Digital Technologies and Business Model Innovation in Turbulent Markets: Unlocking the Power of Agility and Absorptive Capacity
Abstract
:1. Introduction
2. Theoretical Background and Hypotheses Development
2.1. Underpinning Theories
2.2. Digital Technologies
2.3. Business Model Innovation
2.4. Digital Technologies and Business Model Innovation
2.5. Digital Technologies and Firm Agility
2.6. Firm Agility and Business Model Innovation
2.7. Digital Technologies and Absorptive Capacity
2.8. Absorptive Capacity and Business Model Innovation
2.9. Firm Agility as a Mediator
2.10. Absorptive Capacity as a Mediator
2.11. Market Turbulence as a Moderator
2.12. Conceptual Research Model
3. Methodology
3.1. Research Context
3.2. Sampling and Data Collection
3.3. Measurements
3.4. Non-Response Bias and Common Method Bias
3.5. Analytical Strategy
4. Results
4.1. Assessment of Measurement Model
4.2. Hypothesis Testing
4.3. Moderation Analysis
4.4. Robustness Test
5. Conclusions and Implications
5.1. Discussion of Key Findings
5.2. Theoretical Implications
5.3. Practical Implications
5.4. Limitations and Future Direction
5.5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harrmann, L.K.; Eggert, A.; Böhm, E. Digital Technology Usage as a Driver of Servitization Paths in Manufacturing Industries. Eur. J. Mark. 2022, 57, 834–857. [Google Scholar] [CrossRef]
- Enyoghasi, C.; Badurdeen, F. Industry 4.0 for Sustainable Manufacturing: Opportunities at the Product, Process, and System Levels. Resour. Conserv. Recycl. 2021, 166, 105362. [Google Scholar] [CrossRef]
- Van Wassenhove, L.N. Sustainable Innovation: Pushing the Boundaries of Traditional Operations Management. Prod. Oper. Manag. 2019, 28, 2930–2945. [Google Scholar] [CrossRef]
- Foss, N.J.; Saebi, T. Business Models and Business Model Innovation: Between Wicked and Paradigmatic Problems. Long Range Plan. 2018, 51, 9–21. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, B.; Zhu, L. Digital Technology Usage, Strategic Flexibility, and Business Model Innovation in Traditional Manufacturing Firms: The Moderating Role of the Institutional Environment. Technol. Forecast. Soc. Change 2023, 194, 122726. [Google Scholar] [CrossRef]
- Nambisan, S.; Wright, M.; Feldman, M. The Digital Transformation of Innovation and Entrepreneurship: Progress, Challenges and Key Themes. Res. Policy 2019, 48, 103773. [Google Scholar] [CrossRef]
- Broekhuizen, T.L.J.; Broekhuis, M.; Gijsenberg, M.J.; Wieringa, J.E. Introduction to the Special Issue—Digital Business Models: A Multi-Disciplinary and Multi-Stakeholder Perspective. J. Bus. Res. 2021, 122, 847–852. [Google Scholar] [CrossRef]
- Cohen, W.M.; Levinthal, D.A. Absorptive Capacity: A New Perspective on Learning and Innovation. Adm. Sci. Q. 1990, 35, 128–152. [Google Scholar] [CrossRef]
- Ramadhan, A.; Iyiola, K.; Alzubi, A.B. Linking Absorptive Capacity to Project Success via Mediating Role of Customer Knowledge Management Capability: The Role of Environmental Complexity. Bus. Process Manag. J. 2024, 30, 939–962. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Cao, D.; Wang, Y. Organizational Mindfulness towards Digital Transformation as a Prerequisite of Information Processing Capability to Achieve Market Agility. J. Bus. Res. 2021, 122, 700–712. [Google Scholar] [CrossRef]
- Singh, J.; Sharma, G.; Hill, J.; Schnackenberg, A. Organizational Agility: What It Is, What It Is Not, and Why It Matters. Proceedings 2013, 2013, 11813. [Google Scholar] [CrossRef]
- Tallon, P.P.; Pinsonneault, A. Competing Perspectives on the Link Between Strategic Information Technology Alignment and Organizational Agility: Insights from a Mediation Model. MIS Q. 2011, 35, 463–486. [Google Scholar] [CrossRef]
- AlAjlouni, A.O.; Aljuhmani, H.Y. Leveraging Business Intelligence for Enhanced Financial Performance: The Mediating Effect of Supply Chain Integration. In Achieving Sustainable Business Through AI, Technology Education and Computer Science: Volume 3: Business Sustainability and Artificial Intelligence Applications; Hamdan, A., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 79–89. ISBN 978-3-031-73632-2. [Google Scholar]
- Jennings, D.F.; Seaman, S.L. High and Low Levels of Organizational Adaptation: An Empirical Analysis of Strategy, Structure, and Performance. Strateg. Manag. J. 1994, 15, 459–475. [Google Scholar] [CrossRef]
- Teece, D.J. Explicating Dynamic Capabilities: The Nature and Microfoundations of (Sustainable) Enterprise Performance. Strateg. Manag. J. 2007, 28, 1319–1350. [Google Scholar] [CrossRef]
- Vittori, D.; Natalicchio, A.; Panniello, U.; Messeni Petruzzelli, A.; Cupertino, F. Business Model Innovation between the Embryonic and Growth Stages of Industry Lifecycle. Technovation 2022, 117, 102592. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, X.; Sun, J.; Zhang, Y.; Wang, Y. What Does Not Kill You Makes You Stronger: Supply Chain Resilience and Corporate Sustainability Through Emerging IT Capability. IEEE Trans. Eng. Manag. 2024, 71, 10507–10521. [Google Scholar] [CrossRef]
- Alsafadi, Y.; Aljuhmani, H.Y. The Influence of Entrepreneurial Innovations in Building Competitive Advantage: The Mediating Role of Entrepreneurial Thinking. Kybernetes 2023, 53, 4051–4073. [Google Scholar] [CrossRef]
- Chen, M.-J.; Michel, J.G.; Lin, W. Worlds Apart? Connecting Competitive Dynamics and the Resource-Based View of the Firm. J. Manag. 2021, 47, 1820–1840. [Google Scholar] [CrossRef]
- Xie, X.; Han, Y.; Anderson, A.; Ribeiro-Navarrete, S. Digital Platforms and SMEs’ Business Model Innovation: Exploring the Mediating Mechanisms of Capability Reconfiguration. Int. J. Inf. Manag. 2022, 65, 102513. [Google Scholar] [CrossRef]
- Asbeetah, Z.; Alzubi, A.; Khadem, A.; Iyiola, K. Harnessing Digital Transformation for Sustainable Performance: Exploring the Mediating Roles of Green Knowledge Acquisition and Innovation Performance Under Digital Transformational Leadership. Sustainability 2025, 17, 2285. [Google Scholar] [CrossRef]
- Uzkurt, C.; Ekmekcioglu, E.B.; Ceyhan, S.; Hatiboglu, M.B. Digital Technology Use of SMEs during the COVID-19 Pandemic in Turkey: Mobile Applications’ Role on Motivation and Job Performance. Kybernetes 2023, 53, 1354–1373. [Google Scholar] [CrossRef]
- Kırmızı, M.; Kocaoglu, B. Digital Transformation Maturity Model Development Framework Based on Design Science: Case Studies in Manufacturing Industry. J. Manuf. Technol. Manag. 2022, 33, 1319–1346. [Google Scholar] [CrossRef]
- Asgary, A.; Ozdemir, A.I.; Özyürek, H. Small and Medium Enterprises and Global Risks: Evidence from Manufacturing SMEs in Turkey. Int. J. Disaster Risk Sci. 2020, 11, 59–73. [Google Scholar] [CrossRef]
- Ben Ghrbeia, S.; Alzubi, A. Building Micro-Foundations for Digital Transformation: A Moderated Mediation Model of the Interplay between Digital Literacy and Digital Transformation. Sustainability 2024, 16, 3749. [Google Scholar] [CrossRef]
- Bokša, M.; Šaroch, S.; Bokšová, J. Digitalization of SMEs. Int. Adv. Econ. Res. 2020, 26, 175–177. [Google Scholar] [CrossRef]
- Andersen, T.C.K.; Aagaard, A.; Magnusson, M. Exploring Business Model Innovation in SMEs in a Digital Context: Organizing Search Behaviours, Experimentation and Decision-making. Creat. Innov. Manag. 2022, 31, 19–34. [Google Scholar] [CrossRef]
- Bouwman, H.; Nikou, S.; de Reuver, M. Digitalization, Business Models, and SMEs: How Do Business Model Innovation Practices Improve Performance of Digitalizing SMEs? Telecommun. Policy 2019, 43, 101828. [Google Scholar] [CrossRef]
- Dal Mas, F.; Massaro, M.; Rippa, P.; Secundo, G. The Challenges of Digital Transformation in Healthcare: An Interdisciplinary Literature Review, Framework, and Future Research Agenda. Technovation 2023, 123, 102716. [Google Scholar] [CrossRef]
- Iyiola, K.; Alzubi, A.; Dappa, K. The Influence of Learning Orientation on Entrepreneurial Performance: The Role of Business Model Innovation and Risk-Taking Propensity. J. Open Innov. Technol. Mark. Complex. 2023, 9, 100133. [Google Scholar] [CrossRef]
- Ramadan, J.; Alzubi, A.; Khadem, A. The Impact of Strategic Entrepreneurship Behaviors on Business Performance in Turkish SMES: The Role of Business Model Innovation and Competitive Intensity. Sustainability 2024, 16, 8035. [Google Scholar] [CrossRef]
- Tetteh, F.K.; Gyamerah, K.K.; Nyamekye, B.; Atiki, G.; Ashia, R. Digital Transformation and Business Model Innovation: The Relevance of Strategic Orientations under Varying Conditions of Competitive Intensity. J. Manuf. Technol. Manag. 2025; ahead-of-print. [Google Scholar] [CrossRef]
- Ramadan, M.; Zakhem, N.B.; Baydoun, H.; Daouk, A.; Youssef, S.; Fawal, A.E.; Elia, J.; Ashaal, A. Toward Digital Transformation and Business Model Innovation: The Nexus between Leadership, Organizational Agility, and Knowledge Transfer. Adm. Sci. 2023, 13, 185. [Google Scholar] [CrossRef]
- Müller, J.M.; Buliga, O.; Voigt, K.-I. The Role of Absorptive Capacity and Innovation Strategy in the Design of Industry 4.0 Business Models—A Comparison between SMEs and Large Enterprises. Eur. Manag. J. 2021, 39, 333–343. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Z.; Zhou, H. Openness Influences Business Model Innovation: The Mediating Role of Digital Capability. J. Organ. Change Manag. 2024, 38, 82–102. [Google Scholar] [CrossRef]
- Foss, N.J.; Saebi, T. Fifteen Years of Research on Business Model Innovation: How Far Have We Come, and Where Should We Go? J. Manag. 2017, 43, 200–227. [Google Scholar] [CrossRef]
- Sarta, A.; Durand, R.; Vergne, J.-P. Organizational Adaptation. J. Manag. 2021, 47, 43–75. [Google Scholar] [CrossRef]
- Xiao, Y.; Cen, J.; Soberg, P. THE Impact of Disruption on the Relationship Between Exploitation, Exploration, and Organizational Adaptation. Front. Sociol. 2021, 6, 757160. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, J.; Zhu, L. How Does Environmental Dynamism Impact Green Process Innovation? A Supply Chain Cooperation Perspective. IEEE Trans. Eng. Manag. 2023, 70, 509–522. [Google Scholar] [CrossRef]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic Capabilities and Strategic Management. Strateg. Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Emeagwali, O.L.; Aljuhamni, H.Y. Introductory Chapter: Strategic Management—A Dynamic Approach. In Strategic Management—A Dynamic View; IntechOpen: London, UK, 2019; ISBN 978-1-83962-505-3. [Google Scholar]
- Abourokbah, S.H.; Mashat, R.M.; Salam, M.A. Role of Absorptive Capacity, Digital Capability, Agility, and Resilience in Supply Chain Innovation Performance. Sustainability 2023, 15, 3636. [Google Scholar] [CrossRef]
- Chirico, F.; Salvato, C. Knowledge Integration and Dynamic Organizational Adaptation in Family Firms. Fam. Bus. Rev. 2008, 21, 169–181. [Google Scholar] [CrossRef]
- Lee, S.M.; Rha, J.S. Ambidextrous Supply Chain as a Dynamic Capability: Building a Resilient Supply Chain. Manag. Decis. 2016, 54, 2–23. [Google Scholar] [CrossRef]
- Flatten, T.C.; Greve, G.I.; Brettel, M. Absorptive Capacity and Firm Performance in SMEs: The Mediating Influence of Strategic Alliances: Absorptive Capacity and Firm Performance in SMEs: The Mediating Influence of Strategic Alliances. Eur. Manag. Rev. 2011, 8, 137–152. [Google Scholar] [CrossRef]
- Kastelli, I.; Dimas, P.; Stamopoulos, D.; Tsakanikas, A. Linking Digital Capacity to Innovation Performance: The Mediating Role of Absorptive Capacity. J. Knowl. Econ. 2024, 15, 238–272. [Google Scholar] [CrossRef]
- Sherani; Zhang, J.; Shehzad, M.U.; Ali, S.; Cao, Z. Unlocking Digital Innovation: A Moderated-Mediation Approach Exploring the Knowledge Creation Processes, IT-Enabled Capabilities and Absorptive Capacity in Software SMEs. Bus. Process Manag. J. 2024, 31, 170–201. [Google Scholar] [CrossRef]
- Felipe, C.M.; Leidner, D.E.; Roldán, J.L.; Leal-Rodríguez, A.L. Impact of IS Capabilities on Firm Performance: The Roles of Organizational Agility and Industry Technology Intensity. Decis. Sci. 2020, 51, 575–619. [Google Scholar] [CrossRef]
- Alkish, I.; Iyiola, K.; Alzubi, A.B.; Aljuhmani, H.Y. Does Digitization Lead to Sustainable Economic Behavior? Investigating the Roles of Employee Well-Being and Learning Orientation. Sustainability 2025, 17, 4365. [Google Scholar] [CrossRef]
- Del Giudice, M.; Scuotto, V.; Papa, A.; Tarba, S.Y.; Bresciani, S.; Warkentin, M. A Self-Tuning Model for Smart Manufacturing SMEs: Effects on Digital Innovation. J. Prod. Innov. Manag. 2021, 38, 68–89. [Google Scholar] [CrossRef]
- Zhou, K.Z.; Wu, F. Technological Capability, Strategic Flexibility, and Product Innovation. Strateg. Manag. J. 2010, 31, 547–561. [Google Scholar] [CrossRef]
- Rachinger, M.; Rauter, R.; Müller, C.; Vorraber, W.; Schirgi, E. Digitalization and Its Influence on Business Model Innovation. J. Manuf. Technol. Manag. 2018, 30, 1143–1160. [Google Scholar] [CrossRef]
- Verstegen, L.; Houkes, W.; Reymen, I. Configuring Collective Digital-Technology Usage in Dynamic and Complex Design Practices. Res. Policy 2019, 48, 103696. [Google Scholar] [CrossRef]
- Teece, D.J. Business Models and Dynamic Capabilities. Long Range Plan. 2018, 51, 40–49. [Google Scholar] [CrossRef]
- Neiroukh, S.; Emeagwali, O.L.; Aljuhmani, H.Y. Artificial Intelligence Capability and Organizational Performance: Unraveling the Mediating Mechanisms of Decision-Making Processes. Manag. Decis. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Paiola, M.; Gebauer, H. Internet of Things Technologies, Digital Servitization and Business Model Innovation in BtoB Manufacturing Firms. Ind. Mark. Manag. 2020, 89, 245–264. [Google Scholar] [CrossRef]
- Adrodegari, F.; Alghisi, A.; Ardolino, M.; Saccani, N. From Ownership to Service-Oriented Business Models: A Survey in Capital Goods Companies and a PSS Typology. Procedia CIRP 2015, 30, 245–250. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, L. How Companies Configure Digital Innovation Attributes for Business Model Innovation? A Configurational View. Technovation 2022, 112, 102398. [Google Scholar] [CrossRef]
- Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 Technologies: Implementation Patterns in Manufacturing Companies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- Coreynen, W.; Matthyssens, P.; Van Bockhaven, W. Boosting Servitization through Digitization: Pathways and Dynamic Resource Configurations for Manufacturers. Ind. Mark. Manag. 2017, 60, 42–53. [Google Scholar] [CrossRef]
- Ceipek, R.; Hautz, J.; Petruzzelli, A.M.; De Massis, A.; Matzler, K. A Motivation and Ability Perspective on Engagement in Emerging Digital Technologies: The Case of Internet of Things Solutions. Long Range Plan. 2021, 54, 101991. [Google Scholar] [CrossRef]
- Del Vecchio, P.; Di Minin, A.; Petruzzelli, A.M.; Panniello, U.; Pirri, S. Big Data for Open Innovation in SMEs and Large Corporations: Trends, Opportunities, and Challenges. Creat. Innov. Manag. 2018, 27, 6–22. [Google Scholar] [CrossRef]
- Latifi, M.-A.; Nikou, S.; Bouwman, H. Business Model Innovation and Firm Performance: Exploring Causal Mechanisms in SMEs. Technovation 2021, 107, 102274. [Google Scholar] [CrossRef]
- Bhatti, S.H.; Santoro, G.; Khan, J.; Rizzato, F. Antecedents and Consequences of Business Model Innovation in the IT Industry. J. Bus. Res. 2021, 123, 389–400. [Google Scholar] [CrossRef]
- Miroshnychenko, I.; Strobl, A.; Matzler, K.; De Massis, A. Absorptive Capacity, Strategic Flexibility, and Business Model Innovation: Empirical Evidence from Italian SMEs. J. Bus. Res. 2021, 130, 670–682. [Google Scholar] [CrossRef]
- Kinkel, S.; Baumgartner, M.; Cherubini, E. Prerequisites for the Adoption of AI Technologies in Manufacturing—Evidence from a Worldwide Sample of Manufacturing Companies. Technovation 2022, 110, 102375. [Google Scholar] [CrossRef]
- Teece, D.J. Business Models, Business Strategy and Innovation. Long Range Plan. 2010, 43, 172–194. [Google Scholar] [CrossRef]
- Amit, R.; Zott, C. Creating Value Through Business Model Innovation. MIT SMR. 2012. Available online: https://sloanreview.mit.edu/article/creating-value-through-business-model-innovation/ (accessed on 26 May 2025).
- Minatogawa, V.L.F.; Franco, M.M.V.; Rampasso, I.S.; Anholon, R.; Quadros, R.; Durán, O.; Batocchio, A. Operationalizing Business Model Innovation through Big Data Analytics for Sustainable Organizations. Sustainability 2020, 12, 277. [Google Scholar] [CrossRef]
- Ghezzi, A.; Cavallo, A. Agile Business Model Innovation in Digital Entrepreneurship: Lean Startup Approaches. J. Bus. Res. 2020, 110, 519–537. [Google Scholar] [CrossRef]
- Aljuhmani, H.Y.; Awwad, R.I.; Albuhisi, B.; Hamdan, S. The Impact of Digital Transformation Leadership Competencies on Firm Performance Through the Lens of Organizational Creativity and Digital Strategy. In Innovative and Intelligent Digital Technologies; Towards an Increased Efficiency: Volume 1; Al Mubarak, M., Hamdan, A., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 283–293. ISBN 978-3-031-70399-7. [Google Scholar]
- Kumar, V.; Srivastava, R. New Perspectives on Business Model Innovations in Emerging Markets. J. Acad. Mark. Sci. 2020, 48, 815–825. [Google Scholar] [CrossRef]
- To, C.K.M.; Au, J.S.C.; Kan, C.W. Uncovering Business Model Innovation Contexts: A Comparative Analysis by fsQCA Methods. J. Bus. Res. 2019, 101, 783–796. [Google Scholar] [CrossRef]
- Luo, X.; Cao, D.; Tjahjono, B.; Adegbile, A. Business Model Innovation Themes of Emerging Market Enterprises: Evidence in China. J. Bus. Res. 2022, 139, 1619–1630. [Google Scholar] [CrossRef]
- Liere-Netheler, K.; Packmohr, S.; Vogelsang, K. Drivers of Digital Transformation in Manufacturing. In Proceedings of the Hawaii International Conference on System Sciences 2018 (HICSS-51), Waikoloa Village, HI, USA, 3–6 January 2018. [Google Scholar]
- Ayoub, H.S.; Aljuhmani, H.Y. Artificial Intelligence Capabilities as a Catalyst for Enhanced Organizational Performance: The Importance of Cultivating a Data-Driven Culture. In Achieving Sustainable Business Through AI, Technology Education and Computer Science: Volume 2: Teaching Technology and Business Sustainability; Hamdan, A., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 345–356. ISBN 978-3-031-71213-5. [Google Scholar]
- Landoni, P.; Dell’era, C.; Frattini, F.; Messeni Petruzzelli, A.; Verganti, R.; Manelli, L. Business Model Innovation in Cultural and Creative Industries: Insights from Three Leading Mobile Gaming Firms. Technovation 2020, 92–93, 102084. [Google Scholar] [CrossRef]
- Codini, A.P.; Abbate, T.; Messeni Petruzzelli, A. Business Model Innovation and Exaptation: A New Way of Innovating in SMEs. Technovation 2023, 119, 102548. [Google Scholar] [CrossRef]
- Ranta, V.; Aarikka-Stenroos, L.; Väisänen, J.-M. Digital Technologies Catalyzing Business Model Innovation for Circular Economy—Multiple Case Study. Resour. Conserv. Recycl. 2021, 164, 105155. [Google Scholar] [CrossRef]
- Bharadwaj, A.; El Sawy, O.A.; Pavlou, P.A.; Venkatraman, N. Digital Business Strategy: Toward a Next Generation of Insights. MIS Q. 2013, 37, 471–482. [Google Scholar] [CrossRef]
- Hiteva, R.; Foxon, T.J. Beware the Value Gap: Creating Value for Users and for the System through Innovation in Digital Energy Services Business Models. Technol. Forecast. Soc. Change 2021, 166, 120525. [Google Scholar] [CrossRef]
- Snihur, Y.; Zott, C.; Amit, R. (Raffi) Managing the Value Appropriation Dilemma in Business Model Innovation. Strategy Sci. 2021, 6, 22–38. [Google Scholar] [CrossRef]
- Schiavi, G.S.; Behr, A. Emerging Technologies and New Business Models: A Review on Disruptive Business Models. Innov. Manag. Rev. 2018, 15, 338–355. [Google Scholar] [CrossRef]
- Gonçalves, D.; Bergquist, M.; Alänge, S.; Bunk, R. How Digital Tools Align with Organizational Agility and Strengthen Digital Innovation in Automotive Startups. Procedia Comput. Sci. 2022, 196, 107–116. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, Z.; Liu, Z. Digital Technology Adoption and Collaborative Innovation in Chinese High-Speed Rail Industry: Does Organizational Agility Matter? IEEE Trans. Eng. Manag. 2024, 71, 4322–4335. [Google Scholar] [CrossRef]
- Bresciani, S.; Ferraris, A.; Santoro, G.; Kotabe, M. Opening up the Black Box on Digitalization and Agility: Key Drivers and Main Outcomes. Technol. Forecast. Soc. Change 2022, 178, 121567. [Google Scholar] [CrossRef]
- Liao, S.; Liu, Z.; Ma, C. Direct and Configurational Paths of Open Innovation and Organisational Agility to Business Model Innovation in SMEs. Technol. Anal. Strateg. Manag. 2019, 31, 1213–1228. [Google Scholar] [CrossRef]
- Dayioglu, M.; Küskü, F.; Cetindamar, D. The Impact of Business Environmental Factors on Performance Through Strategic Agility and Business Model Innovation: An Analysis Based on Dynamic Capabilities Theory. IEEE Trans. Eng. Manag. 2024, 71, 3656–3670. [Google Scholar] [CrossRef]
- Troise, C.; Jones, P.; Candelo, E.; Sorrentino, M. The Role of Entrepreneurial Alertness, Digital Platform Capability, Organisational Agility and Business Model Innovation on Young Innovative Companies’ Performance. Technol. Anal. Strateg. Manag. 2023, 1–14. [Google Scholar] [CrossRef]
- Aditiawarman, A.; Wahyuni, S. Impact of Digital Capability on Competitive Advantage and Performance of Tourism SMEs in Indonesia: The Role of Strategic Agility and Absorptive Capacity. In Proceedings of the 1st International Conference on Economic and Education, ICON 2021, Padang-West Sumatra, Indonesia, 14–15 December 2021. [Google Scholar] [CrossRef]
- Khan, A.; Tao, M. Knowledge Absorption Capacity’s Efficacy to Enhance Innovation Performance through Big Data Analytics and Digital Platform Capability. J. Innov. Knowl. 2022, 7, 100201. [Google Scholar] [CrossRef]
- Rehman, N.; Razaq, S.; Farooq, A.; Zohaib, N.M.; Nazri, M. Information Technology and Firm Performance: Mediation Role of Absorptive Capacity and Corporate Entrepreneurship in Manufacturing SMEs. Technol. Anal. Strateg. Manag. 2020, 32, 1049–1065. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chaudhuri, R.; Vrontis, D.; Papadopoulos, T. Examining the Impact of Deep Learning Technology Capability on Manufacturing Firms: Moderating Roles of Technology Turbulence and Top Management Support. Ann. Oper. Res. 2024, 339, 163–183. [Google Scholar] [CrossRef]
- Gillani, F.; Chatha, K.A.; Sadiq Jajja, M.S.; Farooq, S. Implementation of Digital Manufacturing Technologies: Antecedents and Consequences. Int. J. Prod. Econ. 2020, 229, 107748. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chaudhuri, R.; Vrontis, D. Examining the Impact of Adoption of Emerging Technology and Supply Chain Resilience on Firm Performance: Moderating Role of Absorptive Capacity and Leadership Support. IEEE Trans. Eng. Manag. 2024, 71, 10373–10386. [Google Scholar] [CrossRef]
- Mao, H.; Liu, S.; Zhang, J.; Zhang, Y.; Gong, Y. Information Technology Competency and Organizational Agility: Roles of Absorptive Capacity and Information Intensity. Inf. Technol. People 2020, 34, 421–451. [Google Scholar] [CrossRef]
- Larbi-Siaw, O.; Xuhua, H.; Owusu, E.; Owusu-Agyeman, A.; Fulgence, B.E.; Frimpong, S.A. Eco-Innovation, Sustainable Business Performance and Market Turbulence Moderation in Emerging Economies. Technol. Soc. 2022, 68, 101899. [Google Scholar] [CrossRef]
- Li, L. Digital Transformation and Sustainable Performance: The Moderating Role of Market Turbulence. Ind. Mark. Manag. 2022, 104, 28–37. [Google Scholar] [CrossRef]
- Aljuhmani, H.Y.; Emeagwali, O.L.; Ababneh, B. The Relationships between CEOs’ Psychological Attributes, Top Management Team Behavioral Integration and Firm Performance. Int. J. Organ. Theory Behav. 2021, 24, 126–145. [Google Scholar] [CrossRef]
- Pudjiarti, E.S.; Hutomo, P.T.P. The Critical Role of Effective Organizational Learning to Improve Firm’s Innovation and Performance in a Market Turbulence Condition. Int. J. Innov. Sci. 2020, 12, 237–254. [Google Scholar] [CrossRef]
- Senbeto, D.L.; Hon, A.H.Y. Market Turbulence and Service Innovation in Hospitality: Examining the Underlying Mechanisms of Employee and Organizational Resilience. Serv. Ind. J. 2020, 40, 1119–1139. [Google Scholar] [CrossRef]
- Kachouie, R.; Mavondo, F.; Sands, S. Dynamic Marketing Capabilities View on Creating Market Change. Eur. J. Mark. 2018, 52, 1007–1036. [Google Scholar] [CrossRef]
- Horchani, S.C.; Zouaoui, M. Environment Turbulence Effect on the Dynamics of Intellectual Capital Accumulation and Ambidextrous Innovation. Int. J. Innov. Mgt. 2021, 25, 2150058. [Google Scholar] [CrossRef]
- Caputo, F.; Giacosa, E.; Mazzoleni, A.; Ossorio, M. Ambidextrous Workforces for Managing Market Turbulence. Career Dev. Int. 2019, 24, 491–507. [Google Scholar] [CrossRef]
- AlQershi, N.; Saufi, R.B.A.; Ismail, N.A.; Mohamad, M.R.B.; Ramayah, T.; Muhammad, N.M.N.; Yusoff, M.N.H.B. The Moderating Role of Market Turbulence beyond the Covid-19 Pandemic and Russia-Ukraine Crisis on the Relationship between Intellectual Capital and Business Sustainability. Technol. Forecast. Soc. Change 2023, 186, 122081. [Google Scholar] [CrossRef]
- Hamid, A.A.; Abdelkareem, M.A.; Alhamdany, S.N. Examinig the Moderating Effect of Market Turbulence between Supply Chain Integration Capabilities and Competitive Advantage of Sudanese Manufacturing Companies. In Proceedings of the 2020 2nd Annual International Conference on Information and Sciences (AiCIS), Fallujah, Iraq, 24–25 November 2020; pp. 203–212. [Google Scholar]
- Martínez-Caro, E.; Cegarra-Navarro, J.G.; Alfonso-Ruiz, F.J. Digital Technologies and Firm Performance: The Role of Digital Organisational Culture. Technol. Forecast. Soc. Change 2020, 154, 119962. [Google Scholar] [CrossRef]
- World Bank. The World Bank in Türkiye. Available online: https://www.worldbank.org/en/country/turkey/overview (accessed on 23 May 2025).
- Gras, N. “Digital Economy in Turkey”—A Study on the Establishment of a Data Space for the Turkish Manufacturing Industry; International Data Spaces: Dortmund, Germany, 2021. [Google Scholar]
- Enbaia, E.; Alzubi, A.; Iyiola, K.; Aljuhmani, H.Y. The Interplay Between Environmental Ethics and Sustainable Performance: Does Organizational Green Culture and Green Innovation Really Matter? Sustainability 2024, 16, 10230. [Google Scholar] [CrossRef]
- Akguner, P. Turkey—Advanced Manufacturing. Available online: https://www.trade.gov/country-commercial-guides/turkey-advanced-manufacturing (accessed on 25 February 2025).
- Turkish Exporters Assembly Export 2024 Report. Available online: https://tim.org.tr/files/downloads/Strateji_Raporlari/ihracat_2024_raporu-2.pdf (accessed on 23 May 2025).
- Mamash, A.; Iyiola, K.; Aljuhmani, H.Y. The Role of Circular Economy Entrepreneurship, Cleaner Production, and Green Government Subsidy for Achieving Sustainability Goals in Business Performance. Sustainability 2025, 17, 3990. [Google Scholar] [CrossRef]
- Bağış, M.; Yolcu, T.; Kurutkan, M.N.; Yılmaz, A.; Aykaç, Ö.S.; Özkaynar, K.; Gürler, G. Intrinsic and Extrinsic Knowledge-Sharing Motivations as Microfoundations of Marketing Capabilities and Firm Performance. J. Knowl. Manag. 2025; ahead-of-print. [Google Scholar] [CrossRef]
- Kahveci, E.; Avunduk, Z.B.; Daim, T.; Zaim, S. The Role of Flexibility, Digitalization, and Crisis Response Strategy for SMEs: Case of COVID-19. J. Small Bus. Manag. 2024, 63, 1198–1235. [Google Scholar] [CrossRef]
- Uzkurt, C.; Ekmekcioglu, E.B.; Ceyhan, S. Business Ties, Adaptive Capability and Technological Turbulence: Implications for SMEs’ Performance in Turkey. J. Bus. Ind. Mark. 2023, 39, 568–580. [Google Scholar] [CrossRef]
- Brislin, R.W. Translation and Content Analysis of Oral and Written Materials. In Handbook of Cross-Cultural Psychology: Methodology; Allyn and Bacon: Boston, MA, USA, 1980; pp. 389–444. [Google Scholar]
- Sambamurthy, V.; Bharadwaj, A.; Grover, V. Shaping Agility through Digital Options: Reconceptualizing the Role of Information Technology in Contemporary Firms. MIS Q. 2003, 27, 237–263. [Google Scholar] [CrossRef]
- Jaworski, B.J.; Kohli, A.K. Market Orientation: Antecedents and Consequences. J. Mark. 1993, 57, 53–70. [Google Scholar] [CrossRef]
- Futterer, F.; Schmidt, J.; Heidenreich, S. Effectuation or Causation as the Key to Corporate Venture Success? Investigating Effects of Entrepreneurial Behaviors on Business Model Innovation and Venture Performance. Long Range Plan. 2018, 51, 64–81. [Google Scholar] [CrossRef]
- Armstrong, J.S.; Overton, T.S. Estimating Nonresponse Bias in Mail Surveys. J. Mark. Res. 1977, 14, 396–402. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Simmering, M.J.; Fuller, C.M.; Richardson, H.A.; Ocal, Y.; Atinc, G.M. Marker Variable Choice, Reporting, and Interpretation in the Detection of Common Method Variance: A Review and Demonstration. Organ. Res. Methods 2015, 18, 473–511. [Google Scholar] [CrossRef]
- Shieh, G. On the Misconception of Multicollinearity in Detection of Moderating Effects: Multicollinearity Is Not Always Detrimental. Multivar. Behav. Res. 2010, 45, 483–507. [Google Scholar] [CrossRef]
- Aljuhmani, H.Y.; Ababneh, B.; Emeagwali, L.; Elrehail, H. Strategic Stances and Organizational Performance: Are Strategic Performance Measurement Systems the Missing Link? Asia-Pac. J. Bus. Adm. 2022, 16, 282–306. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis, Second Edition: A Regression-Based Approach, 2nd ed.; The Guilford Press: New York, NY, USA; London, UK, 2017; ISBN 978-1-4625-3465-4. [Google Scholar]
- Slil, E.; Iyiola, K.; Alzubi, A.; Aljuhmani, H.Y. Impact of Safety Leadership and Employee Morale on Safety Performance: The Moderating Role of Harmonious Safety Passion. Buildings 2025, 15, 186. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. Asymptotic and Resampling Strategies for Assessing and Comparing Indirect Effects in Multiple Mediator Models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Frazier, P.A.; Tix, A.P.; Barron, K.E. Testing Moderator and Mediator Effects in Counseling Psychology Research. J. Couns. Psychol. 2004, 51, 115–134. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory, 2nd ed.; McGraw-Hill Companies: New York, NY, USA, 1978. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson: Upper Saddle River, NJ, USA, 2009; ISBN 978-0-13-813263-7. [Google Scholar]
- Collier, J. Applied Structural Equation Modeling Using AMOS: Basic to Advanced Techniques, 1st ed.; Routledge: New York, NY, USA, 2020; ISBN 978-0-367-43526-4. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y. On the Evaluation of Structural Equation Models. JAMS 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Aljuhmani, H.Y.; Emeagwali, O.L.; Ababneh, B. Revisiting the Miles and Snow Typology of Organizational Strategy: Uncovering Interrelationships between Strategic Decision-Making and Public Organizational Performance. Int. Rev. Public Adm. 2021, 26, 209–229. [Google Scholar] [CrossRef]
- Aiken, L.S.; West, S.G. Multiple Regression: Testing and Interpreting Interactions; SAGE Publications, Inc.: Newbury Park, CA, USA, 1991; ISBN 978-0-7619-0712-1. [Google Scholar]
- Aydiner, A.S.; Tatoglu, E.; Bayraktar, E.; Zaim, S. Information System Capabilities and Firm Performance: Opening the Black Box through Decision-Making Performance and Business-Process Performance. Int. J. Inf. Manag. 2019, 47, 168–182. [Google Scholar] [CrossRef]
- Zahra, S.A.; George, G. Absorptive Capacity: A Review, Reconceptualization, and Extension. Acad. Manag. Rev. 2002, 27, 185–203. [Google Scholar] [CrossRef]
- Eisenhardt, K.M.; Graebner, M.E. Theory Building From Cases: Opportunities And Challenges. Acad. Manag. J. 2007, 50, 25–32. [Google Scholar] [CrossRef]
Sample Characteristics | Category | Frequency | Percentage (%) |
---|---|---|---|
Gender | Male | 392 | 81.84 |
Female | 87 | 18.16 | |
Years of establishment | Less than 5 | 98 | 20.46 |
5–10 | 211 | 44.05 | |
11–16 | 114 | 23.80 | |
Over 16 | 56 | 11.69 | |
Firm size (number of employees) | 1–10 | 124 | 25.89 |
11–50 | 201 | 41.96 | |
51–250 | 85 | 17.75 | |
Over 251 | 69 | 14.40 | |
Duration of digital technology usage | No Adoption | 92 | 19.21 |
In between 1 year | 89 | 18.58 | |
2 years | 79 | 16.49 | |
3 years | 109 | 22.76 | |
4 years | 77 | 16.08 | |
Over 4 years | 33 | 6.89 | |
Total | 479 | 100 |
Constructs | Factor Loading | SMC | Cronbach’s Alpha | CR | AVE |
---|---|---|---|---|---|
Digital Technologies (DTs) | 0.915 | 0.944 | 0.680 | ||
DTs1 | 0.836 | 0.700 | |||
DTs2 | 0.803 | 0.645 | |||
DTs3 | 0.824 | 0.678 | |||
DTs4 | 0.857 | 0.735 | |||
DTs5 | 0.816 | 0.666 | |||
DTs6 | 0.841 | 0.707 | |||
DTs7 | 0.850 | 0.722 | |||
DTs8 | 0.769 | 0.591 | |||
Firm Agility (FA) | 0.904 | 0.942 | 0.672 | ||
FA1 | 0.869 | 0.755 | |||
FA2 | 0.863 | 0.745 | |||
FA3 | 0.825 | 0.681 | |||
FA4 | 0.861 | 0.740 | |||
FA5 | 0.782 | 0.612 | |||
FA6 | 0.782 | 0.612 | |||
FA7 | 0.790 | 0.624 | |||
FA8 | 0.777 | 0.603 | |||
Absorptive Capacity (AC) | 0.892 | 0.923 | 0.633 | ||
AC1 | 0.767 | 0.588 | |||
AC2 | 0.759 | 0.576 | |||
AC3 | 0.844 | 0.712 | |||
AC4 | 0.785 | 0.616 | |||
AC5 | 0.883 | 0.781 | |||
AC6 | 0.741 | 0.549 | |||
AC7 | 0.779 | 0.607 | |||
Market Turbulence (MT) | 0.889 | 0.893 | 0.667 | ||
MT1 | 0.865 | 0.748 | |||
MT2 | 0.804 | 0.646 | |||
MT3 | 0.806 | 0.649 | |||
MT4 | 0.790 | 0.625 | |||
Business Model Innovation (BMI) | 0.948 | 0.966 | 0.643 | ||
BMI1 | 0.760 | 0.578 | |||
BMI2 | 0.769 | 0.591 | |||
BMI3 | 0.828 | 0.685 | |||
BMI4 | 0.791 | 0.626 | |||
BMI5 | 0.804 | 0.646 | |||
BMI6 | 0.775 | 0.601 | |||
BMI7 | 0.822 | 0.675 | |||
BMI8 | 0.784 | 0.615 | |||
BMI9 | 0.775 | 0.601 | |||
BMI10 | 0.840 | 0.706 | |||
BMI11 | 0.797 | 0.635 | |||
BMI12 | 0.800 | 0.640 | |||
BMI13 | 0.811 | 0.658 | |||
BMI14 | 0.741 | 0.548 | |||
BMI15 | 0.847 | 0.734 | |||
BMI16 | 0.866 | 0.750 |
Constructs | Mean | SD | DTsU | FA | AC | BMI | BMI | Firm Size | Years of Establishment |
---|---|---|---|---|---|---|---|---|---|
DTs | 4.011 | 0.996 | (0.825) | ||||||
FA | 4.067 | 0.959 | 0.775 ** | (0.820) | |||||
AC | 3.995 | 0.980 | 0.647 ** | 0.516 ** | (0.796) | ||||
MT | 4.044 | 0.995 | 0.533 ** | 0.675 ** | 0.608 ** | (0.817) | |||
BMI | 4.002 | 0.948 | 0.540 ** | 0.568 ** | 0.454 ** | 0.529 ** | (0.802) | ||
Firm size | 2.461 | 1.512 | −0.001 | 0.002 | 0.011 | −0.025 | −0.002 | - | |
Years of establishment | 2.544 | 1.403 | 0.028 | 0.001 | −0.026 | 0.014 | 0.041 | 0.068 | - |
Model Fit Metrics | Suggested Cutoffs | Results Obtained |
---|---|---|
Absolute fit | ||
CMIN/df | <3 | 2.678 |
RMSEA | <0.08 | 0.059 |
AGFI | >0.8 | 0.801 |
GFI | >0.8 | 0.828 |
Incremental fit | ||
IFI | >0.9 | 0.937 |
RFI | >0.9 | 0.900 |
CFI | >0.9 | 0.936 |
TLI | >0.9 | 0.929 |
NFI | >0.9 | 0.902 |
Parsimony fit | ||
PGFI | >0.5 | 0.714 |
PCFI | >0.5 | 0.845 |
PNFI | >0.5 | 0.814 |
Paths | β | S.E. | t-Values | p-Values | Confidence Intervals | R2 | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
H1: DTs → BMI | 0.106 | 0.019 | 5.471 | *** | 0.068 | 0.144 | 0.974 |
H2: DTs → FA | 0.916 | 0.018 | 50.736 | *** | 0.881 | 0.952 | 0.843 |
H3: FA → BMI | 0.593 | 0.024 | 24.457 | *** | 0.546 | 0.641 | 0.974 |
H4: DTs → AC | 0.936 | 0.023 | 40.638 | *** | 0.891 | 0.981 | 0.775 |
H5: AC → BMI | 0.302 | 0.019 | 15.849 | *** | 0.264 | 0.339 | 0.974 |
H6: DTs → FA → BMI | 0.544 | 0.035 | - | - | 0.475 | 0.614 | - |
H7: DTs → AC → BMI | 0.282 | 0.031 | - | - | 0.222 | 0.342 | - |
Total effect | 0.826 | 0.028 | - | - | 0.765 | 0.8762 | - |
Relationships | β | S.E. (t-Values) | p-Values | LL | UL |
---|---|---|---|---|---|
Step 1: Outcome = FA | |||||
CV: Firm size (number of employees) | −0.001 | 0.004 (0.302) | 0.763 | −0.010 | 0.007 |
CV: Years of establishment | −0.002 | 0.001 (−1.757) | 0.080 | −0.005 | 0.003 |
DTs | 0.129 | 0.017 (7.665) | 0.000 | 0.096 | 0.162 |
MT | 0.759 | 0.018 (42.308) | 0.000 | 0.734 | 0.806 |
H8: DTs × MT → FA | 0.099 | 0.048 (5.375) | 0.000 | 0.035 | 0.163 |
R2 | 0.977 *** | ||||
The condition direct effect of digital technology usage on FA at different levels of MT | |||||
MT(−1 SD) | 0.105 | 0.018 (5.684) | 0.000 | 0.069 | 0.142 |
MT(M) | 0.127 | 0.016 (7.601) | 0.000 | 0.095 | 0.161 |
MT(+1 SD) | 0.153 | 0.016 (9.473) | 0.000 | 0.121 | 0.184 |
Step 2: Outcome = BMI | |||||
CV: Firm size (number of employees) | 0.009 | 0.004 (2.002) | 0.045 | 0.002 | 0.017 |
CV: Years of establishment | −0.003 | 0.001 (2.292) | 0.022 | −0.005 | −0.004 |
DTs | 0.105 | 0.019 (5.618) | 0.000 | 0.068 | 0.142 |
FA | 0.919 | 0.051 (18.014) | 0.000 | 0.819 | 0.997 |
AC | 0.286 | 0.018 (15.711) | 0.000 | 0.250 | 0.322 |
MT | −0.303 | 0.041 (−7.385) | 0.000 | −0.384 | −0.222 |
H9: DTs × MT → BMI | 0.001 | 0.005 (0.127) | 0.127 | −0.009 | 0.011 |
R2 | 0.976 *** | ||||
Step 3: Outcome = AC | |||||
CV: Firm size (number of employees) | −0.008 | 0.012 (−0.625) | 0.532 | −0.311 | 0.016 |
CV: Years of establishment | −0.006 | 0.004 (−1.727) | 0.085 | −0.013 | 0.001 |
DTs | 0.350 | 0.047 (7.414) | 0.000 | 0.257 | 0.442 |
MT | 0.580 | 0.051 (11.365) | 0.000 | 0.480 | 0.681 |
H10: DTs × MT → AC | −0.017 | 0.013 (−1.240) | 0.216 | −0.043 | 0.009 |
R2 | 0.841 *** |
Paths | Ungrouped Data | Firm Age (Less Than 10) | Firm Size (Less Than 50) | DTs Usage (Less Than 3) |
Number | 479 | 309 | 325 | 260 |
DTs → BMI | 0.106 *** | 0.221 *** | 0.185 *** | 0.201 *** |
DTs → FA | 0.916 *** | 0.762 *** | 0.781 *** | 0.767 *** |
FA → BMI | 0.593 *** | 0.770 *** | 0.792 *** | 0.799 *** |
DTs → AC | 0.936 *** | 0.502 *** | 0.490 *** | 0.499 *** |
AC → BMI | 0.302 *** | 0.553 *** | 0.554 *** | 0.551 *** |
DTs → FA → BMI | 0.544 *** | 0.586 *** | 0.619 *** | 0.613 *** |
DTs → AC → BMI | 0.282 *** | 0.278 ** | 0.271 ** | 0.275 ** |
DTs × MT → FA | 0.099 *** | −0.018 n.s. | −0.061 n.s. | 0.034 † |
DTs × MT → BMI | 0.001 n.s. | 0.004 n.s. | 0.001 n.s. | 0.002 n.s. |
DTs × MT → AC | −0.017 n.s. | −0.007 n.s. | −0.008 n.s. | −0.008 n.s. |
Paths | Ungrouped Data | Firm Age (More Than 10) | Firm Size (More Than 50) | DTs Usage (More Than 3) |
Number | 479 | 170 | 154 | 219 |
DTs → BMI | 0.106 *** | 0.262 *** | 0.118 * | 0.220 *** |
DTs → FA | 0.916 *** | 0.683 *** | 0.822 *** | 0.754 *** |
FA → BMI | 0.593 *** | 0.832 *** | 0.682 *** | 0.891 *** |
DTs → AC | 0.936 *** | 0.547 *** | 0.470 *** | 0.489 *** |
AC → BMI | 0.302 *** | 0.467 *** | 0.568 *** | 0.574 *** |
DTs → FA → BMI | 0.544 *** | 0.568 *** | 0.560 *** | 0.671 *** |
DTs → AC → BMI | 0.282 *** | 0.255 ** | 0.266 ** | 0.281 *** |
DTs × MT → FA | 0.099 *** | 0.059 * | 0.037 * | −0.027 n.s. |
DTs × MT → BMI | 0.001 n.s. | −0.005 n.s. | 0.018 n.s. | −0.004 n.s. |
DTs × MT → AC | −0.017 n.s. | −0.023 * | −0.017 n.s. | −0.027 n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuseta, H.; Iyiola, K.; Aljuhmani, H.Y. Digital Technologies and Business Model Innovation in Turbulent Markets: Unlocking the Power of Agility and Absorptive Capacity. Sustainability 2025, 17, 5296. https://doi.org/10.3390/su17125296
Abuseta H, Iyiola K, Aljuhmani HY. Digital Technologies and Business Model Innovation in Turbulent Markets: Unlocking the Power of Agility and Absorptive Capacity. Sustainability. 2025; 17(12):5296. https://doi.org/10.3390/su17125296
Chicago/Turabian StyleAbuseta, Hatem, Kolawole Iyiola, and Hasan Yousef Aljuhmani. 2025. "Digital Technologies and Business Model Innovation in Turbulent Markets: Unlocking the Power of Agility and Absorptive Capacity" Sustainability 17, no. 12: 5296. https://doi.org/10.3390/su17125296
APA StyleAbuseta, H., Iyiola, K., & Aljuhmani, H. Y. (2025). Digital Technologies and Business Model Innovation in Turbulent Markets: Unlocking the Power of Agility and Absorptive Capacity. Sustainability, 17(12), 5296. https://doi.org/10.3390/su17125296