Assessing the Cooling Effects of Urban Parks and Their Potential Influencing Factors: Perspectives on Maximum Impact and Accumulation Effects
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. LST Retrieval
2.3.2. Quantification of Park Cooling Effects
2.3.3. Influential Factors Affecting the Park Cooling Effect
2.3.4. Typological Classification of Urban Parks
3. Results
3.1. The Spatial Heterogeneity of LST and Urban Parks’ Cooling Effect
3.2. Influencing Factors of Park’s Cooling Effect
3.3. Classification of Cooling Types of Urban Parks
4. Discussion
4.1. Quantify Urban Parks’ Cooling Effects from Both Maximum and Accumulative Perspectives
4.2. The Driving Factors of Cooling Effect in Urban Parks
4.3. Implications for Park Planning and Design
- (1)
- Cluster 1—Large-Scale Parks with Basic Cooling Function
- (2)
- Cluster 2—Small-Scale, High-Efficiency Parks
- (3)
- Cluster 3—Large-Scale Parks with Extensive Coverage
4.4. Limitations and Recommendations for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UHI | Urban heat island |
LST | Land surface temperature |
PCA | Park Cooling Area |
PCE | Park Cooling Efficiency |
PCI | Park Cooling Intensity |
PCG | Park Cooling Gradient |
NDVI | Normalized difference vegetation index |
MNDWI | Modified normalized difference water index |
LSI | Landscape shape index |
SVF | Sky view factor |
BD | Building density |
MBH | Mean building height |
FAR | Floor area ratio |
BHSTD | Building height standard deviation |
VIF | Variance inflation factor |
TVoE | Threshold Value of Efficiency |
References
- Vlahov, D.; Galea, S. Urbanization, urbanicity, and health. J. Urban Health 2002, 79, S1–S12. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci. Total Environ. 2018, 635, 1467–1476. [Google Scholar] [CrossRef]
- Hua, L.; Sun, F.; Chen, J.; Tang, L. Quantifying the cool-island effects of urban parks using Landsat-8 imagery in a coastal city, Xiamen, China. Acta Ecol. Sin 2020, 40, 8147–8157. [Google Scholar]
- Zhang, N.; Zhen, W.; Shi, D.; Zhong, C.; Li, Y. Quantification and mapping of the cooling effect of urban parks on the temperate monsoon climate zone. Sustain. Cities Soc. 2024, 101, 105111. [Google Scholar] [CrossRef]
- Huang, N.; Shi, T.; Shi, Y.; Li, C.; Hu, Y. Research progress on ecological and social function of green infrastructure. Acta Ecol. Sin 2021, 41, 7946–7954. [Google Scholar]
- Liu, H.; Hu, Y.; Li, F.; Yuan, L. Associations of multiple ecosystem services and disservices of urban park ecological infrastructure and the linkages with socioeconomic factors. J. Clean. Prod. 2018, 174, 868–879. [Google Scholar] [CrossRef]
- Wang, X.; Feng, X.; Chen, K.; Gao, X. Study on the cooling effect of urban parks base on the case of Changzhou, Jiangsu, China. China Env. Sci 2021, 41, 10.19674. [Google Scholar]
- Yang, C.; He, X.; Yu, L.; Yang, J.; Yan, F.; Bu, K.; Chang, L.; Zhang, S. The cooling effect of urban parks and its monthly variations in a snow climate city. Remote Sens. 2017, 9, 1066. [Google Scholar] [CrossRef]
- Fu, J.; Wang, Y.; Zhou, D.; Cao, S.-J. Impact of urban park design on microclimate in cold regions using newly developped prediction method. Sustain. Cities Soc. 2022, 80, 103781. [Google Scholar] [CrossRef]
- Geng, X.; Yu, Z.; Zhang, D.; Li, C.; Yuan, Y.; Wang, X. The influence of local background climate on the dominant factors and threshold-size of the cooling effect of urban parks. Sci. Total Environ. 2022, 823, 153806. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, H.; Luo, Y.; Yi, X.; Lun, F. Exploring the inequality in urban parks’ distribution and their cooling effects from the perspective of urbanization. Landsc. Urban Plan. 2025, 260, 105390. [Google Scholar] [CrossRef]
- Peng, J.; Dan, Y.; Qiao, R.; Liu, Y.; Dong, J.; Wu, J. How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives. Remote Sens. Environ. 2021, 252, 112135. [Google Scholar] [CrossRef]
- Chen, X.; Su, Y.; Li, D.; Huang, G.; Chen, W.; Chen, S. Study on the cooling effects of urban parks on surrounding environments using Landsat TM data: A case study in Guangzhou, southern China. Int. J. Remote Sens. 2012, 33, 5889–5914. [Google Scholar] [CrossRef]
- Fan, H.; Yu, Z.; Yang, G.; Liu, T.Y.; Liu, T.Y.; Hung, C.H.; Vejre, H. How to cool hot-humid (Asian) cities with urban trees? An optimal landscape size perspective. Agric. For. Meteorol. 2019, 265, 338–348. [Google Scholar] [CrossRef]
- Du, C.; Jia, W.; Chen, M.; Yan, L.; Wang, K. How can urban parks be planned to maximize cooling effect in hot extremes? Linking maximum and accumulative perspectives. J. Environ. Manag. 2022, 317, 115346. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Guo, B.; Li, W.; Kong, X. Assessment of urban blue-green space cooling effect linking maximum and accumulative perspectives in the Yangtze River Delta, China. Environ. Sci. Pollut. Res. 2023, 30, 121834–121850. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Jia, W.; Wang, K. Valuing carbon saving potential of urban parks in thermal mitigation: Linking accumulative and accessibility perspectives. Urban Clim. 2023, 51, 101645. [Google Scholar] [CrossRef]
- Cheng, X.; Wei, B.; Chen, G.; Li, J.; Song, C. Influence of park size and its surrounding urban landscape patterns on the park cooling effect. J. Urban Plan. Dev. 2015, 141, A4014002. [Google Scholar] [CrossRef]
- Bernard, J.; Rodler, A.; Morille, B.; Zhang, X. How to design a park and its surrounding urban morphology to optimize the spreading of cool air? Climate 2018, 6, 10. [Google Scholar] [CrossRef]
- He, M.; Yang, C. Analyzing Cooling Island Effect of Urban Parks in Zhengzhou City: A Study on Spatial Maximum and Spatial Accumulation Perspectives. Sustainability 2024, 16, 5421. [Google Scholar] [CrossRef]
- Yao, X.; Yu, K.; Zeng, X.; Lin, Y.; Ye, B.; Shen, X.; Liu, J. How can urban parks be planned to mitigate urban heat island effect in “Furnace cities”? An accumulation perspective. J. Clean. Prod. 2022, 330, 129852. [Google Scholar] [CrossRef]
- Cao, X.; Onishi, A.; Chen, J.; Imura, H. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc. Urban Plan. 2010, 96, 224–231. [Google Scholar] [CrossRef]
- Yang, G.; Yu, Z.; Jørgensen, G.; Vejre, H. How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sustain. Cities Soc. 2020, 53, 101932. [Google Scholar] [CrossRef]
- Chibuike, E.M.; Ibukun, A.O.; Abbas, A.; Kunda, J.J. Assessment of green parks cooling effect on Abuja urban microclimate using geospatial techniques. Remote Sens. Appl. Soc. Environ. 2018, 11, 11–21. [Google Scholar] [CrossRef]
- Du, H.; Cai, W.; Xu, Y.; Wang, Z.; Wang, Y.; Cai, Y. Quantifying the cool island effects of urban green spaces using remote sensing Data. Urban For. Urban Green. 2017, 27, 24–31. [Google Scholar] [CrossRef]
- Sun, X.; Tan, X.; Chen, K.; Song, S.; Zhu, X.; Hou, D. Quantifying landscape-metrics impacts on urban green-spaces and water-bodies cooling effect: The study of Nanjing, China. Urban For. Urban Green. 2020, 55, 126838. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Li, H.; Wang, G.; Tian, G.; Jombach, S. Mapping and analyzing the park cooling effect on urban heat island in an expanding city: A case study in Zhengzhou city, China. Land 2020, 9, 57. [Google Scholar] [CrossRef]
- Yuan, B.; Zhou, L.; Dang, X.; Sun, D.; Hu, F.; Mu, H. Separate and combined effects of 3D building features and urban green space on land surface temperature. J. Environ. Manag. 2021, 295, 113116. [Google Scholar] [CrossRef]
- Algretawee, H.; Rayburg, S.; Neave, M. Estimating the effect of park proximity to the central of Melbourne city on Urban Heat Island (UHI) relative to Land Surface Temperature (LST). Ecol. Eng. 2019, 138, 374–390. [Google Scholar] [CrossRef]
- Han, D.; Xu, X.; Qiao, Z.; Wang, F.; Cai, H.; An, H.; Jia, K.; Liu, Y.; Sun, Z.; Wang, S. The roles of surrounding 2D/3D landscapes in park cooling effect: Analysis from extreme hot and normal weather perspectives. Build. Environ. 2023, 231, 110053. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.; Xu, D.; Rogora, A. Correlation between cooling effect of green space and surrounding urban spatial form: Evidence from 36 urban green spaces. Build. Environ. 2022, 222, 109375. [Google Scholar] [CrossRef]
- Lin, P.; Lau, S.S.Y.; Qin, H.; Gou, Z. Effects of urban planning indicators on urban heat island: A case study of pocket parks in high-rise high-density environment. Landsc. Urban Plan. 2017, 168, 48–60. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, X.; Jørgensen, G.; Vejre, H. How can urban green spaces be planned for climate adaptation in subtropical cities? Ecol. Indic. 2017, 82, 152–162. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Q.; Xu, Z.; Lyu, D.; Du, Y.; Qiao, R.; Wu, J. How to effectively mitigate urban heat island effect? A perspective of waterbody patch size threshold. Landsc. Urban Plan. 2020, 202, 103873. [Google Scholar] [CrossRef]
- Wang, D.; Cao, J.; Zhang, B.; Kong, K.; Wang, R. Spatial and temporal dynamics of urban heat environment at the township scale: A case study in Jinan city, China. PLoS ONE 2024, 19, e0307711. [Google Scholar] [CrossRef]
- Mo, G.; Yan, L.; Li, Z.; Wang, Z.; Chen, S.; Li, H.; Zheng, S.; Cui, Y. Spatiotemporal changes of urban heat island effect relative to land surface temperature: A case study of Jinan City, China. Environ. Sci. Pollut. Res. 2024, 31, 51902–51920. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Xiao, Y.; Piao, Y.; Pan, C.; Lee, D.; Zhao, B. Using buffer analysis to determine urban park cooling intensity: Five estimation methods for Nanjing, China. Sci. Total Environ. 2023, 868, 161463. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Qi, R. A study of size threshold for cooling effect in urban parks and their cooling accessibility and equity. Sci. Rep. 2024, 14, 16176. [Google Scholar] [CrossRef]
- Price, J.C. Estimating surface temperatures from satellite thermal infrared data—A simple formulation for the atmospheric effect. Remote Sens. Environ. 1983, 13, 353–361. [Google Scholar] [CrossRef]
- Zhou, J.; Li, J.; Zhang, L.; Hu, D.; Zhan, W. Intercomparison of methods for estimating land surface temperature from a Landsat-5 TM image in an arid region with low water vapour in the atmosphere. Int. J. Remote Sens. 2012, 33, 2582–2602. [Google Scholar] [CrossRef]
- Sekertekin, A. Validation of physical radiative transfer equation-based land surface temperature using Landsat 8 satellite imagery and SURFRAD in-situ measurements. J. Atmos. Sol.-Terr. Phys. 2019, 196, 105161. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C. Minimum configuration of thermal infrared bands for land surface temperature and emissivity estimation in the context of potential future missions. Remote Sens. Environ. 2014, 148, 158–167. [Google Scholar] [CrossRef]
- Feng, X.; Yu, J.; Xin, C.; Ye, T.; Wang, T.A.; Chen, H.; Zhang, X.; Zhang, L. Quantifying and comparing the cooling effects of three different morphologies of urban parks in Chengdu. Land 2023, 12, 451. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, D.K.; Asawa, T.; Murakami, A.; Kim, H.G.; Lee, M.K.; Lee, H.S. Influence of urban form on the cooling effect of a small urban river. Landsc. Urban Plan. 2019, 183, 26–35. [Google Scholar] [CrossRef]
- Liao, W.; Guldmann, J.-M.; Hu, L.; Cao, Q.; Gan, D.; Li, X. Linking urban park cool island effects to the landscape patterns inside and outside the park: A simultaneous equation modeling approach. Landsc. Urban Plan. 2023, 232, 104681. [Google Scholar] [CrossRef]
- Deng, Y.; Yao, Y.; Zhang, L. Analysis of urban wetland park cooling effects and their potential influence factors: Evidence from 477 urban wetland parks in China. Ecol. Indic. 2023, 156, 111103. [Google Scholar] [CrossRef]
- Ezimand, K.; Azadbakht, M.; Aghighi, H. Analyzing the effects of 2D and 3D urban structures on LST changes using remotely sensed data. Sustain. Cities Soc. 2021, 74, 103216. [Google Scholar] [CrossRef]
- Wu, T.; Wang, X.; Xuan, L.; Yan, Z.; Wang, C.; Du, C.; Su, Y.; Duan, J.; Yu, K. How to Plan Urban Parks and the Surrounding Buildings to Maximize the Cooling Effect: A Case Study in Xi’an, China. Land 2024, 13, 1117. [Google Scholar] [CrossRef]
- Zhu, Z.; Shen, Y.; Fu, W.; Zheng, D.; Huang, P.; Li, J.; Lan, Y.; Chen, Z.; Liu, Q.; Xu, X. How does 2D and 3D of urban morphology affect the seasonal land surface temperature in Island City? A block-scale perspective. Ecol. Indic. 2023, 150, 110221. [Google Scholar] [CrossRef]
- Jaganmohan, M.; Knapp, S.; Buchmann, C.M.; Schwarz, N. The bigger, the better? The influence of urban green space design on cooling effects for residential areas. J. Environ. Qual. 2016, 45, 134–145. [Google Scholar] [CrossRef]
- Qiu, K.; Jia, B. The roles of landscape both inside the park and the surroundings in park cooling effect. Sustain. Cities Soc. 2020, 52, 101864. [Google Scholar] [CrossRef]
- Li, X.; Lin, K.; Shu, Y.; Lin, X. Comparison of the influences of different ventilation corridor forms on the thermal environment in Wuhan City in summer. Sci. Rep. 2023, 13, 13416. [Google Scholar] [CrossRef] [PubMed]
- Blachowski, J.; Hajnrych, M. Assessing the cooling effect of four urban parks of different sizes in a temperate continental climate zone: Wroclaw (Poland). Forests 2021, 12, 1136. [Google Scholar] [CrossRef]
- Tang, L.; Zhan, Q.; Liu, H.; Fan, Y. Impact of Internal and External Landscape Patterns on Urban Greenspace Cooling Effects: Analysis from Maximum and Accumulative Perspectives. Buildings 2025, 15, 573. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, J.; Yang, N.; Li, J.; Gao, Y.; Zhang, L.; Li, S. Cooling Effects of Urban Park Green Spaces in Downtown Qingdao. Sustainability 2025, 17, 4521. [Google Scholar] [CrossRef]
- Cui, F.-j.; Shao, F.; Qi, F.; Wang, Y.-j.; Zhang, T.-l.; Yu, H.-y. Research advances in the influence of vegetation on urban heat island effect. J. Zhejiang AF Univ. 2020, 37, 171–181. [Google Scholar]
- Sun, F.; Liu, M.; Wang, Y.; Wang, H.; Che, Y. The effects of 3D architectural patterns on the urban surface temperature at a neighborhood scale: Relative contributions and marginal effects. J. Clean. Prod. 2020, 258, 120706. [Google Scholar] [CrossRef]
- Tominaga, Y.; Shirzadi, M. Wind tunnel measurement of three-dimensional turbulent flow structures around a building group: Impact of high-rise buildings on pedestrian wind environment. Build. Environ. 2021, 206, 108389. [Google Scholar] [CrossRef]
- Yan, J.; Yin, C.; An, Z.; Mu, B.; Wen, Q.; Li, Y.; Zhang, Y.; Chen, W.; Wang, L.; Song, Y. The influence of urban form on land surface temperature: A comprehensive investigation from 2D urban land use and 3D buildings. Land 2023, 12, 1802. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C. The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: Model development and evaluation. Theor. Appl. Climatol. 2011, 105, 311–323. [Google Scholar] [CrossRef]
- Yang, Y.; Lv, Y.; Zhou, D. The impact of urban parks on the thermal environment of built-up areas and an optimization method. PLoS ONE 2025, 20, e0318633. [Google Scholar] [CrossRef]
- Lin, B.-S.; Lin, C.-T. Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban For. Urban Green. 2016, 20, 348–357. [Google Scholar] [CrossRef]
- Shi, M.; Chen, M.; Jia, W.; Du, C.; Wang, Y. Cooling effect and cooling accessibility of urban parks during hot summers in China’s largest sustainability experiment. Sustain. Cities Soc. 2023, 93, 104519. [Google Scholar] [CrossRef]
- Yang, J.; Guo, R.; Li, D.; Wang, X.; Li, F. Interval-thresholding effect of cooling and recreational services of urban parks in metropolises. Sustain. Cities Soc. 2022, 79, 103684. [Google Scholar] [CrossRef]
- Camporeale, P.E.; Mercader-Moyano, P. Retrofit strategies to mitigate overheating linking urban climate modeling and urban building simulations with outdoor comfort. An urban sector in Malaga (Spain). Energy Build. 2023, 298, 113531. [Google Scholar] [CrossRef]
- Tsirigoti, D. Urban geometry and sustainability: The effect of green interventions on the urban microclimate of Greek cities. Euro-Mediterr. J. Environ. Integr. 2025, 1–13. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Bardhan, R.; Kubilay, A.; Derome, D.; Carmeliet, J. Time-evolving impact of trees on street canyon microclimate. J. Phys. Conf. Ser. 2023, 2654, 012145. [Google Scholar] [CrossRef]
- Nice, K.A.; Demuzere, M.; Coutts, A.M.; Tapper, N. Present day and future urban cooling enabled by integrated water management. Front. Sustain. Cities 2024, 6, 1337449. [Google Scholar] [CrossRef]
- Cheung, P.K.; Livesley, S.J.; Nice, K.A. Estimating the cooling potential of irrigating green spaces in 100 global cities with arid, temperate or continental climates. Sustain. Cities Soc. 2021, 71, 102974. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, W.; Wu, T.; Zhang, T. The win-win interaction between integrated blue and green space on urban cooling. Sci. Total Environ. 2023, 863, 160712. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Wang, C.; Song, C.; Chen, Y.; Finka, M.; La Rosa, D. Understanding the relationship between urban blue infrastructure and land surface temperature. Sci. Total Environ. 2019, 694, 133742. [Google Scholar] [CrossRef]
Indicator Category | Influencing Factors | Acronyms | Formula and Scope | Definition |
---|---|---|---|---|
Landscape component features of urban parks | Area of the park | Park_Area | >0.5 ha | Area of the urban park (unit: ha). |
Perimeter of the park | Park_Perimeter | >0 km | Area of the urban park (unit: km). | |
Normalized difference vegetation index | Park_NDVI | NDVI is used to determine the density of green on a patch of land. Rnir and Rred denote the reflectance of near-infrared and infrared bands, respectively. | ||
Modified normalized difference water index | Park_MNDWI | MNDWI is an indicator used to determine the open water area. Rmir and Rgreen denote reflectance in near-infrared and infrared bands, respectively. | ||
Landscape shape index | Park_LSI | The landscape shape index of each park. P represents Park_Perimeter, and Spark represents Park_Area. | ||
Built environment characteristics within urban park buffers | Sky view factor | Buffer_SVF | SVF quantifies the unobstructed sky proportion within a 300 m buffer around the park. denotes the terrain-induced adjustment to the azimuth angle, where i ∈ [1, n] and n = 36. | |
Building density | Buffer_BD | Proportion of building footprint within the 300 m buffer zone to the total area of that buffer zone. represents the total building footprint; represents total site area. | ||
Mean building height | Buffer_MBH | MBH within the 300 m buffer zone around the park perimeter. Hi represents the height of the building (Building Height), and n is the number of buildings in the buffer zone. | ||
Floor area ratio | Buffer_FAR | Building FAR within the 300 m buffer zone around the park perimeter. represents the total area of the 300 m buffer strip (m2). | ||
Building height standard deviation | Buffer_BHSTD | Standard deviation of building heights within the 300 m buffer zone around the park perimeter. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Kong, K.; Wang, R.; Liu, J.; Deng, Y.; Yin, L.; Zhang, B. Assessing the Cooling Effects of Urban Parks and Their Potential Influencing Factors: Perspectives on Maximum Impact and Accumulation Effects. Sustainability 2025, 17, 7015. https://doi.org/10.3390/su17157015
Zhao X, Kong K, Wang R, Liu J, Deng Y, Yin L, Zhang B. Assessing the Cooling Effects of Urban Parks and Their Potential Influencing Factors: Perspectives on Maximum Impact and Accumulation Effects. Sustainability. 2025; 17(15):7015. https://doi.org/10.3390/su17157015
Chicago/Turabian StyleZhao, Xinfei, Kangning Kong, Run Wang, Jiachen Liu, Yongpeng Deng, Le Yin, and Baolei Zhang. 2025. "Assessing the Cooling Effects of Urban Parks and Their Potential Influencing Factors: Perspectives on Maximum Impact and Accumulation Effects" Sustainability 17, no. 15: 7015. https://doi.org/10.3390/su17157015
APA StyleZhao, X., Kong, K., Wang, R., Liu, J., Deng, Y., Yin, L., & Zhang, B. (2025). Assessing the Cooling Effects of Urban Parks and Their Potential Influencing Factors: Perspectives on Maximum Impact and Accumulation Effects. Sustainability, 17(15), 7015. https://doi.org/10.3390/su17157015