Eco-Friendly Gallic Acid-Tailored Binder with Synergistic Polarity Sites for High-Loading Lithium–Sulfur Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Synthesis of BG (7:3) Binder
2.3. Preparation of Electrodes
2.4. Characterization
2.5. Electrochemical Measurement
2.6. Preparation of Li2S6 Solution
3. Results
3.1. Structure of BG Binder
3.2. Electrochemical Performance
3.3. Absorbability of Binder to Polysulfide Lithium
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, R.; Yang, Y.; Huang, X.L.; Zhao, C.; Hu, B.; Huo, F.; Liu, H.K.; Sun, B.; Sun, Z.; Dou, S.X. Recent Advances in Multifunctional Binders for High Sulfur Loading Lithium-Sulfur Batteries. Adv. Funct. Mater. 2023, 34, 2307108. [Google Scholar] [CrossRef]
- Li, Z.; Wan, Z.; Lin, Z.; Zheng, M.; Zheng, J.; Qian, S.; Wang, Y.; Song, T.; Lin, Z.; Lu, J. A highly elastic and Li-ion conductive binder enables stable operation of silicon microparticle anodes in high-capacity and high-energy-density pouch cells. Energy Environ. Sci. 2025, 18, 2365–2380. [Google Scholar] [CrossRef]
- Tian, X.; Cheng, Y.; Zhou, Y.; Zhang, B.; Wang, G. Long-cycling and high-loading lithium–sulfur battery enabled by free-standing three-dimensional porous NiCo2O4 nanosheets. Appl. Energy 2023, 334, 120694. [Google Scholar] [CrossRef]
- Xi, G.; Zhang, Z.; Zhong, L.; Wang, S.; Xiao, M.; Han, D.; Huang, S.; Meng, Y. Novel Aliphatic polycarbonate binders for Solvent-free manufacturing High–loading cathodes of high-performance lithium-ion batteries. Chem. Eng. J. 2024, 485, 149983. [Google Scholar] [CrossRef]
- Jin, B.; Dolocan, A.; Liu, C.; Cui, Z.; Manthiram, A. Regulating Anode-Electrolyte Interphasial Reactions by Zwitterionic Binder Chemistry in Lithium-Ion Batteries with High-Nickel Layered Oxide Cathodes and Silicon-Graphite Anodes. Angew. Chem. Int. Ed. 2024, 63, e202408021. [Google Scholar]
- Lin, X.; Liu, X.; Tong, Y.; Zhou, X.; Li, J.; Song, J.; Feng, X.; Liu, R.; Shi, L.; Yu, A.; et al. A Poly(Ionic Liquid)-Based Polymer Binder for Endurable Lithium-Sulfur Batteries. Adv. Funct. Mater. 2024, 34, 2406985. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, J.; Jia, C.; Luo, Z.; Zhang, L. Water soluble polymer binder with good mechanical property and ionic conductivity for high performance lithium sulfur battery. Carbon 2024, 222, 118807. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Q.; Guan, X.; Liu, M.; Wang, F.; Li, R.; Xu, J. Ionically Conductive Self-Healing Polymer Binders with Poly(ether-thioureas) Segments for High-Performance Silicon Anodes in Lithium-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 4934–4944. [Google Scholar] [CrossRef]
- Mu, P.; Sun, C.; Gao, C.; Li, L.; Zhang, H.; Li, J.; Li, C.; Dong, S.; Cui, G. Dual Network Electrode Binder toward Practical Lithium–Sulfur Battery Applications. ACS Energy Lett. 2023, 8, 3733–3741. [Google Scholar] [CrossRef]
- Reddy, B.S.; Ahn, H.-J.; Ahn, J.-H.; Cho, G.-B.; Cho, K.-K. Cost-effective water-soluble three-dimensional cross-linked polymeric binder for high-performance lithium–sulfur batteries. J. Energy Storage 2023, 66, 107400. [Google Scholar] [CrossRef]
- Yu, Z.; Gao, T.; Le, T.; Wang, W.; Wang, L.; Yang, Y. A homemade self-healing material utilized as multi-functional binder for long-lifespan lithium–sulfur batteries. J. Mater. Sci. Mater. Electron. 2019, 30, 5536–5543. [Google Scholar] [CrossRef]
- Chen, J.; Geng, X.; Wang, C.; Hou, X.; Wang, H.; Rong, Q.; Sun, N.; Liu, W.; Hu, L.; Fu, X.; et al. An interweaving 3D ion-conductive network binder for high-loading and lean-electrolyte lithium–sulfur batteries. J. Mater. Chem. A 2024, 12, 11038–11048. [Google Scholar] [CrossRef]
- Gao, Q.; Shen, Z.; Guo, Z.; Li, M.; Wei, J.; He, J.; Zhao, Y. Metal Coordinated Polymer as Three-Dimensional Network Binder for High Sulfur Loading Cathode of Lithium–Sulfur Battery. Small 2023, 19, 2301244. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Hou, L.; Li, T.; Jiao, Y.; Wu, P. Regulating the Molecular Interactions in Polymer Binder for High-Performance Lithium-Sulfur Batteries. ACS Nano 2022, 16, 8449–8460. [Google Scholar] [CrossRef]
- Wang, W.; Hou, M.; Han, F.; Yu, D.; Liu, J.; Zhang, Q.; Yu, F.; Wang, L.; He, M. Three-in-one LaNiO3 functionalized separator boosting electrochemical stability and redox kinetics for high-performance Li-S battery. J. Energy Chem. 2023, 82, 581–591. [Google Scholar] [CrossRef]
- Guo, R.; Wang, D.; Ding, P.; Chen, Y.; Zhao, H. Dual Cross-Linked Multifunctional Binder for High-Performance Lithium–Sulfur Batteries. ACS Appl. Energy Mater. 2023, 6, 8590–8598. [Google Scholar] [CrossRef]
- Li, D.; Wang, W.; Liu, J.; He, M. Hierarchical lamellar single-walled carbon nanotube aerogel interlayers for stable lithium-sulfur batteries with high-sulfur-loading. Chem. Eng. J. 2023, 461, 142031. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, M.; Qian, Y.; Yang, Y.; Liu, J.; Lin, Z.; Yang, D.; Lu, J.; Qiu, X. Ultra-Low Dosage Lignin Binder for Practical Lithium-Sulfur Batteries. Adv. Energy Mater. 2023, 13, 2300092. [Google Scholar] [CrossRef]
- Zhao, M.; Peng, H.-J.; Li, B.-Q.; Huang, J.-Q. Kinetic Promoters for Sulfur Cathodes in Lithium-Sulfur Batteries. Acc. Chem. Res. 2024, 57, 545–557. [Google Scholar] [CrossRef]
- Jin, B.; Lai, T.; Manthiram, A. High-Mass-Loading Anode-Free Lithium-Sulfur Batteries Enabled by a Binary Binder with Fast Lithium-Ion Transport. ACS Energy Lett. 2023, 8, 3767–3774. [Google Scholar] [CrossRef]
- Guo, D.; Thomas, S.; El-Demellawi, J.K.; Shi, Z.; Zhao, Z.; Canlas, C.G.; Lei, Y.; Yin, J.; Zhang, Y.; Hedhili, M.N.; et al. Electrolyte engineering for thermally stable Li-S batteries operating from −20 °C to 100 °C. Energy Environ. Sci. 2024, 17, 8151–8161. [Google Scholar] [CrossRef]
- Guo, D.; Li, M.; Hedhili, M.N.; Tung, V.; Li, Y.; Lai, Z. Asymmetric cathode membrane with tunable positive charge networks for highly stable Li-S batteries. Energy Storage Mater. 2020, 25, 33–40. [Google Scholar] [CrossRef]
- Cao, Y.; Li, X.L.; Zheng, M.S.; Yang, M.P.; Yang, X.L.; Dong, Q.F. Ultra-high Rates and Reversible Capacity of Li-S Battery with a Nitrogen-doping Conductive Lewis Base Matrix. Electrochim. Acta 2016, 192, 467–474. [Google Scholar] [CrossRef]
- Jia, X.; Liu, B.; Liu, J.; Zhang, S.; Sun, Z.; He, X.; Li, H.; Wang, G.; Chang, H. Fabrication of NiO-carbon nanotube/sulfur composites for lithium-sulfur battery application. RSC Adv. 2021, 11, 10753–10759. [Google Scholar] [CrossRef]
- Fang, Y.; Yao, Y.; Yang, H.; Fan, Y.; Nomura, N.; Zhou, W.; Ni, D.; Li, X.; Jiang, W.; Qiu, P.; et al. Incorporating Cobalt Nanoparticles in Nitrogen-Doped Mesoporous Carbon Spheres through Composite Micelle Assembly for High-Performance Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2021, 13, 38604–38612. [Google Scholar] [CrossRef]
- Yang, F.; Huang, K. I, N Co-doped hierarchical micro/mesoporous carbon modified separator for enhanced electrochemical performances of lithium-sulfur batteries. Mater. Res. Express 2021, 8, 115002. [Google Scholar] [CrossRef]
- Yu, C.-H.; Yen, Y.-J.; Chung, S.-H. Nanoporosity of Carbon-Sulfur Nanocomposites toward the Lithium-Sulfur Battery Electrochemistry. Nanomaterials 2021, 11, 1518. [Google Scholar] [CrossRef]
- Zheng, F.; Zhang, Y.; Ding, G.; Xiao, Y.; Wei, L.; Su, J.; Wang, C.; Chen, Q.; Wang, H. Pentagon Defects Accelerating Polysulfides Conversion Enabled High-Performance Sodium-Sulfur Batteries. Adv. Funct. Mater. 2023, 34, 2310598. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; Wang, Y.; Chen, R.; Wu, Z.; Wang, S. LDHs derived nanoparticle-stacked metal nitride as interlayer for long-life lithium sulfur batteries. Sci. Bull. 2018, 63, 169–175. [Google Scholar] [CrossRef]
- Song, Y.-W.; Shen, L.; Yao, N.; Feng, S.; Cheng, Q.; Ma, J.; Chen, X.; Li, B.-Q.; Zhang, Q. Anion-Involved Solvation Structure of Lithium Polysulfides in Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2024, 63, e202400343. [Google Scholar] [CrossRef]
- Liu, Y.; An, Y.; Fang, C.; Ye, Y.; An, Y.; He, M.; Jia, Y.; Hong, X.; Liu, Y.; Gao, S.; et al. Surface-localized phase mediation accelerates quasi-solid-state reaction kinetics in sulfur batteries. Nat. Chem. 2025, 17, 614–623. [Google Scholar] [CrossRef]
- Lai, T.; Bhargav, A.; Manthiram, A. Lithium Tritelluride as an Electrolyte Additive for Stabilizing Lithium Deposition and Enhancing Sulfur Utilization in Anode-Free Lithium-Sulfur Batteries. Adv. Funct. Mater. 2023, 33, 2304568. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, T.; Wang, J.; Li, P.; Liu, J.; Chen, W.; Yang, Z.; Deng, Y.; Chang, J.; Yang, Y. A Low-Dosage Flame-Retardant Inorganic Polymer Binder for High-Energy-Density and High-Safety Lithium-Sulfur Batteries. Adv. Energy Mater. 2024, 14, 2401568. [Google Scholar] [CrossRef]
- Jin, B.; Yang, L.; Zhang, J.; Cai, Y.; Zhu, J.; Lu, J.; Hou, Y.; He, Q.; Xing, H.; Zhan, X.; et al. Bioinspired Binders Actively Controlling Ion Migration and Accommodating Volume Change in High Sulfur Loading Lithium-Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1902938. [Google Scholar] [CrossRef]
- Wan, Z.; Li, S.; Tang, W.; Dai, C.; Yang, J.; Lin, Z.; Qiu, J.; Ling, M.; Lin, Z.; Li, Z. Exploring the optimal molecular weight of polyacrylic acid binder for silicon nanoparticle anodes in lithium-ion batteries. J. Energy Chem. 2025, 105, 76–86. [Google Scholar] [CrossRef]
- Jin, B.; Wang, D.; Zhu, J.; Guo, H.; Hou, Y.; Gao, X.; Lu, J.; Zhan, X.; He, X.; Zhang, Q. A Self-Healable Polyelectrolyte Binder for Highly Stabilized Sulfur, Silicon, and Silicon Oxides Electrodes. Adv. Funct. Mater. 2021, 31, 2104433. [Google Scholar] [CrossRef]
- Wu, Z.; Ma, Y.; Li, S.; Que, L.; Chen, H.; Hao, F.; Tao, X.; Xing, H.; Ye, J.; Qian, D.; et al. Damage-Tolerant and Self–Repairing Web–Like Borate Type Binder Enable Stable Operation of Efficient Si-Based Anodes. Small 2024, 20, 202401345. [Google Scholar] [CrossRef]
- He, Y.; Jing, X.; Lai, T.; Jiang, D.; Wan, C.; Postnikov, P.S.; Guselnikova, O.; Xu, L.; He, X.; Yamauchi, Y.; et al. Amphipathic emulsion binder for enhanced performance of lithium-sulfur batteries. J. Mater. Chem. A 2024, 12, 12681–12690. [Google Scholar] [CrossRef]
- Wang, W.; Hua, L.; Zhang, Y.; Wang, G.; Li, C. A Conductive Binder Based on Mesoscopic Interpenetration with Polysulfides Capturing Skeleton and Redox Intermediates Network for Lithium Sulfur Batteries. Angew. Chem. Int. Ed. 2024, 63, e202405920. [Google Scholar] [CrossRef]
- Wen, Y.; Lin, X.; Sun, X.; Wang, S.; Wang, J.; Liu, H.; Xu, X. A biomass-rich, self-healable, and high-adhesive polymer binder for advanced lithium-sulfur batteries. J. Colloid Interface Sci. 2024, 660, 647–656. [Google Scholar] [CrossRef]
- Liu, M.; Chen, P.; Pan, X.; Pan, S.; Zhang, X.; Zhou, Y.; Bi, M.; Sun, J.; Yang, S.; Vasiliev, A.L.; et al. Synergism of Flame-Retardant, Self-Healing, High-Conductive and Polar to a Multi-Functional Binder for Lithium-Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2205031. [Google Scholar] [CrossRef]
- Van der Heyden, K.; Babooram, K.; Ahmed, M.; Narain, R. Protein encapsulation and release from degradable sugar based hydrogels. Eur. Polym. J 2009, 45, 1689–1697. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, H.; Liu, Y.; Zou, X.; Shi, J.; Zhao, Y.; Ye, Y.; Yu, Y.; Guo, J. Preparation of calcium alginate/polyethylene glycol acrylate double network fiber with excellent properties by dynamic molding method. Carbohydr. Polym. 2019, 226, 115277. [Google Scholar] [CrossRef]
- Şarkaya, K.; Yildirim, M.; Alli, A. One-step preparation of poly(NIPAM-pyrrole) electroconductive composite hydrogel and its dielectric properties. J. Appl. Polym. Sci. 2021, 138, 50527. [Google Scholar] [CrossRef]
- Yi, H.; Lan, T.; Yang, Y.; Zeng, H.; Zhang, T.; Tang, T.; Wang, C.; Deng, Y. A robust aqueous-processable polymer binder for long-life, high-performance lithium sulfur battery. Energy Storage Mater. 2019, 21, 61–68. [Google Scholar] [CrossRef]
- Chen, F.; Li, H.; Chen, T.; Chen, Z.; Zhang, Y.; Fan, X.; Zhan, L.; Ma, L.; Zhou, X. Constructing crosslinked lithium polyacrylate/polyvinyl alcohol complex binder for high performance sulfur cathode in lithium-sulfur batteries. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125870. [Google Scholar] [CrossRef]
- Lin, X.; Wen, Y.; Ma, D.; Li, J.; Zhu, Z.; Wang, S.; Liu, H.; Xu, X.; Huang, X. A zwitterionic polymer binder Integrating multiple dynamic interactions enables High-Performance Lithium-Sulfur batteries. Chem. Eng. J. 2025, 512, 162808. [Google Scholar] [CrossRef]
- Mu, P.; Zhang, S.; Zhang, H.; Li, J.; Liu, Z.; Dong, S.; Cui, G. A Spidroin-Inspired Hierarchical-Structure Binder Achieves Highly Integrated Silicon-Based Electrodes. Adv. Mater. 2023, 35, 2303312. [Google Scholar] [CrossRef]
Binder | Cathode Material | Sulfur Loading (mg cm−2) | Electrochemical Performance | Ref. |
---|---|---|---|---|
PIL | Super/S | 3.6 | 686.7 mAh g−1 at 0.1 C after 100 cycles | [6] |
HMM/PAA | Ketjen black/S | 4.2 | 813.6 mAh g−1 at 0.1 C after 90 cycles | [7] |
PVA-BA0.07 | Acetylene–carbon black/S | 3.5 | 947 mAh g−1 at 0.2 C after 300 cycles | [10] |
PNAVS | Ketjen black/S | 1.0 | 647.8 mAh g−1 at 1 C after 500 cycles | [14] |
CPS | Ketjen black/S | 8.5 | 627 mAh g−1 at 0.5 C after 100 cycles | [16] |
CSEG | Ketjen black/S | 4.1 | 641.4 mAh g−1 at 0.2 C after 100 cycles | [45] |
LiPAA/PVA | Carbon/S | 1.2 | 654.2 mAh g−1 at 0.5 C after 200 cycles | [46] |
PLM | Ketjen black/S | 1.0 | 741.1 mAh g−1 at 1 C after 500 cycles | [47] |
BG(7:3) | Ketjen black/S | 3.0 | 813.2 mAh g−1 at 0.1 C after 100 cycles | This work |
BG(7:3) | Ketjen black/S | 1.2 | 928.9 mAh g−1 at 0.5 C after 150 cycles | This work |
Binders | |||
---|---|---|---|
BG (7:3) | 1.60 × 10−7 | 3.13 × 10−8 | 9.74 × 10−8 |
BTU | 8.68 × 10−8 | 1.88 × 10−8 | 6.81 × 10−8 |
PVDF | 4.72 × 10−8 | 1.55 × 10−8 | 2.36 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, X.; Liu, S.; Wang, J.; Wan, C.; Zhu, J.; He, X.; Jin, B. Eco-Friendly Gallic Acid-Tailored Binder with Synergistic Polarity Sites for High-Loading Lithium–Sulfur Batteries. Sustainability 2025, 17, 5240. https://doi.org/10.3390/su17125240
Jing X, Liu S, Wang J, Wan C, Zhu J, He X, Jin B. Eco-Friendly Gallic Acid-Tailored Binder with Synergistic Polarity Sites for High-Loading Lithium–Sulfur Batteries. Sustainability. 2025; 17(12):5240. https://doi.org/10.3390/su17125240
Chicago/Turabian StyleJing, Xulong, Shuyu Liu, Jiapei Wang, Chao Wan, Juan Zhu, Xiaojun He, and Biyu Jin. 2025. "Eco-Friendly Gallic Acid-Tailored Binder with Synergistic Polarity Sites for High-Loading Lithium–Sulfur Batteries" Sustainability 17, no. 12: 5240. https://doi.org/10.3390/su17125240
APA StyleJing, X., Liu, S., Wang, J., Wan, C., Zhu, J., He, X., & Jin, B. (2025). Eco-Friendly Gallic Acid-Tailored Binder with Synergistic Polarity Sites for High-Loading Lithium–Sulfur Batteries. Sustainability, 17(12), 5240. https://doi.org/10.3390/su17125240