Ecosystem Services Provided by an Urban Green Space in Timișoara (Romania): Linking Urban Vegetation with Air Quality and Cooling Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Site
2.2. Research Methodology
2.3. Results Interpretation
3. Results and Discussion
3.1. Particulate Matter PM2.5
3.2. Particulate Matter PM10
3.3. Air Quality Index (AQI)
3.4. Particle Number
3.5. Air Temperature
3.6. Relative Air Humidity
3.7. Volatile Organic Compounds (TVOC) in Air
3.8. Air Formaldehyde (HCHO)
4. Conclusions
5. Research Limitations and Further Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Monitoring Date | Sample Point (SP) | Air Parameter | |||||||
---|---|---|---|---|---|---|---|---|---|
PM2.5 (μg/m3) | PM10 (μg/m3) | Air Temperature (°C) | Relative Air Humidity (%) | AQI | HCHO (mg/m3) | TVOC (mg/m3) | Number of Particles | ||
Day 1 | SP1—outside the park 93 m from park border | 8.86 ±3.23 | 14.33 ±4.80 | 32.90 ±0.26 | 39.10 ±0.43 | 36.33 ±12.74 | 0.013 ±0.005 | 0.04 ±0.04 | 1393.66 ±453.18 |
SP2—outside the park 55 m from park border | 9.66 ±2.71 | 15.00 ±4.50 | 34.83 ±0.50 | 38.60 ±0.40 | 40.00 ±11.53 | 0.03 ±0.010 | 0.13 ±0.03 | 1473.00 ±359.63 | |
SP3—on the park border | 6.83 ±0.49 | 11.66 ±0.58 | 37.50 ±0.62 | 34.13 ±0.51 | 28.00 ±1.73 | 0.02 ±0.01 | 0.10 ±0.04 | 1151.66 ±102.92 | |
SP4—inside the park 10 m from border | 7.03 ±0.86 | 11.13 ±0.46 | 38.76 ±0.30 | 34.10 ±0.10 | 28.66 ±3.51 | 0.04 ±0.00 | 0.18 ±0.00 | 1087.33 ±122.83 | |
SP5—inside the park 20 m from border | 5.53 ±0.40 | 8.86 ±0.70 | 38.86 ±0.11 | 34.13 ±0.55 | 22.66 ±1.52 | 0.05 ±0.00 | 0.21 ±0.01 | 914.66 ±8.38 | |
SP6—inside the park 30 m from border | 7.33 ±1.05 | 11.86 ±1.66 | 38.13 ±0.15 | 33.86 ±0.95 | 30.00 ±4.58 | 0.03 ±0.005 | 0.17 ±0.02 | 1203.66 ±172.81 | |
SP7—inside the park 164 m from border | 5.73 ±0.96 | 9.40 ±1.67 | 36.90 ±0.10 | 34.03 ±0.05 | 23.33 ±4.04 | 0.03 ±0.01 | 0.15 ±0.03 | 894.00 ±164.83 | |
SP8—inside the park 275 m from border | 4.96 ±0.50 | 8.33 ±1.45 | 35.06 ±0.20 | 37.30 ±0.70 | 20.33 ±2.51 | 0.04 ±0.005 | 0.18 ±0.01 | 859.33 ±116.42 | |
SP9—outside the park 583 m from border | 6.63 ±1.96 | 11.23 ±3.61 | 36.56 ±0.92 | 35.13 ±1.68 | 27.00 ±7.81 | 0.01 ±0.005 | 0.07 ±0.01 | 1045.66 ±281.03 | |
Day 2 | SP1—outside the park 93 m from park border | 15.23 ±1.82 | 26.06 ±3.18 | 30.63 ±0.50 | 46.40 ±0.30 | 57.00 ±3.60 | 0.01 ±0.00 | 0.04 ±0.01 | 2308.66 ±273.63 |
SP2—outside the park 55 m from park border | 11.66 ±0.50 | 19.26 ±1.02 | 32.00 ±0.20 | 44.70 ±0.45 | 48.33 ±2.51 | 0.02 ±0.00 | 0.08 ±0.01 | 1816.66 ±101.63 | |
SP3—on the park border | 10.50 ±1.70 | 16.86 ±1.87 | 36.50 ±1.17 | 40.73 ±1.49 | 43.33 ±7.09 | 0.02 ±0.005 | 0.13 ±0.00 | 1613.66 ±262.8 | |
SP4—inside the park 10 m from border | 10.90 ±0.90 | 17.66 ±1.70 | 38.46 ±0.60 | 37.60 ±0.95 | 45.00 ±4.00 | 0.03 ±0.005 | 0.15 ±0.01 | 1682.33 ±174.61 | |
SP5—inside the park 20 m from border | 10.33 ±1.61 | 16.93 ±2.45 | 37.66 ±1.15 | 37.30 ±0.79 | 42.33 ±7.02 | 0.03 ±0.005 | 0.15 ±0.01 | 1654.66 ±204.39 | |
SP6—inside the park 30 m from border | 10.30 ±0.78 | 16.90 ±0.72 | 35.00 ±0.30 | 40.20 ±0.78 | 43.00 ±1.73 | 0.03 ±0.005 | 0.16 ±0.02 | 1663.33 ±105.64 | |
SP7—inside the park 164 m from border | 7.76 ±1.90 | 14.40 ±1.30 | 36.60 ±1.27 | 38.60 ±1.90 | 34.66 ±3.78 | 0.02 ±0.005 | 0.11 ±0.01 | 1306.00 ±110.43 | |
SP8—inside the park 275 m from border | 8.13 ±1.15 | 10.53 ±1.89 | 32.76 ±0.35 | 43.10 ±0.70 | 27.66 ±6.11 | 0.03 ±0.00 | 0.13 ±0.01 | 1039.00 ±208.51 | |
SP9—outside the park 583 m from border | 9.56 ±1.20 | 16.26 ±1.80 | 33.56 ±0.80 | 43.13 ±1.68 | 39.33 ±5.03 | 0.01 ±0.005 | 0.07 ±0.02 | 1541.00 ±125.03 | |
Day 3 | SP1—outside the park 93 m from park border | 20.33 ±8.05 | 33.50 ±14.70 | 32.26 ±2.02 | 47.73 ±3.69 | 70.00 ±19.97 | 0.01 ±0.00 | 0.01 ±0.01 | 3109.00 ±1229.73 |
SP2—outside the park 55 m from park border | 10.96 ±1.00 | 18.10 ±2.06 | 33.46 ±0.25 | 45.10 ±0.80 | 45.00 ±4.00 | 0.01 ±0.00 | 0.06 ±0.01 | 1736.33 ±172.63 | |
SP3—on the park border | 9.96 ±0.85 | 16.96 ±2.05 | 35.83 ±1.32 | 41.26 ±3.05 | 40.66 ±3.21 | 0.01 ±0.005 | 0.08 ±0.02 | 1527.66 ±173.09 | |
SP4—inside the park 10 m from border | 11.16 ±1.95 | 16.10 ±4,58 | 37.96 ±0.15 | 38.16 ±0.72 | 45.33 ±7.50 | 0.02 ±0.005 | 0.11 ±0.01 | 1736.66 ±305.78 | |
SP5—inside the park 20 m from border | 10.13 ±0.15 | 16.90 ±0.34 | 37.20 ±0.17 | 39.30 ±0.10 | 41.33 ±0,57 | 0.02 ±0.005 | 0.12 ±0.01 | 1576.33 ±48.8 | |
SP6—inside the park 30 m from border | 10.10 ±0.98 | 16.36 ±1.75 | 36.30 ±0.90 | 40.70 ±1.15 | 41.33 ±4.16 | 0.03 ±0.005 | 0.15 ±0.01 | 1583.33 ±163.72 | |
SP7—inside the park 164 m from border | 8.56 ±1.07 | 14.20 ±1.60 | 37.76 ±2.10 | 38.00 ±2.23 | 35.00 ±4.35 | 0.02 ±0.00 | 0.10 ±0.01 | 1315.00 ±186.67 | |
SP8—inside the park 275 m from border | 10.86 ±1.42 | 18.50 ±2.26 | 35.03 ±1.05 | 39.66 ±0.66 | 45.00 ±6.08 | 0.03 ±0.00 | 0.14 ±0.01 | 1740.00 ±218.86 | |
SP9—outside the park 583 m from border | 12.93 ±0.55 | 20.70 ±1.37 | 35.33 ±2.01 | 38.33 ±2.81 | 51.66 ±1.15 | 0.01 ±0.005 | 0.08 ±0.01 | 1938.66 ±80.32 | |
Day 4 | SP1—outside the park 93 m from park border | 23.26 ±0.32 | 39.63 ±0.98 | 27.56 ±0.15 | 61.10 ±0.26 | 74.00 ±1.00 | 0.01 ±0.00 | 0.04 ±0.01 | 3551.00 ±47.46 |
SP2—outside the park 55 m from park border | 16.70 ±1.73 | 28.40 ±3.73 | 32.23 ±1.71 | 53.63 ±3.46 | 60.00 ±3.60 | 0.01 ±0.00 | 0.02 ±0.01 | 2571.66 ±278.5 | |
SP3—on the park border | 17.63 ±4.25 | 29.83 ±7.57 | 32.90 ±1.76 | 50.63 ±1.92 | 62.00 ±8.71 | 0.01 ±0.005 | 0.07 ±0.01 | 2690.33 ±597.53 | |
SP4—inside the park 10 m from border | 15.80 ±2.83 | 26.63 ±4.16 | 32.76 ±0.90 | 51.03 ±1.00 | 58.33 ±5.85 | 0.01 ±0.005 | 0.04 ±0.01 | 2400.66 ±433.96 | |
SP5—inside the park 20 m from border | 14.80 ±0.30 | 24.70 ±1.68 | 32.03 ±0.80 | 51.06 ±1.32 | 56.66 ±0.57 | 0.02 ±0.00 | 0.08 ±0.01 | 2254.33 ±122.78 | |
SP6—inside the park 30 m from border | 13.40 ±1.15 | 23.06 ±1.97 | 30.16 ±0.30 | 54.40 ±0.52 | 53.00 ±2.00 | 0.02 ±0.00 | 0.09 ±0.01 | 2069.00 ±173.51 | |
SP7—inside the park 164 m from border | 16.76 ±0.05 | 29.20 ±0.52 | 33.56 ±1.04 | 49.06 ±1.68 | 60.66 ±0.57 | 0.01 ±0.005 | 0.05 ±0.01 | 2620.66 ±26.63 | |
SP8—inside the park 275 m from border | 14.46 ±3.02 | 25.70 ±5.12 | 29.60 ±1.15 | 55.06 ±2.45 | 56.00 ±6.24 | 0.02 ±0.00 | 0.08 ±0.01 | 2436.00 ±484.90 | |
SP9—outside the park 583 m from border | 18.63 ±5.29 | 31.83 ±8.94 | 30.76 ±1.41 | 51.36 ±3.35 | 64.33 ±11.37 | 0.01 ±0.00 | 0.03 ±0.02 | 2861.66 ±794.31 |
Crt. No. | Statistically significant differences ([aired-samples t-test, p < 0.05) regarding the air quality parameters between sample points (SPs)—Day 1 | |||||||
Air Parameter | ||||||||
PM2.5 | PM10 | AQI | Particle Number | Relative Air Humidity | Air Temperature | TVOC | HCHO | |
1 | SP2–SP7 | SP2–SP7 | SP2–SP7 | SP2–SP4 | SP1–SP2 | SP1–SP2 | SP1–SP2 | SP1–SP4 |
2 | SP2–SP8 | SP3–SP5 | SP2–SP8 | SP3–SP5 | SP1–SP3 | SP1–SP3 | SP1–SP4 | SP1–SP5 |
3 | SP3–SP5 | SP3–SP8 | SP3–SP5 | SP5–SP6 | SP1–SP4 | SP1–SP4 | SP1–SP5 | SP1–SP6 |
4 | SP3–SP8 | SP4–SP5 | SP3–SP8 | - | SP1–SP5 | SP1–SP5 | SP1–SP6 | SP1–SP7 |
5 | SP4–SP7 | SP4–SP8 | SP4–SP7 | - | SP1–SP6 | SP1–SP6 | SP1–SP7 | SP2–SP5 |
6 | SP4–SP8 | SP5–SP6 | SP4–SP8 | - | SP1–SP7 | SP1–SP7 | SP1–SP8 | SP2–SP9 |
7 | SP5–SP6 | - | SP5–SP6 | - | SP1–SP8 | SP1–SP8 | SP2–SP5 | SP3–SP5 |
8 | SP6–SP8 | - | - | - | SP1–SP9 | SP1–SP9 | SP2–SP8 | SP3–SP6 |
9 | - | - | - | - | SP2–SP3 | SP2–SP3 | SP2–SP9 | SP4–SP9 |
10 | - | - | - | - | SP2–SP4 | SP2–SP4 | SP3–SP4 | SP5–SP6 |
11 | - | - | - | - | SP2–SP5 | SP2–SP5 | SP3–SP5 | SP5–SP9 |
12 | - | - | - | - | SP2–SP6 | SP2–SP6 | SP3–SP6 | SP6–SP9 |
13 | - | - | - | - | SP2–SP7 | SP2–SP7 | SP4–SP5 | SP7–SP9 |
14 | - | - | - | - | SP2–SP8 | SP2–SP9 | SP4–SP9 | SP8–SP9 |
15 | - | - | - | - | SP2–SP9 | SP3–SP4 | SP5–SP6 | - |
16 | - | - | - | - | SP3–SP8 | SP3–SP5 | SP5–SP9 | - |
17 | - | - | - | - | SP4–SP8 | SP3–SP8 | SP6–SP9 | - |
18 | - | - | - | - | SP5–SP8 | SP3–SP9 | SP7–SP9 | - |
19 | - | - | - | - | SP6–SP8 | SP4–SP7 | SP8–SP9 | - |
20 | - | - | - | - | SP6–SP9 | SP4–SP8 | - | - |
21 | - | - | - | - | SP7–SP8 | SP4–SP9 | - | - |
22 | - | - | - | - | - | SP5–SP6 | - | - |
23 | - | - | - | - | - | SP5–SP7 | - | - |
24 | - | - | - | - | - | SP5–SP8 | - | - |
25 | - | - | - | - | - | SP5–SP9 | - | - |
26 | - | - | - | - | - | SP6–SP7 | - | - |
27 | - | - | - | - | - | SP6–SP8 | - | - |
28 | - | - | - | - | - | SP7–SP8 | - | - |
No. | Statistically significant differences (paired-samples t-test, p < 0.05) regarding the air quality parameters between sample points (SPs)—Day 2 | |||||||
Air parameter | ||||||||
PM2.5 | PM10 | AQI | Particle Number | Relative Air Humidity | Air Temperature | TVOC | HCHO | |
1 | SP1–SP2 | SP1–SP2 | SP1–SP2 | SP1–SP2 | SP1–SP2 | SP1–SP2 | SP1–SP2 | SP1–SP3 |
2 | SP1–SP3 | SP1–SP3 | SP1–SP3 | SP1–SP3 | SP1–SP3 | SP1–SP3 | SP1–SP3 | SP1–SP4 |
3 | SP1–SP4 | SP1–SP4 | SP1–SP4 | SP1–SP4 | SP1–SP4 | SP1–SP4 | SP1–SP4 | SP1–SP5 |
4 | SP1–SP5 | SP1–SP5 | SP1–SP5 | SP1–SP5 | SP1–SP5 | SP1–SP5 | SP1–SP5 | SP1–SP6 |
5 | SP1–SP6 | SP1–SP6 | SP1–SP6 | SP1–SP6 | SP1–SP6 | SP1–SP6 | SP1–SP6 | SP1–SP7 |
6 | SP1–SP7 | SP1–SP7 | SP1–SP7 | SP1–SP7 | SP1–SP7 | SP1–SP7 | SP1–SP7 | SP2–SP4 |
7 | SP1–SP8 | SP1–SP8 | SP1–SP8 | SP1–SP8 | SP1–SP8 | SP1–SP8 | SP1–SP8 | SP2–SP5 |
8 | SP1–SP9 | SP1–SP9 | SP1–SP9 | SP1–SP9 | SP1–SP9 | SP1–SP9 | SP2–SP3 | SP2–SP6 |
9 | SP2–SP7 | SP2–SP3 | SP2–SP7 | SP2–SP7 | SP2–SP3 | SP2–SP3 | SP2–SP4 | SP4–SP9 |
10 | SP2–SP8 | SP2–SP6 | SP2–SP8 | SP2–SP8 | SP2–SP4 | SP2–SP4 | SP2–SP5 | SP5–SP7 |
11 | SP4–SP7 | SP2–SP7 | SP3–SP8 | SP3–SP8 | SP2–SP5 | SP2–SP5 | SP2–SP6 | SP5–SP9 |
12 | SP4–SP8 | SP2–SP8 | SP4–SP7 | SP4–SP7 | SP2–SP6 | SP2–SP6 | SP2–SP7 | SP6–SP7 |
13 | SP5–SP8 | SP3–SP8 | SP4–SP8 | SP4–SP8 | SP2–SP7 | SP2–SP7 | SP2–SP8 | SP8–SP9 |
14 | SP6–SP7 | SP4–SP7 | SP5–SP7 | SP5–SP7 | SP2–SP8 | SP2–SP9 | SP3–SP4 | - |
15 | SP6–SP8 | SP4–SP8 | SP6–SP7 | SP5–SP8 | SP3–SP4 | SP3–SP4 | SP3–SP7 | - |
16 | - | SP5–SP7 | SP6–SP8 | SP6–SP7 | SP3–SP5 | SP3–SP8 | SP3–SP9 | - |
17 | - | SP5–SP8 | - | SP6–SP8 | SP3–SP7 | SP3–SP9 | SP4–SP7 | - |
18 | - | SP6–SP7 | - | SP8–SP9 | SP3–SP9 | SP4–SP6 | SP4–SP9 | - |
19 | - | SP6–SP8 | - | - | SP4–SP6 | SP4–SP7 | SP5–SP7 | - |
20 | - | SP8–SP9 | - | - | SP4–SP8 | SP4–SP8 | SP5–SP9 | - |
21 | - | - | - | - | SP4–SP9 | SP4–SP9 | SP6–SP7 | - |
22 | - | - | - | - | SP5–SP6 | SP5–SP6 | SP6–SP8 | - |
23 | - | - | - | - | SP5–SP8 | SP5–SP8 | SP6–SP9 | - |
24 | - | - | - | - | SP5–SP9 | SP5–SP9 | SP7–SP8 | - |
25 | - | - | - | - | SP6–SP8 | SP6–SP8 | SP7–SP9 | - |
26 | - | - | - | - | SP7–SP8 | SP7–SP8 | SP8–SP9 | - |
27 | - | - | - | - | SP7–SP9 | SP7–SP9 | - | - |
No. | Statistically significant differences (paired-samples t-test, p < 0.05) regarding the air quality parameters between sample points (SPs)—Day 3 | |||||||
Air parameter | ||||||||
PM2.5 | PM10 | AQI | Particle Number | Relative Air Humidity | Air Temperature | TVOC | HCHO | |
1 | SP2–SP3 | SP1–SP4 | SP1–SP4 | SP2–SP3 | SP1–SP3 | SP1–SP3 | SP1–SP2 | SP1–SP4 |
2 | SP2–SP7 | SP2–SP7 | SP1–SP6 | SP2–SP7 | SP1–SP4 | SP1–SP4 | SP1–SP3 | SP1–SP5 |
3 | SP2–SP9 | SP3–SP7 | SP1–SP8 | SP3–SP9 | SP1–SP5 | SP1–SP5 | SP1–SP4 | SP1–SP6 |
4 | SP3–SP9 | SP3–SP9 | SP2–SP3 | SP5–SP9 | SP1–SP6 | SP1–SP7 | SP1–SP5 | SP1–SP7 |
5 | SP5–SP9 | SP5–SP7 | SP2–SP7 | SP6–SP9 | SP1–SP7 | SP1–SP9 | SP1–SP6 | SP2–SP4 |
6 | SP6–SP9 | SP5–SP9 | SP2–SP9 | SP7–SP9 | SP1–SP8 | SP2–SP3 | SP1–SP7 | SP2–SP5 |
7 | SP7–SP9 | SP6–SP8 | SP3–SP9 | - | SP1–SP9 | SP2–SP4 | SP1–SP8 | SP2–SP6 |
8 | SP8–SP9 | SP6–SP9 | SP5–SP9 | - | SP2–SP3 | SP2–SP5 | SP1–SP9 | SP2–SP7 |
9 | - | SP7–SP8 | SP6–SP9 | - | SP2–SP4 | SP2–SP6 | SP2–SP4 | SP3–SP6 |
10 | - | SP7–SP9 | SP7–SP9 | - | SP2–SP5 | SP2–SP7 | SP2–SP5 | SP3–SP8 |
11 | - | - | - | - | SP2–SP6 | SP3–SP7 | SP2–SP6 | SP6–SP9 |
12 | - | - | - | - | SP2–SP7 | SP4–SP5 | SP2–SP7 | SP8–SP9 |
13 | - | - | - | - | SP2–SP8 | SP4–SP6 | SP2–SP8 | - |
14 | - | - | - | - | SP2–SP9 | SP4–SP8 | SP3–SP6 | - |
15 | - | - | - | - | SP3–SP7 | SP5–SP8 | SP3–SP8 | - |
16 | - | - | - | - | SP3–SP9 | SP6–SP8 | SP4–SP6 | - |
17 | - | - | - | - | SP4–SP5 | SP7–SP9 | SP4–SP8 | - |
18 | - | - | - | - | SP4–SP6 | - | SP4–SP9 | - |
19 | - | - | - | - | SP4–SP8 | - | SP5–SP9 | - |
20 | - | - | - | - | - | - | SP6–SP7 | - |
21 | - | - | - | - | - | - | SP6–SP9 | - |
22 | - | - | - | - | - | - | SP7–SP8 | - |
23 | - | - | - | - | - | - | SP8–SP9 | - |
No. | Statistically significant differences (paired-samples t-test, p < 0.05) regarding the air quality parameters between sample points (SPs)—Day 4 | |||||||
Air parameter | ||||||||
PM2.5 | PM10 | AQI | Particle Number | Relative Air Humidity | Air Temperature | TVOC | HCHO | |
1 | SP1–SP2 | SP1–SP2 | SP1–SP2 | SP1–SP2 | SP1–SP2 | SP1–SP2 | SP1–SP5 | - |
2 | SP1–SP4 | SP1–SP4 | SP1–SP4 | SP1–SP4 | SP1–SP3 | SP1–SP3 | SP1–SP6 | - |
3 | SP1–SP5 | SP1–SP5 | SP1–SP5 | SP1–SP5 | SP1–SP4 | SP1–SP4 | SP1–SP8 | - |
4 | SP1–SP6 | SP1–SP6 | SP1–SP6 | SP1–SP6 | SP1–SP5 | SP1–SP5 | SP2–SP3 | - |
5 | SP1–SP7 | SP1–SP7 | SP1–SP7 | SP1–SP7 | SP1–SP6 | SP1–SP6 | SP2–SP5 | - |
6 | SP1–SP8 | SP1–SP8 | SP1–SP8 | SP1–SP8 | SP1–SP7 | SP1–SP7 | SP2–SP6 | - |
7 | SP2–SP6 | SP2–SP4 | SP2–SP6 | SP2–SP6 | SP1–SP8 | SP1–SP8 | SP2–SP7 | - |
8 | SP5–SP7 | SP2–SP6 | SP3–SP8 | SP5–SP6 | SP1–SP9 | SP1–SP9 | SP2–SP8 | - |
9 | SP6–SP7 | SP4–SP6 | SP5–SP6 | SP5–SP7 | SP2–SP7 | SP2–SP7 | SP3–SP4 | - |
10 | - | SP5–SP7 | SP5–SP7 | SP6–SP7 | SP2–SP9 | SP2–SP9 | SP3–SP7 | - |
11 | - | SP6–SP7 | SP6–SP7 | - | SP3–SP6 | SP4–SP6 | SP4–SP5 | - |
12 | - | - | - | - | SP3–SP8 | SP4–SP8 | SP4–SP6 | - |
13 | - | - | - | - | SP4–SP6 | SP4–SP9 | SP4–SP7 | - |
14 | - | - | - | - | SP4–SP7 | SP5–SP6 | SP4–SP8 | - |
15 | - | - | - | - | SP5–SP6 | SP5–SP8 | SP6–SP7 | - |
16 | - | - | - | - | SP5–SP8 | SP6–SP7 | SP6–SP9 | - |
17 | - | - | - | - | SP6–SP7 | SP7–SP8 | SP7–SP8 | - |
18 | - | - | - | - | - | SP7–SP9 | SP8–SP9 | - |
19 | - | - | - | - | - | SP8–SP3 | - | - |
References
- Abed, A.; Qurnfulah, E.; Helmi, M.; Alhubashi, H.; Salem, W.; Hafez, D.; Hegazy, I. Neurourbanism and its influence on public outdoor spaces and mental health. Int. J. Low-Carbon Technol. 2025, 20, 249–268. [Google Scholar] [CrossRef]
- United Nations Human Settlements Programme. World Cities Report 2022; UN-Habitat: Nairobi, Kenia, 2022; Available online: https://unhabitat.org/sites/default/files/2022/06/wcr_2022.pdf (accessed on 31 March 2025).
- Anamika, A.; Pradeep, C. Urban Vegetation and Air Pollution Mitigation: Some Issues from India. Chin. J. Urban Environ. Stud. 2016, 4, 1650001. [Google Scholar] [CrossRef]
- Calvache, D.; Navarro, C.; Ceballos, F. Analysis of vegetation cover area as an urban environmental quality factor. Rev. Cienc. Agríc. 2019, 36, 95–107. [Google Scholar] [CrossRef]
- Godoi, N.; Gomes, R.; Longo, R. Contributions of urban green spaces to cities: A literature review. Sustain. Environ. 2025, 11, 2464418. [Google Scholar] [CrossRef]
- Baraldi, R.; Chieco, C.; Neri, L.; Facini, O.; Rapparini, F.; Monroe, L.; Rotondi, A.; Carriero, G. An integrated study on air mitigation potential of urban vegetation: From a multi-trait approach to modelling. Urban For. Urban Green. 2019, 41, 127–138. [Google Scholar] [CrossRef]
- Alsalama, T.; Koç, M.; Isaifan, R. Mitigation of urban air pollution with green vegetation for sustainable cities: A review. Int. J. Glob. Warm. 2021, 25, 498–515. [Google Scholar] [CrossRef]
- Anad, P.; Mina, U.; Khare, M.; Kumar, P.; Kota, S.H. Air pollution and plant health response-current status and future directions. Atmos. Pollut. Res. 2022, 13, 101508. [Google Scholar] [CrossRef]
- Al-Hajri, S.; Al-Ramadan, B.; Shafiullah, M.; Rahman, S. Microclimate Performance Analysis of Urban Vegetation: Evidence from Hot Humid Middle Eastern Cities. Plants 2025, 14, 521. [Google Scholar] [CrossRef]
- Hepcan, S.; Hepcan, Ç.; Johnson, B.; Takma, Ç. Optimizing multifunctionality and ecosystem services supply in Eugene’s Green Spaces. Carpathian J. Earth Environ. Sci. 2025, 20, 255–264. [Google Scholar] [CrossRef]
- Yusuf, D.; Zhu, J.; Khaing, C.; Adamu, S.; Bala, H. Regulating urban metabolism in semi-arid regions: Classification and valuation of urban open spaces ecosystem services in metropolitan Kano. Environ. Dev. 2025, 54, 101165. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Z.; Hipsey, M.; Huang, P.; Zhang, M. Optimizing particulate matter removal through rainfall: Role of duration, intensity, and species in green infrastructure. J. Hazard. Mater. 2025, 489, 137612. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Urban Planning, Environment and Health: From Evidence to Policy Action; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- World Health Organization-Regional Office for Europe. Urban Green Space Interventions and Health. A Review of Impacts and Effectiveness. 2017. Available online: https://cdn.who.int/media/docs/librariesprovider2/euro-health-topics/environment/urban-green-space-intervention.pdf?sfvrsn=a2e135f3_1&download=true (accessed on 31 March 2025).
- Radonic, L.; Galindo, V.; Hanshaw, K.; Sandoval, F. Accessible, and culturally responsive: Why we need to examine diverse plant uses and values in green infrastructure. Landsc. Urban Plan. 2025, 257, 105317. [Google Scholar] [CrossRef]
- Aboelata, A.; Sodoudi, S. Evaluating urban vegetation scenarios to mitigate urban heat island and reduce buildings’ energy in dense built-up areas in Cairo. Build. Environ. 2019, 166, 106407. [Google Scholar] [CrossRef]
- Wilson, E.O. Biophilia; Harvard University Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Wang, C.; Gao, B.; Hao, Z.; Li, L.; Yang, L.; Chen, W.Y.; Pei, N. Plant smellscape: A key avenue to connect nature and human well-being. Urban For. Urban Green. 2025, 107, 128757. [Google Scholar] [CrossRef]
- Temtop LKC-1000 Series Air Quality Monitor—Certificate of Compliance. Available online: https://drive.google.com/file/d/1GsrE9XpRe4SwJSPEqZRm3bK3MRvdgCGC/viewd (accessed on 28 March 2025).
- deSouza, P. Key Concerns and Drivers of Low-Cost Air Quality Sensor Use. Sustainability 2022, 14, 584. [Google Scholar] [CrossRef]
- Sabedotti, M.; O’Regan, A.; Nyhan, M. Data Insights for Sustainable Cities: Associations between Google Street View-Derived Urban Greenspace and Google Air View-Derived Pollution Levels. Environ. Sci. Technol. 2023, 57, 19637–19648. [Google Scholar] [CrossRef]
- Zender-Świercz, E.; Galiszewska, B.; Telejko, M.; Starzomska, M. The effect of temperature and humidity of air on the concentration of particulate matter-PM2.5 and PM10. Atmos. Res. 2024, 312, 107733. [Google Scholar] [CrossRef]
- Muzamil, A.; Sultan, K.; Hashem, A.; Avila-Quezada, G.; Abd-Allah, E.; Zaman, Q. Integrating Passive Biomonitoring and Active Monitoring: Spider Web Silk and Portable Instruments for Air Quality in Urban Areas. Water Air Soil Pollut. 2024, 235, 466. [Google Scholar] [CrossRef]
- Altahaan, Z.; Dobslaw, D. Post-War Air Quality Index in Mosul City, Iraq: Does War Still Have an Impact on Air Quality Today? Atmosphere 2025, 16, 135. [Google Scholar] [CrossRef]
- Maragkidou, A.; Jaghbeir, O.; Hämeri, K.; Hussein, T. Aerosol particles (0.3–10 μm) inside an educational workshop—Emission rate and inhaled deposited dose. Build. Environ. 2018, 140, 80–89. [Google Scholar] [CrossRef]
- Temtop LKC-1000 Series Air Quality Monitor-User Manual. Available online: https://drive.google.com/file/d/1Vehvwwwc2ZGrVIgNcKuAufnkKp-XAKk3/view (accessed on 22 March 2025).
- World Health Organization (WHO) Formaldehyde. In Selected Pollutants. WHO Guidelines for Indoor Air Quality; WHO, Regional Office for Europe: Copenhagen, Denmark, 2010; pp. 103–156. ISBN 978 92 890 02134.
- WHO. WHO Global air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO: Geneva, Switzerland, 2021; ISBN 978-92-4-003422-8. Available online: https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf (accessed on 22 March 2025).
- Law No. 104 of 15 June 2011 on Ambient Air Quality, Updated on 22 May 2015. Available online: https://www.global-regulation.com/translation/romania/3755838/law-no.-104-of-15-june-2011-on-ambient-air-quality.html (accessed on 15 March 2025).
- Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 Relating to Arsenic, Cadmium, Mercury, Nickel and Polycyclic Aromatic Hydrocarbons in Ambient Air. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02004L0107-20150918 (accessed on 29 March 2025).
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32008L0050 (accessed on 29 March 2025).
- Lei, Y.; Davies, G.; Jin, H.; Tian, G.; Kim, G. Scale-dependent effects of urban greenspace on particulate matter air pollution. Urban For. Urban Green. 2021, 61, 127089. [Google Scholar] [CrossRef]
- Cheung, P.; Jim, C.; Siu, C. Effects of urban park design features on summer air temperature and humidity in compact-city milieu. Appl. Geogr. 2021, 129, 102439. [Google Scholar] [CrossRef]
- Mei, D.; Wen, M.; Xu, X.; Zhu, Y.; Xing, F. The influence of wind speed on airflow and fine particle transport within different building layouts of an industrial city. J. Air Waste Manag. Assoc. 2018, 68, 1038–1050. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Ji, J. Influence of Building Height Variation on Air Pollution Dispersion in Different Wind Directions: A Numerical Simulation Study. Appl. Sci. 2024, 14, 979. [Google Scholar] [CrossRef]
- Ianovici, N.; Bîrsan, M.V. The influence of meteorological factors on the dynamic of Ambrosia artemisiifolia pollen in an invaded area. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 752–769. [Google Scholar] [CrossRef]
- Makra, L.; Matyasovszky, I.; Tusnády, G.; Ziska, L.H.; Hess, J.J.; Nyúl, L.G.; Chapman, D.S.; Coviello, L.; Gobbi, A.; Jurman, G. A temporally and spatially explicit, data-driven estimation of airborne raqweed pollen concentrations across Europe. Sci. Total Environ. 2023, 905, 167095. [Google Scholar] [CrossRef]
- Avram, S.; Tudoran, L.; Borodi, G.; Filip, M.; Petean, I. Urban Traffic’s Influence on Noise and Particulate Matter Pollution. Sustainability 2025, 17, 2077. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Y.; Zhang, Y.; He, Y.; Gu, Z.; Yu, C. Impact of Air Humidity Fluctuation on the Rise of PM Mass Concentration Based on the High-Resolution Monitoring Data. Aerosol Air Qual. Res. 2017, 17, 543–552. [Google Scholar] [CrossRef]
- O’Regan, A.; Byrne, R.; Hellebust, S.; Nyhan, M. Associations between Google Street View-Derived Urban Greenspace Metrics and Air Pollution Measured Using a Distributed Sensor Network. Sustain. Cities Soc. 2022, 87, 104221. [Google Scholar] [CrossRef]
- Wise, E.; Comrie, A. Meteorologically adjusted urban air quality trends in the Southwestern United States. Atmos. Environ. 2005, 39, 2969–2980. [Google Scholar] [CrossRef]
- Sekula, P.; Ustrnul, Z.; Bokwa, A.; Bochenek, B.; Zimnoch, M. Random Forests Assessment of the Role of Atmospheric Circulation in PM10 in an Urban Area with Complex Topography. Sustainability 2022, 14, 3388. [Google Scholar] [CrossRef]
- Lindén, J.; Gustafsson, M.; Uddling, J.; Watne, A.; Pleijel, H. Air pollution removal through deposition on urban vegetation: The importance of vegetation characteristics. Urban For. Urban Green. 2023, 81, 127843. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Wu, H.; Mi, J.; Lu, X.; Mochida, A.; Ishida, Y.; Liu, Z. Study on the modified three-temperature model for spatial extrapolation of evapotranspiration based on individual urban vegetation evapotranspiration data. Build. Simul. 2024, 17, 1767–1787. [Google Scholar] [CrossRef]
- Bzdziuch, P.; Bogacki, M.; Oleniacz, R. Street Canyon Vegetation-Impact on the Dispersion of Air Pollutant Emissions from Road Traffic. Sustainability 2024, 16, 10700. [Google Scholar] [CrossRef]
- Herath, P.; Bai, X. Benefits and co-benefits of urban green infrastructure for sustainable cities: Six current and emerging themes. Sustain. Sci. 2024, 19, 1039–1063. [Google Scholar] [CrossRef]
- Cai, P.; Li, R.; Guo, J.; Xiao, Z.; Fu, H.; Guo, T.; Wang, T.; Zhang, X.; Xu, Q.; Song, X. Multi-scale spatiotemporal patterns of urban climate effects and their driving factors across China. Urban Clim. 2025, 60, 102350. [Google Scholar] [CrossRef]
- Smith, P.; Blanco, E.; Sarricolea, P.; Peralta, O.; Thomas, F. Urban climate simulation model to support climate-sensitive planning decision making at local scale. J. Urban Manag. 2025, 14, 279–292. [Google Scholar] [CrossRef]
- Tang, L.; Zhan, Q.; Liu, H.; Fan, Y. Impact of Internal and External Landscape Patterns on Urban Greenspace Cooling Effects: Analysis from Maximum and Accumulative Perspectives. Buildings 2025, 15, 573. [Google Scholar] [CrossRef]
- Yu, M.; Mi, X.; Li, Y.; Jiang, C.; Ding, K.; Wang, C.; Cai, L. Exploring the Potential Mechanisms of Urban Greenspaces Providing Pollution Retention and Cooling Benefits Based on Three-Dimensional Structure of Plant Communities. Sci. Rep. 2024, 14, 28410. [Google Scholar] [CrossRef]
- Bao, Y.; Gao, M.; Luo, D.; Zhou, X. The influence of plant community characteristics in urban parks on the microclimate. Forests 2022, 13, 1342. [Google Scholar] [CrossRef]
- Lan, Y.; Zhan, Q. How do urban buildings impact summer air temperature? The effects of building configurations in space and time. Build. Environ. 2017, 125, 88–98. [Google Scholar] [CrossRef]
- Rahman, M.; Franceschi, E.; Pattnaik, N.; Moser-Reischl, A.; Hartmann, C.; Paeth, H.; Pretzsch, H.; Rötzer, T.; Pauleit, S. Spatial and temporal changes of outdoor thermal stress: Influence of urban land cover types. Sci. Rep. 2022, 12, 671. [Google Scholar] [CrossRef]
- Li, H.; Harvey, J.; Kendall, A. Field measurement of albedo for different land cover materials and effects on thermal performance. Build. Environ. 2013, 59, 536–546. [Google Scholar] [CrossRef]
- Obregón, M.; Costa, M.; Silva, A.; Serrano, A. Spatial and Temporal Variation of Aerosol and Water Vapour Effects on Solar Radiation in the Mediterranean Basin during the Last Two Decades. Remote Sens. 2020, 12, 1316. [Google Scholar] [CrossRef]
- Li, Q.; Liao, J.; Zhu, Y.; Ye, Z.; Chen, C.; Huang, Y.; Liu, Y. A Study on the Leaf Retention Capacity and Mechanism of Nine Greening Tree Species in Central Tropical Asia Regarding Various Atmospheric Particulate Matter Values. Atmosphere 2024, 15, 394. [Google Scholar] [CrossRef]
- Rodriguez, A.; Lecigne, B.; Wood, S.; Carmeliet, J.; Derome, D. Optimal representation of tree foliage for local urban climate modeling. Sustain. Cities Soc. 2024, 115, 105857. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, B.; Ouyang, Q. Simplifying morphological indicators: Linking building morphology and microclimate effects through exploratory factor analysis. Int. J. Biometeorol. 2025, 69, 1071–1083. [Google Scholar] [CrossRef]
- Stumpe, B.; Bechtel, B.; Heil, J.; Jörges, C.; Jostmeier, A.; Kalks, F.; Schwarz, K.; Marschner, B. Soil texture mediates the surface cooling effect of urban and peri-urban green spaces during a drought period in the city area of Hamburg (Germany). Sci. Total Environ. 2023, 897, 165228. [Google Scholar] [CrossRef]
- Iordache, M.; Tudor, C.; Brei, L. Earthworms Diversity (Oligochaeta: Lumbricidae) and Casting Chemical Composition in an Urban Park from Western Romania. Pol. J. Environ. Stud. 2021, 30, 645–654. [Google Scholar] [CrossRef]
- Iordache, M. Chemical composition of earthworm casts as a tool in understanding the earthworm contribution to ecosystem sustainability-a review. Plant Soil Environ. 2023, 69, 247–268. [Google Scholar] [CrossRef]
- Iordache, M.; Gaica, I. Ecological study of earthworms (Oligochaeta: Lumbricidae) diversity in the Botanic Park of Timisoara, Romania. Sci. Pap.-Ser. A-Agron. 2021, 64, 400–405. [Google Scholar]
- Lopes, H.; Vidal, D.; Cherif, N.; Silva, L.; Remoaldo, P. Green infrastructure and its influence on urban heat island, heat risk, and air pollution: A case study of Porto (Portugal). J. Environ. Manag. 2025, 376, 124446. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.P.; Adams, P.J.; Pandis, S.N. Sensitivity of PM2.5 to climate in the Eastern US: A modeling case study. Atmos. Chem. Phys. 2007, 7, 4295–4309. [Google Scholar] [CrossRef]
- Danek, T.; Weglinska, E.; Zareba, M. The influence of meteorological factors and terrain on air pollution concentration and migration: A geostatistical case study from Krakow, Poland. Sci. Rep. 2022, 12, 11050. [Google Scholar] [CrossRef]
- Meili, N.; Zheng, X.; Takane, Y.; Nakajima, K.; Yamaguchi, K.; Chi, D.; Zhu, Y.; Wang, J.; Qiu, Y.; Paschalis, A.; et al. Modeling the Effect of Trees on Energy Demand for Indoor Cooling and Dehumidification Across Cities and Climates. J. Adv. Model. Earth Syst. 2025, 17, e2024MS004590. [Google Scholar] [CrossRef]
- Kang, G.; Kim, J. How to plant trees on an elevated road to improve thermal comfort in a street canyon. Sustain. Cities Soc. 2025, 121, 106207. [Google Scholar] [CrossRef]
- Norouzi, M.; Chau, H.; Jamei, E. Design and Site-Related Factors Impacting the Cooling Performance of Urban Parks in Different Climate Zones: A Systematic Review. Land 2024, 13, 2175. [Google Scholar] [CrossRef]
- Cheung, P.; Jim, C. Differential cooling effects of landscape parameters in humid-subtropical urban parks. Landsc. Urban Plan. 2019, 192, 103651. [Google Scholar] [CrossRef]
- Coutts, A.; Beringer, J.; Jimmi, S.; Tapper, N. The Urban Heat Island in Melbourne: Drivers, Spatial and Temporal Variability, and the Vital Role of Stormwater. 2009, pp. 1–8. Available online: https://www.clearwatervic.com.au/resource-library/papers-and-presentations/the-urban-heat-island-in-melbourne-and-the-vital-role-of-stormwater.php (accessed on 28 March 2025).
- Kunakh, O.; Ivanko, I.; Holoborodko, K.; Lisovets, O.; Volkova, A.; Volkova, A.; Zhukov, O. Modeling the spatial variation of urban park ecological properties using remote sensing data. Biosyst. Divers. 2022, 30, 213–225. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, J.; Zhang, Y.; Zhou, J.; Yu, Y.; Jia, R. Spatiotemporal characteristics of urban dry/wet islands in China following rapid urbanization. J. Hydrol. 2021, 601, 126618. [Google Scholar] [CrossRef]
- Nugroho, N.; Triyadi, S.; Wonorahardjo, S. Effect of high-rise buildings on the surrounding thermal environment. Build. Environ. 2022, 207, 108393. [Google Scholar] [CrossRef]
- Husni, E.; Prayoga, G.; Tamba, J.; Retnowati, Y.; Fauzandi, F.; Yusuf, R.; Yahya, B. Microclimate investigation of vehicular traffic on the urban heat island through IoT-Based device. Heliyon 2022, 8, e11739. [Google Scholar] [CrossRef]
- Kuwagata, T.; Maruyama, A.; Kondo, J.; Watanabe, T. Theoretical study on dew formation in plant canopies based on a one-layer energy-balance model. Agric. For. Meteorol. 2024, 354, 109911. [Google Scholar] [CrossRef]
- Kausar, A.; Afzal, A.; Khan, O.; Maqsoom, A.; Saeed, G.; Vambol, S.; Trush, O.; Murasov, R.; Mykhailov, V. Impact of Surrounding Infrastructure on Urban Environment: A Case Study of Karachi Metropolitan. Ecol. Quest. 2024, 35, 2. [Google Scholar] [CrossRef]
- IPCC Intergovernmental Panel on Climate Change: Geneva, Switzerland. 2023. Available online: https://archive.ipcc.ch/ipccreports/tar/wg1/140.htm (accessed on 22 March 2025).
- Biagi, B.; Brattich, E.; Cintolesi, C.; Barbano, F.; Di Sabatino, S. Dynamical and chemical impacts of urban green areas on air pollution in a city environment. Urban Clim. 2025, 60, 102343. [Google Scholar] [CrossRef]
- Bao, X.; Zhou, W.; Wang, W.; Yao, Y.; Xu, L. Tree species classification improves the estimation of BVOCs from urban greenspace. Sci. Total Environ. 2024, 914, 169762. [Google Scholar] [CrossRef]
- Dobslaw, D.; Engesser, K.-H.; Störk, H.; Gerl, T. Low-cost process for emission abatement of biogas internal combustion engines. J. Clean. Prod. 2019, 227, 1079–1092. [Google Scholar] [CrossRef]
- Kaplan, A.; Gozlan, I.; Kira, O.; Avisar, D. Interactions between volatile air pollutants and atmospheric water production-effects of chemical properties, mechanisms, and transfer processes. Chemosphere 2024, 365, 143399. [Google Scholar] [CrossRef]
- Davarpanah, M.; Rahmani, K.; Kamravaei, S.; Hashisho, Z.; Crompton, D.; Anderson, J. Modeling the effect of humidity and temperature on VOC removal efficiency in a multistage fluidized bed adsorber. Chem. Eng. J. 2022, 431, 133991. [Google Scholar] [CrossRef]
- Tsai, J.; Hung, T.; How, V.; Chiang, H. Effect of the Method Detection Limit on the Health Risk Assessment of Ambient Hazardous Air Pollutants in an Urban Industrial Complex Area. Atmosphere 2023, 14, 1426. [Google Scholar] [CrossRef]
- Villanueva, F.; Lara, S.; Amo-Salas, M.; Cabañas, B.; Martín, P.; Salgado, S. Investigation of formaldehyde and other carbonyls in a small urban atmosphere using passive samplers. A comprehensive data analysis. Microchem. J. 2021, 167, 106270. [Google Scholar] [CrossRef]
- Peng, W.; Yue, X.; Chen, H.; Ma, N.; Quan, Z.; Yu, Q.; Sonne, C. A review of plants formaldehyde metabolism: Implications for hazardous emissions and phytoremediation. J. Hazard. Mater. 2022, 436, 129304. [Google Scholar] [CrossRef]
- Chen, J.; So, S.; Lee, H.; Fraser, M.; Curl, R.; Harman, T.; Tittel, F. Atmospheric formaldehyde monitoring in the greater Houston area in 2002. Appl. Spectrosc. 2004, 58, 243–247. [Google Scholar] [CrossRef]
- Tago, H.; Kimura, H.; Kozawa, K.; Fujie, K. Formaldehyde concentrations in ambient air in urban and rural areas in Gunma Prefecture, Japan. Water Air Soil Pollut. 2005, 163, 269–280. [Google Scholar] [CrossRef]
- Lin, Y.; Schwab, J.; Demerjian, K.; Bae, M.; Chen, W.; Sun, Y.; Zhang, Q.; Hung, H.-M.; Perry, J. Summertime formaldehyde observations in New York City: Ambient levels, sources and its contribution to HOx radicals. J. Geophys. Res.-Atmos. 2012, 117, D08305. [Google Scholar] [CrossRef]
- Derwent, R.; Jenkin, M. Estimation of the atmospheric hydrogen source from the oxidation of man-made and natural non-methane organic compounds using a Master Chemical Mechanism. Atmos. Environ. 2024, 339, 120871. [Google Scholar] [CrossRef]
- Morfopoulos, C.; Müller, J.; Stavrakou, T.; Bauwens, M.; De Smedt, I.; Friedlingstein, P.; Prentice, I.C.; Regnier, P. Vegetation responses to climate extremes recorded by remotely sensed atmospheric formaldehyde. Glob. Change Biol. 2022, 28, 1809–1822. [Google Scholar] [CrossRef]
- Trimmel, H.; Hamer, P.; Mayer, M.; Schreier, S.; Weihs, P.; Eitzinger, J.; Sandén, H.; Fitzky, A.C.; Richter, A.; Calvet, J.C.; et al. The influence of vegetation drought stress on formaldehyde and ozone distributions over a central European city. Atmos. Environ. 2023, 304, 119768. [Google Scholar] [CrossRef]
- Khoshakhlagh, A.; Omer, F.; Yazdanirad, S. The variation in exposure to ambient formaldehyde at different times of the year in various countries: A systematic review and meta-analysis. J. Hazard. Mater. Adv. 2024, 16, 100467. [Google Scholar] [CrossRef]
- Schäffner, A.; Messner, B.; Langebartels, C.; Sandermann, H. Genes and enzymes for in-planta phytoremediation of air, water and soil. Acta Biotechnol. 2002, 22, 141–151. [Google Scholar] [CrossRef]
- Herbei, M.V.; Sala, F. Evaluation of urban areas by remote sensing methods in relation to climatic conditions: Case study City of Timisoara. Carpathian J. Earth Environ. Sci. 2020, 15, 327–337. [Google Scholar] [CrossRef]
- Oncia, S.; Herbei, M.; Popescu, C. Sustainable Development of the Petrosani City, the Hunedoara County, based on GIS Analysis. J. Environ. Prot. Ecol. 2013, 14, 232–239. [Google Scholar]
- Munyati, C. Detecting the air-cooling effect of urban green spaces in a hot climate town relative to land surface temperature on Landsat-9 thermal imagery. Adv. Space Res. 2024, 74, 4598–4625. [Google Scholar] [CrossRef]
Measurement Characteristics | Air Parameter | |||||
---|---|---|---|---|---|---|
PM2.5 | PM10 | HCHO | TVOC | Air Temperature | Relative Air Humidity | |
Measurement range | 0–999 μg/m3 | 0–999 μg/m3 | 0–5 mg/m3 | 0–5 mg/m3 | 0–50 °C | 0–90% |
Measurement resolution | 0.1 μg/m3 | 0.1 μg/m3 | 0.01 mg/m3 | 0.01 mg/m3 | 0.01 °C | 0.01% |
Air Quality Parameter | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PM2.5 (μg/m3) | PM10 (μg/m3) | AQI | |||||||||
United States Environmental Protection Agency (EPA) Standards [26] | Air Quality Guidelines of the World Health Organization [28] | Romanian Standard (Law no. 104/15 June 2011) [29] | United States Environmental Protection Agency (EPA) Standards [26] | Air Quality Guidelines of the World Health Organization [28] | Romanian Standard (Law no. 104/15 June 2011) [29] | United States Environmental Protection Agency (EPA) Standards [26] | |||||
PM2.5 Value (μg/m3) | Air quality level | PM2.5 Value (μg/m3) | 20 µg/m3—Annual limit value for human health protection, which must be respected throughout the entire calendar year | PM10 Value (μg/m3) | Air quality level | PM10 Value (μg/m3) | PM10 Value (μg/m3) | AQI Value | Air quality level | ||
≤12 | Good | 5 (Annual) | 15 (24 h) | ≤54.9 | Good | 15 (Annual) | 45 (24 h) | 50 µg/m3—Daily limit value for human health protection, which must not be exceeded more than 35 days a year 40 µg/m3—Annual limit value for human health protection, this being the value that must be respected throughout the entire calendar year | ≤50 | Good | |
12.1–35.4 | Moderate | 55–154.9 | Moderate | 51–100 | Moderate | ||||||
35.5–55.4 | Unhealthy for Sensitive Groups | 155–254.9 | Unhealthy for Sensitive Groups | 101–150 | Unhealthy for Sensitive Groups | ||||||
55.5–150.4 | Unhealthy | 255–354.9 | Unhealthy | 151–200 | Unhealthy | ||||||
150.5–250.4 | Very Unhealthy | 355–424.9 | Very Unhealthy | 201–300 | Very Unhealthy | ||||||
≥250.5 | Hazardous | ≥425 | ≥301 | Hazardous |
Air Quality Parameter | |||||||
---|---|---|---|---|---|---|---|
TVOC (mg/m3) | HCHO (mg/m3) | ||||||
United States Environmental Protection Agency (EPA) Standards [26] | Air Quality Guidelines of the World Health Organization [27] | Air Quality Guidelines of the World Health Organization [27] | Romanian Standard (Law no. 104/15 June 2011; Directive 2004/107/CE) [29] | ||||
TVOC Value (mg/m3) | Air quality rating | TVOC Value (mg/m3) | HCHO Value (mg/m3) | HCHO Value (mg/m3) | |||
≤0.5 | Healthy | Annual | 24 h | Annual | 24 h | 30 min. | ≤0.1 |
- | ≤0.1 | ≤0.1 | |||||
>0.5 | Unhealthy | - | 0.3–0.5 mg/m3 | - | >0.1 | >0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wokan, A.; Iordache, M. Ecosystem Services Provided by an Urban Green Space in Timișoara (Romania): Linking Urban Vegetation with Air Quality and Cooling Effects. Sustainability 2025, 17, 5564. https://doi.org/10.3390/su17125564
Wokan A, Iordache M. Ecosystem Services Provided by an Urban Green Space in Timișoara (Romania): Linking Urban Vegetation with Air Quality and Cooling Effects. Sustainability. 2025; 17(12):5564. https://doi.org/10.3390/su17125564
Chicago/Turabian StyleWokan, Alia, and Mădălina Iordache. 2025. "Ecosystem Services Provided by an Urban Green Space in Timișoara (Romania): Linking Urban Vegetation with Air Quality and Cooling Effects" Sustainability 17, no. 12: 5564. https://doi.org/10.3390/su17125564
APA StyleWokan, A., & Iordache, M. (2025). Ecosystem Services Provided by an Urban Green Space in Timișoara (Romania): Linking Urban Vegetation with Air Quality and Cooling Effects. Sustainability, 17(12), 5564. https://doi.org/10.3390/su17125564