic | Financial strength | ||||||||||||||
Farmer’s income | |||||||||||||||
Gross margin | |||||||||||||||
Net profit | |||||||||||||||
Profit for the producer caused by irrigation | |||||||||||||||
Environmental | Soil conservation | ||||||||||||||
Primary production for internal inputs | |||||||||||||||
Energy use efficiency | |||||||||||||||
Water use efficiency | |||||||||||||||
Nitrogen use efficiency | |||||||||||||||
Social | Percentage of irrigated agricultural areas | ||||||||||||||
Land tenure | |||||||||||||||
Technology | Agricultural machinery | ||||||||||||||
Machine energy |
KPIs | Drip Irrigation | Crop Rotation | Inorganic Fertilizers | Organic Fertilizers | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | M | T | S | M | T | S | M | T | S | M | T | |
Gross margin | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 |
Net profit | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 |
Water use efficiency | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 |
Nitrogen use efficiency | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 |
Machine energy | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 |
KPIs | Maize | Potato | Tomato | |||
---|---|---|---|---|---|---|
/ha) | 638.5 | 1151.7 | 1396.19 | 2605.90 | 2609.19 | 7104.78 |
Value to test the metric | 1056.68 [122] | 2368 [123] | 3287.4 [124] | |||
/ha) | 279.6 | 4944 | 1706.65 | 2933.91 | 1652.27 | 6352.18 |
Value to test metric | 983.77 [125] | 2765.85 [126] | 2145.45 [127] | |||
Water use efficiency (%) | 23.70 | 49 | 40 | 46.1 | 7.8 | 21.4 |
Value to test metric | 32.5 [128] | 45.9 [129] | 18 [130] | |||
Nitrogen use efficiency (%) | 66.2 | 90 | 48.60 | 81.67 | 50 | 73 |
Value to test metric | 68.5 [128] | 61 [131] | 68 [132]. | |||
Machine energy (MJ/ha) | 15,340 | 21,146 | 64.8 | 6880 | 728.7 | 11,791.7 |
Value to test metric | 16,506 [133] | 1290 [134] | 1300.6 [135] |
KPI | Maize | Potato | Tomato | |||
---|---|---|---|---|---|---|
/ha) | 1000 | 6000 | 1000 | 5056 | 500 | 3000 |
Value to test the metric | 2860 [136] | 5020 [137] | 2699.35 [138] | |||
/ha) | 112.63 | 379.77 | 20 | 8100 | 484.40 | 7185.2 |
Value to test metric | 260.40 [139] | 792.36 [140] | 4571.28 [141] | |||
Water use efficiency (%) | 8 | 18 | 12.5 | 35.3 | 15.5 | 23.4 |
Value to test metric | 12 [142] | 27 [143] | 20 [144] | |||
Nitrogen use efficiency (%) | 46 | 85 | 33 | 53 | 12.05 | 61 |
Value to test metric | 60 [145] | 34.3 [132] | 29.3 [146] | |||
Machine energy (MJ/ha) | 1000 | 8000 | 1120 | 2780 | 826.70 | 1067.56 |
Value to test metric | 6600 [147] | 2130.01 [148] | 871 [149] |
KPI | Maize | Potatoes | Tomatoes | |||
---|---|---|---|---|---|---|
/ha) | 706 | 1187 | 412 | 1537 | 1419.26 | 8332.87 |
Value to test the metric | 831 [150] | 1026.80 [151] | 2699.35 [138] | |||
/ha) | 1220.56 | 1853.01 | 621.38 | 2414.26 | 2218.38 | 3904.15 |
Value to test metric | 1411 [152] | 1240.02 [140] | 2914.19 [153] | |||
Water use efficiency (%) | 60 | 80 | 5.9 | 47.80 | 22.63 | 62 |
Value to test metric | 65 [154] | 25 [155] | 45.33 [156] | |||
Nitrogen use efficiency (%) | 42 | 68 | 48.60 | 81.67 | 15 | 24 |
Value to test metric | 60 [157] | 68.25 [158] | 22 [159] | |||
Machine energy (MJ/ha) | 589.38 | 1739.5 | 866 | 950 | 142.69 | 530.3 |
Value to test metric | 1245.6 [160] | 910 [161] | 440.66 [162] |
KPIs | Maize | Potato | Tomato | |||
---|---|---|---|---|---|---|
/ha) | 24.97 | 139.21 | 2850 | 6288 | 355.57 | 3640.28 |
Value to test the metric | 125 [163] | 3945 [164] | 429 [165] | |||
/ha) | 812.81 | 3500.97 | 830.2 | 7211.96 | 6339.29 | 9248.59 |
Value to test metric | 990.85 [125] | 1181.0 [140] | 8901.47 [166] | |||
Water use efficiency (%) | 9.9 | 58.4 | 31 | 77 | 25 | 40 |
Value to test metric | 40 [167] | 65 [168] | 29.1 [169] | |||
Nitrogen use efficiency (%) | 20 | 45 | 33 | 44.1 | 10 | 69 |
Value to test metric | 40.9 [170] | 39.5 [171] | 22.6 [172] | |||
Machine energy (MJ/ha) | 237.60 | 6217.4 | 1582.61 | 3206.48 | 835 | 1766 |
Value to test metric | 1870 [173] | 3182.65 [174] | 871 [149] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eliseu, E.E.; Lima, T.M.; Gaspar, P.D. A KPI-Based Framework for Evaluating Sustainable Agricultural Practices in Southern Angola. Sustainability 2025, 17, 7019. https://doi.org/10.3390/su17157019
Eliseu EE, Lima TM, Gaspar PD. A KPI-Based Framework for Evaluating Sustainable Agricultural Practices in Southern Angola. Sustainability. 2025; 17(15):7019. https://doi.org/10.3390/su17157019
Chicago/Turabian StyleEliseu, Eduardo E., Tânia M. Lima, and Pedro D. Gaspar. 2025. "A KPI-Based Framework for Evaluating Sustainable Agricultural Practices in Southern Angola" Sustainability 17, no. 15: 7019. https://doi.org/10.3390/su17157019
APA StyleEliseu, E. E., Lima, T. M., & Gaspar, P. D. (2025). A KPI-Based Framework for Evaluating Sustainable Agricultural Practices in Southern Angola. Sustainability, 17(15), 7019. https://doi.org/10.3390/su17157019