The Effects of Increasing Ambient Temperature and Sea Surface Temperature Due to Global Warming on Combined Cycle Power Plant
Abstract
:1. Introduction
2. Methodology
2.1. System Description
2.2. Regression Methods
2.2.1. Multiple Linear Regression (MLR)
2.2.2. Trees Regression
2.2.3. Support Vector Machines (SVMs)
2.2.4. Kernel Approximation Regression
2.2.5. Ensembles of Trees
2.3. Artificial Neural Networks (ANNs)
2.4. Hybrid Model (LightGBM + DNN)
2.5. Prediction Accuracy
2.5.1. Coefficient of Determination (R2)
2.5.2. Mean Absolute Error (MAE)
2.5.3. Mean Absolute Percentage Error (MAPE)
2.5.4. Mean Square Error (MSE)
2.5.5. Root Mean Square Error (RMSE)
3. Results and Discussion
3.1. Outliers Detection
3.2. Variable Statistics
3.3. Effect of Condenser Vacuum on Performance and Analysis of Related Parameters
3.4. Analysis of Related Parameters for ST Power Output and PE
3.5. The Equations Obtained for V, ST Power Output, and PE Using MLR Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
AP | Atmospheric Pressure |
AT | Ambient Temperature |
BPNN | Backpropagation Neural Network |
CCPP | Combined Cycle Power Plant |
DNN | Deep Neural Network |
FFNN | Feed Forward Neural Network |
GBM | Gradient Boosting Machine |
HP | High Pressure |
HRSG | Heat Recovery Steam Generator |
IP | Intermediate Pressure |
IPCC | Intergovernmental Panel on Climate Change |
LP | Low Pressure |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
MGM | Turkish State Meteorological Service |
ML | Machine Learning |
MLP | Multilayer Perceptron |
MLR | Multiple Linear Regression |
MSE | Mean Square Error |
PE | Electrical Power Output |
R2 | Coefficient of Determination |
RH | Relative Humidity |
RMSE | Root Mean Square Error |
SST | Sea Surface Temperature |
ST Power Output | Steam Turbine Power Output |
SVM | Support Vector Machine |
V | Vacuum in the Condenser |
References
- Pörtner, H.O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. IPPC 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sith Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Adeel, M.; Wang, B.; Ke, J.; Mvitu, I.M. The Nonlinear Dynamics of CO2 Emissions in Pakistan: A Comprehensive Analysis of Transportation, Electricity Consumption, and Foreign Direct Investment. Sustainability 2025, 17, 189. [Google Scholar] [CrossRef]
- MGM. 2024 Climate Assessment Report; Turkish State Meteorological Service: Ankara, Turkey, 2024.
- MGM. Official Climate Statistics. 2025. Available online: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=K (accessed on 15 March 2025).
- Tian, L.; Zhang, Z.; He, Z.; Yuan, C.; Xie, Y.; Zhang, K.; Jing, R. Predicting Energy-Based CO2 Emissions in the United States Using Machine Learning: A Path Toward Mitigating Climate Change. Sustainability 2025, 17, 2843. [Google Scholar] [CrossRef]
- Ersayin, E.; Ozgener, L. Performance analysis of combined cycle power plants: A case study. Renew. Sustain. Energy Rev. 2015, 43, 832–842. [Google Scholar] [CrossRef]
- Liang, Y.; Lei, T.; Zhu, Y.; Ye, K.; Wu, J.; Dong, M.; Lu, J. Energy consumption optimization of CO2 capture and compression in natural gas combined cycle power plant through configuration modification and process integration. Appl. Therm. Eng. 2024, 255, 124019. [Google Scholar] [CrossRef]
- Lu, Y.; Xiang, Y.; Chen, B.; Zhu, H.; Yue, J.; Jin, Y.; He, P.; Zhao, Y.; Zhu, Y.; Si, J.; et al. Steam turbine power prediction based on encode-decoder framework guided by the condenser vacuum degree. PLoS ONE 2022, 17, e0275998. [Google Scholar] [CrossRef]
- Zhao, Y.; Foong, L.K. Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm. Measurement 2022, 198, 111405. [Google Scholar] [CrossRef]
- Elfaki, E.A.; Ahmed, A.H. Prediction of electrical output power of combined cycle power plant using regression ANN model. J. Power Energy Eng. 2018, 6, 17. [Google Scholar] [CrossRef]
- Kaya, H.; Tüfekci, P.; Gürgen, F.S. Local and global learning methods for predicting power of a combined gas & steam turbine. In Proceedings of the International Conference on Emerging Trends in Computer and Electronics Engineering ICETCEE, Dubai, United Arab Emirates, 24–25 March 2012; pp. 13–18. [Google Scholar]
- Santarisi, N.S.; Faouri, S.S. Prediction of Combined Cycle Power Plant Electrical Output Power Using Machine Learning Regression Algorithms. East.-Eur. J. Enterp. Technol. 2021, 114, 16. [Google Scholar] [CrossRef]
- Tüfekci, P. Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Int. J. Electr. Power Energy Syst. 2014, 60, 126–140. [Google Scholar] [CrossRef]
- Asghar, A.; Ratlamwala, T.A.H.; Kamal, K.; Alkahtani, M.; Mohammad, E.; Mathavan, S. Sustainable operations of a combined cycle power plant using artificial intelligence based power prediction. Heliyon 2023, 9, e19562. [Google Scholar] [CrossRef]
- Hundi, P.; Shahsavari, R. Comparative studies among machine learning models for performance estimation and health monitoring of thermal power plants. Appl. Energy 2020, 265, 114775. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Yang, J.; Zheng, X. Prediction of electricity load generated by combined cycle power plants using integration of machine learning methods and HGS algorithm. Comput. Electr. Eng. 2024, 120, 109644. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, X.; Li, W.; Fan, R.; Zi, P.; Wang, X. Application of deep learning modelling of the optimal operation conditions of auxiliary equipment of combined cycle gas turbine power station. Energy 2023, 285, 129331. [Google Scholar] [CrossRef]
- Song, Y.; Park, J.; Suh, M.S.; Kim, C. Prediction of Full-Load Electrical Power Output of Combined Cycle Power Plant Using a Super Learner Ensemble. Appl. Sci. 2024, 14, 11638. [Google Scholar] [CrossRef]
- Guvenir, H.A.; Uysal, I. Regression on feature projections. Knowl.-Based Syst. 2000, 13, 207–214. [Google Scholar] [CrossRef]
- Chukhrova, N.; Johannssen, A. Fuzzy regression analysis: Systematic review and bibliography. Appl. Soft Comput. 2019, 84, 105708. [Google Scholar] [CrossRef]
- Hesamian, G.; Torkian, F.; Johannssen, A.; Chukhrova, N. A learning system-based soft multiple linear regression model. Intell. Syst. Appl. 2024, 22, 200378. [Google Scholar] [CrossRef]
- Kumari, K.; Yadav, S. Linear regression analysis study. J. Pract. Cardiovasc. Sci. 2018, 4, 33–36. [Google Scholar] [CrossRef]
- Hope, T.M. Linear regression. In Machine Learning; Academic Press: Cambridge, MA, USA, 2020; pp. 67–81. [Google Scholar]
- Maulud, D.; Abdulazeez, A.M. A review on linear regression comprehensive in machine learning. J. Appl. Sci. Technol. Trends 2020, 1, 140–147. [Google Scholar] [CrossRef]
- Kaytez, F. A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption. Energy 2020, 197, 117200. [Google Scholar] [CrossRef]
- Loh, W.Y. Classification and regression trees. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Jayasinghe, J.; Ekanayake, P.; Panahatipola, O.; Madhushani, C.I.; Rathnayake, U. Forecasting the power generation at renewable power plants in Sri Lanka using regression trees. Results Eng. 2024, 22, 102111. [Google Scholar] [CrossRef]
- Açıkgenç Ulaş, M. Evaluation of self-compacting concrete behavior by using Gaussian process regression and support vector machines via experimental data validation. Fırat Üniversitesi Mühendislik Bilim. Derg. 2023, 36, 889–898. [Google Scholar]
- Tang, W. Application of support vector machine system introducing multiple submodels in data mining. Syst. Soft Comput. 2024, 6, 200096. [Google Scholar] [CrossRef]
- Lauer, F.; Bloch, G. Incorporating prior knowledge in support vector machines for classification: A review. Neurocomputing 2008, 71, 1578–1594. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Ma, G.; Zhu, Y. Comparison of parameter optimization methods for a runoff forecast model based on a support vector machine. Phys. Chem. Earth Parts A B C 2024, 135, 103653. [Google Scholar] [CrossRef]
- Cortes, C.; Mohri, M.; Talwalkar, A. On the impact of kernel approximation on learning accuracy. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 113–120. [Google Scholar]
- Takeda, H.; Farsiu, S.; Milanfar, P. Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 2007, 16, 349–366. [Google Scholar] [CrossRef]
- Kocev, D.; Vens, C.; Struyf, J.; Džeroski, S. Tree ensembles for predicting structured outputs. Pattern Recognit. 2013, 46, 817–833. [Google Scholar] [CrossRef]
- Zhou, Z.H. Ensemble Methods: Foundations and Algorithms; CRC Press: Boca Raton, FL, USA, 2025. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Salmasi, M.; Mahdavi-Nasab, H.; Pourghassem, H. Comparison of multilayer perceptron and generalized regression neural networks in active noise control. In Proceedings of the 2011 Third Pacific-Asia Conference on Circuits, Communications and System (PACCS), Wuhan, China, 17–18 July 2011; pp. 1–4. [Google Scholar]
- Gautam, S.K.; Om, H. Computational neural network regression model for host based intrusion detection system. Perspect. Sci. 2016, 8, 93–95. [Google Scholar] [CrossRef]
- Patterson, J.; Gibson, A. Deep Learning: A Practitioner’s Approach; O’Reilly Media, Inc.: Newton, MA, USA, 2017. [Google Scholar]
- Sahin, G.; Isik, G.; van Sark, W.G. Predictive modeling of PV solar power plant efficiency considering weather conditions: A comparative analysis of artificial neural networks and multiple linear regression. Energy Rep. 2023, 10, 2837–2849. [Google Scholar] [CrossRef]
- Apicella, A.; Donnarumma, F.; Isgrò, F.; Prevete, R. A survey on modern trainable activation functions. Neural Netw. 2021, 138, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, B.F.; Rocha, A.M.A.; Pereira, A.I. Hybrid approaches to optimization and machine learning methods: A systematic literature review. Mach. Learn. 2024, 113, 4055–4097. [Google Scholar] [CrossRef]
- Anđelić, N.; Lorencin, I.; Mrzljak, V.; Car, Z. On the application of symbolic regression in the energy sector: Estimation of combined cycle power plant electrical power output using genetic programming algorithm. Eng. Appl. Artif. Intell. 2024, 133, 108213. [Google Scholar] [CrossRef]
- Zhang, D. A coefficient of determination for generalized linear models. Am. Stat. 2017, 71, 310–316. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Bickel, P.J.; Doksum, K.A. Mathematical Statistics: Basic Ideas and Selected Topics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015; Volumes I–II. [Google Scholar]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model development 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Endüstrilab. Standard Metreküp (SM3) ve Normal Metreküp (NM3) Nedir? 4 January 2023. Available online: https://endustrilab.com/standard-metrekup-sm3-ve-normal-metrekup-nm3-nedir/ (accessed on 15 March 2025).
- Republic of Türkiye Ministry of Energy and Natural Resources (ETKB). Turkey Electricity Generation and Electricity Consumption Point Emission Factors Information Form; Republic of Türkiye Ministry of Energy and Natural Resources: Ankara, Turkey, 2024.
- Energy Institute. Statistical Review of World Energy. 2023. Available online: https://www.energyinst.org/statistical-review (accessed on 15 March 2025).
- Global Energy Monitor. Global Oil & Gas Plant Tracker Dashboard. Available online: https://globalenergymonitor.org/projects/global-oil-gas-plant-tracker/dashboard/ (accessed on 15 March 2025).
Min | Max | Mean | Std. Deviation | |
---|---|---|---|---|
PE | 834.79 | 949.94 | 888.81 | 27.78 |
ST Power Output | 296.10 | 321.85 | 309.67 | 4.82 |
SST | 8.36 | 25.28 | 17.26 | 3.27 |
AT | 4.94 | 34.60 | 21.01 | 6.23 |
RH | 25.31 | 100.00 | 72.33 | 12.36 |
V | 0.025 | 0.060 | 0.040 | 0.006 |
AP | 1003.00 | 1016.00 | 1009.11 | 3.28 |
AT | SST | ST Power Output | |
---|---|---|---|
V | 0.366 | 0.972 | −0.739 |
AT | 0.468 | −0.791 | |
SST | −0.788 |
AT | SST | V | RH | |
ST Power Output | −0.791 | −0.788 | −0.739 | 0.262 |
AT | 0.468 | 0.366 | −0.457 | |
SST | 0.972 | −0.091 | ||
V | −0.46 |
AT | SST | AP | V | RH | |
---|---|---|---|---|---|
PE | −0.985 | −0.522 | 0.487 | −0.426 | 0.423 |
AT | 0.468 | −0.417 | 0.366 | −0.457 | |
SST | −0.065 | 0.972 | −0.091 | ||
AP | −0.009 | 0.103 | |||
V | −0.046 |
Methods | Model Type | RMSE | MSE | R2 | MAE | MAPE (%) |
---|---|---|---|---|---|---|
Multiple Linear Regression | Linear | 0.001309 | 0.000001714 | 0.9570 | 0.00096 | 2.4509 |
Regression Trees | Fine Tree | 0.000977 | 0.000000954 | 0.9761 | 0.00059 | 1.5178 |
Support Vector Machines | Cubic SVM | 0.001073 | 0.000001152 | 0.9711 | 0.00068 | 1.7749 |
Ensembles of Trees | Bagged Trees | 0.000843 | 0.000000711 | 0.9822 | 0.00053 | 1.3589 |
Artificial Neural Network | Multilayer Perceptron | 0.001104 | 0.000001218 | 0.9690 | 0.00074 | 1.9407 |
Kernel Approximation | Least Squares Regression Kernel | 0.001043 | 0.000001088 | 0.9727 | 0.0007 | 1.8185 |
LightGBM + DNN | Hybrid Model | 0.000875 | 0.000000764 | 0.9806 | 0.00051 | 1.322 |
Methods | Model Type | RMSE | MSE | R2 | MAE | MAPE (%) |
---|---|---|---|---|---|---|
Multiple Linear Regression | Linear | 1.8001 | 3.2403 | 0.8603 | 1.3983 | 0.4526 |
Regression Trees | Fine Tree | 1.7733 | 3.1445 | 0.8644 | 1.2626 | 0.4091 |
Support Vector Machines | Cubic SVM | 1.6727 | 2.7978 | 0.8794 | 1.2667 | 0.4104 |
Ensembles of Trees | Bagged Trees | 1.4873 | 2.2119 | 0.9046 | 1.0814 | 0.3504 |
Artificial Neural Network | Multilayer Perceptron | 1.7172 | 2.9488 | 0.8734 | 1.3352 | 0.4323 |
Kernel Approximation | Least Squares Regression Kernel | 1.6523 | 2.7300 | 0.8823 | 1.2737 | 0.4125 |
LightGBM + DNN | Hybrid Model | 1.5032 | 2.2597 | 0.898 | 1.049 | 0.3399 |
Methods | Model Type | RMSE | MSE | R2 | MAE | MAPE (%) |
---|---|---|---|---|---|---|
Multiple Linear Regression | Linear | 3.4291 | 11.7584 | 0.9848 | 2.6782 | 0.30108 |
Regression Trees | Fine Tree | 3.6187 | 13.0952 | 0.983 | 2.7442 | 0.30943 |
Support Vector Machines | Cubic SVM | 3.2068 | 10.2834 | 0.9867 | 2.5026 | 0.28162 |
Ensembles of Trees | Bagged Trees | 3.0205 | 9.1234 | 0.9882 | 2.3072 | 0.26011 |
Artificial Neural Network | Multilayer Perceptron | 3.4365 | 11.8101 | 0.9846 | 2.6731 | 0.30088 |
Kernel Approximation | Least Squares Regression Kernel | 3.3206 | 11.0265 | 0.9857 | 2.5869 | 0.29112 |
LightGBM + DNN | Hybrid Model | 2.9005 | 8.4131 | 0.9884 | 2.1942 | 0.2477 |
Target Variables | MLR | ANN (MLP) | Best-Performance (Hybrid (LightGBM + DNN)) |
---|---|---|---|
V | 0.0009604 | 0.0007304 | 0.00051 |
ST Power Output | 1.3983 | 1.2839 | 1.0490 |
PE | 2.6782 | 2.5780 | 2.1942 |
Gas Components and Ratios | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Methane | Ethane | Propan | I-Butane | N-Butane | I-Pentane | N-Pentane | Hexane | N2 | CO2 | % |
95.129683 | 4.295923 | 0.256057 | 0.039296 | 0.007395 | 0.007390 | 0.003412 | 0.003776 | 0.259979 | 0.013644 | 100.0 |
Gas Technical Specifications and Greenhouse Emissions | ||||||||||
Lower Heating Value, LHV Kcal/sm3 | Density, ρ (kg/m3) | Net Calorific Value, NCV (TJ/Gg) | Carbon Content (%) | Consumption (tonne) | Consumption (sm3) (Examined Power Plant Value/ Average Value) | Consumption (Nm3) (Examined Power Plant Value/ Average Value) | EMISSIONS (tCO2e) (Examined Power Plant Value/ Average Value) | |||
8437 | 0.712027 | 49.61 | 0.748023 | 3186 3409 * | 4,475,380 4,788,120 * | 4,242,408 4,538,868 * | 8733 9344 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslan, A.; Büyükköse, A.O. The Effects of Increasing Ambient Temperature and Sea Surface Temperature Due to Global Warming on Combined Cycle Power Plant. Sustainability 2025, 17, 4605. https://doi.org/10.3390/su17104605
Aslan A, Büyükköse AO. The Effects of Increasing Ambient Temperature and Sea Surface Temperature Due to Global Warming on Combined Cycle Power Plant. Sustainability. 2025; 17(10):4605. https://doi.org/10.3390/su17104605
Chicago/Turabian StyleAslan, Asiye, and Ali Osman Büyükköse. 2025. "The Effects of Increasing Ambient Temperature and Sea Surface Temperature Due to Global Warming on Combined Cycle Power Plant" Sustainability 17, no. 10: 4605. https://doi.org/10.3390/su17104605
APA StyleAslan, A., & Büyükköse, A. O. (2025). The Effects of Increasing Ambient Temperature and Sea Surface Temperature Due to Global Warming on Combined Cycle Power Plant. Sustainability, 17(10), 4605. https://doi.org/10.3390/su17104605