Progressing Towards Sustainability: Power-Sharing Control Topologies for Microgrids with Parallel-Connected Inverters for Grid Stability
Abstract
:1. Introduction
2. Droop Control
3. Linear Droop Control
3.1. Conventional Droop Control
3.2. Modified Droop Control
3.2.1. P-V, Q-f, and Q-V Droop Controls
3.2.2. Angle Droop Control
3.2.3. Compensation Droop Control
- (a)
- Droop control through gain scheduling
- (b)
- Droop control through signal injection
- (c)
- Droop control through virtual inductor
- (d)
- Droop control with synchronization loop
- (e)
- Droop control with virtual impedance loop
- (f)
- Droop control with harmonic power sharing and resistive virtual loop
- (g)
- Droop control with additional adaptive virtual impedance loop
3.2.4. Virtual Flux Droop Control
3.2.5. Voltage–Current Droop
4. Non-Linear Droop Control
4.1. Non-Linear Load Sharing with Current Harmonics
4.2. Non-Linear Load Sharing with Circulating Current
5. Active and Reactive Power-Sharing Control with Different Considerations
5.1. Active and Reactive Power Control for Mismatched Feeder Impedances
5.2. Active and Reactive Power Control with Unbalanced Loads
6. Conclusions
- A hybrid control mechanism, which enables a control system operating in islanded mode to shift to the grid-connected mode, could be developed. However, it needs to be explored under the non-linear dynamic load condition. The capability of a control system to perform accurate power sharing under such conditions needs to be inspected.
- Optimized tracking of power angle errors in a system with parallel-connected inverters, as well as improvement techniques, should be taken into account in power droop-based control techniques.
- A controller’s performance in terms of stability, harmonic distortion, and current transients under a non-linear load condition through the utilization of a hybrid control scheme of parallel-connected inverters in the grid-connected mode needs more attention from researchers.
- Power-sharing accuracy and the sensitivity of a system integrating parallel inverters under a non-linear load condition, and the response time issue by using algorithm-based techniques, should be explored.
- An efficient and simple control technique for circulating current suspension to improve system stability and flexibility can be explored.
- The performance of control strategies for different RESs and DG failures should be taken into account.
- A flawless, lossless, low-cost, efficient, wireless-network-based, and autonomous control technique for the application of integrated RESs with proper power sharing among inverters should be developed in the future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasir, T.; Bukhari, S.S.H.; Raza, S.; Munir, H.M.; Abrar, M.; Muqeet, H.A.U.; Bhatti, K.L.; Ro, J.S.; Masroor, R. Recent Challenges and Methodologies in Smart Grid Demand Side Management: State-of-the-Art Literature Review. Math. Probl. Eng. 2021, 2021, 5821301. [Google Scholar] [CrossRef]
- Assad, U.; Hassan, M.A.S.; Farooq, U.; Kabir, A.; Khan, M.Z.; Bukhari, S.S.H.; Jaffri, Z.U.A.; Oláh, J.; Popp, J. Smartgrid, Demand Response and Optimization: A Critical Review of Computational Methods. Energies 2022, 15, 2003. [Google Scholar] [CrossRef]
- Shahgholian, G. A brief review on microgrids: Operation, applications, modeling, and control. Int. Trans. Electr. Energy Syst. 2021, 31, e12885. [Google Scholar] [CrossRef]
- Fani, B.; Shahgholian, G.; Haes Alhelou, H.; Siano, P. Inverter-based islanded microgrid: A review on technologies and control. e-Prime-Adv. Electr. Eng. Electron. Energy 2022, 2, 100068. [Google Scholar] [CrossRef]
- Hernández-Mayoral, E.; Madrigal-Martínez, M.; Mina-Antonio, J.D.; Iracheta-Cortez, R.; Enríquez-Santiago, J.A.; Rodríguez-Rivera, O.; Martínez-Reyes, G.; Mendoza-Santos, E. A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources. Sustainability 2023, 15, 9847. [Google Scholar] [CrossRef]
- Saeed, M.H.; Fangzong, W.; Kalwar, B.A.; Iqbal, S. A Review on Microgrids’ Challenges Perspectives. IEEE Access 2021, 9, 166502–166517. [Google Scholar] [CrossRef]
- Altaf, M.W.; Arif, M.T.; Islam, S.N.; Haque, M.E. Microgrid Protection Challenges and Mitigation Approaches—A Comprehensive Review. IEEE Access 2022, 10, 38895–38922. [Google Scholar] [CrossRef]
- Hmad, J.; Houari, A.; Bouzid, A.E.M.; Saim, A.; Trabelsi, H. A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids. Energies 2023, 16, 5062. [Google Scholar] [CrossRef]
- Ishaq, S.; Khan, I.; Rahman, S.; Hussain, T.; Iqbal, A.; Elavarasan, R.M. A review on recent developments in control and optimization of micro grids. Energy Rep. 2022, 8, 4085–4103. [Google Scholar] [CrossRef]
- Khalid, A.; Stevenson, A.; Sarwat, A.I. Overview of Technical Specifications for Grid-Connected Microgrid Battery Energy Storage Systems. IEEE Access 2021, 9, 163554–163593. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; Liu, H.; Zhang, R.; Guo, Q.; Cai, H.; Huang, L. A unified distributed hierarchal control of a microgrid operating in islanded and grid connected modes. IET Renew. Power Gener. 2023, 17, 2489–2511. [Google Scholar] [CrossRef]
- Jayachandran, M.; Reddy, C.R.; Padmanaban, S.; Milyani, A.H. Operational planning steps in smart electric power delivery system. Sci. Rep. 2021, 11, 17250. [Google Scholar] [CrossRef]
- Alhasnawi, B.N.; Jasim, B.H.; Sedhom, B.E.; Hossain, E.; Guerrero, J.M. A new decentralized control strategy of microgrids in the internet of energy paradigm. Energies 2021, 14, 2183. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, H.; Xu, Y.; Han, R.; Yi, Z.; Wang, L.; Guerrero, J.M. Distributed Power Sharing Control for Islanded Single-/Three-Phase Microgrids with Admissible Voltage and Energy Storage Constraints. IEEE Trans. Smart Grid 2021, 12, 2760–2775. [Google Scholar] [CrossRef]
- Rani, M.D.; Prakash, P.S.; Rao, M.V.G. Power Quality Assessment in Grid Connected Mode Hybrid Microgrid with Various Loads. J. Theor. Appl. Inf. Technol. 2021, 99, 4241–4252. [Google Scholar]
- Wang, R.; Feng, W.; Xue, H.; Gerber, D.; Li, Y.; Hao, B.; Wang, Y. Simulation and power quality analysis of a Loose-Coupled bipolar DC microgrid in an office building. Appl. Energy 2021, 303, 117606. [Google Scholar] [CrossRef]
- Zolfaghari, M.; Gharehpetian, G.B.; Shafie-khah, M.; Catalão, J.P.S. Comprehensive review on the strategies for controlling the interconnection of AC and DC microgrids. Int. J. Electr. Power Energy Syst. 2022, 136, 107742. [Google Scholar] [CrossRef]
- Chand, A.A.; Prasad, K.A.; Islam, F.R.; Mamun, K.A.; Kumar, N.M.; Prakash, K. An Overview of Various Control and Stability Techniques for Power-Sharing in Microgrids; Springer: Singapore, 2021; Volume 691, ISBN 9789811575105. [Google Scholar]
- Hamanah, W.M.; Hossain, M.I.; Shafiullah, M.; Abido, M.A. AC Microgrid Protection Schemes: A Comprehensive Review. IEEE Access 2023, 11, 76842–76868. [Google Scholar] [CrossRef]
- Alfergani, A.; Alfaitori, K.A.; Khalil, A.; Buaossa, N. Control strategies in AC microgrid: A brief review. In Proceedings of the 2018 9th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 20–22 March 2018; pp. 1–6. [Google Scholar] [CrossRef]
- De Física, D.; De Física, P.; Materia, D. Dynamic Analysis and Development of Distributed Control Systems in Power Cells and Multiport Converters for Grid Integration of Distributed resources. Ph.D. Thesis, Universidad de Oviedo, Oviedo, Spain, 2012. [Google Scholar]
- Amenedo, J.L.R.; Gomez, S.A.; Alonso-Martinez, J.; De Armas, M.G. Grid-Forming Converters Control Based on the Reactive Power Synchronization Method for Renewable Power Plants. IEEE Access 2021, 9, 67989–68007. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, H.; Cai, G.; Zhang, Z.; Wang, X.; Koh, L.H. Power-frequency oscillation suppression algorithm for AC microgrid with multiple virtual synchronous generators based on fuzzy inference system. IET Renew. Power Gener. 2022, 16, 1589–1601. [Google Scholar] [CrossRef]
- Zhong, C.; Li, H.; Zhou, Y.; Lv, Y.; Chen, J.; Li, Y. Virtual synchronous generator of PV generation without energy storage for frequency support in autonomous microgrid. Int. J. Electr. Power Energy Syst. 2022, 134, 107343. [Google Scholar] [CrossRef]
- Hu, W.; Wu, Z.; Lv, X.; Dinavahi, V. Robust Secondary Frequency Control for Virtual Synchronous Machine-Based Microgrid Cluster Using Equivalent Modeling. IEEE Trans. Smart Grid 2021, 12, 2879–2889. [Google Scholar] [CrossRef]
- Kreishan, M.Z.; Zobaa, A.F. Optimal allocation and operation of droop-controlled islanded microgrids: A review. Energies 2021, 14, 4653. [Google Scholar] [CrossRef]
- Alzayed, M.; Lemaire, M.; Zarrabian, S.; Chaoui, H.; Massicotte, D. Droop-Controlled Bidirectional Inverter-Based Microgrid Using Cascade-Forward Neural Networks. IEEE Open J. Circuits Syst. 2022, 3, 298–308. [Google Scholar] [CrossRef]
- Lasheen, A.; Ammar, M.E.; Zeineldin, H.H.; Al-Durra, A.; Shaaban, M.F.; El-Saadany, E. Assessing the Impact of Reactive Power Droop on Inverter Based Microgrid Stability. IEEE Trans. Energy Convers. 2021, 36, 2380–2392. [Google Scholar] [CrossRef]
- Lu, F.; Liu, H. An Accurate Power Flow Method for Microgrids with Conventional Droop Control. Energies 2022, 15, 5841. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Garcia de Vicuña, L.; Matas, J.; Miret, J. Steady-state invariant-frequency control of parallel redundant uninterruptible power supplies. In Proceedings of the IEEE 2002 28th Annual Conference of the Industrial Electronics Society, IECON 02, Seville, Spain, 5–8 November 2002; Volume 1, pp. 274–277. [Google Scholar] [CrossRef]
- Hoa Thi Pham, X. Power sharing strategy in islanded microgrids using improved droop control. Electr. Power Syst. Res. 2020, 180, 106164. [Google Scholar] [CrossRef]
- Chang, G.W.; Nguyen, K.T. A new adaptive inertia-based virtual synchronous generator with even inverter output power sharing in islanded microgrid. IEEE Trans. Ind. Electron. 2023, 9, 10693–10703. [Google Scholar] [CrossRef]
- Hoang, T.V.; Lee, H.H. Virtual Impedance Control Scheme to Compensate for Voltage Harmonics with Accurate Harmonic Power Sharing in Islanded Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 1682–1695. [Google Scholar] [CrossRef]
- Bai, D.; Zhang, T.; Yang, Z. Research on Improved Droop Control Strategy of Microsource Inverter Based on Internet of Things. Secur. Commun. Netw. 2021, 2021, 5043623. [Google Scholar] [CrossRef]
- Patra, S.; Basu, M. Double-Layered Droop Control-Based Frequency Restoration and Seamless Reconnection of Isolated Neighboring Microgrids for Power Sharing. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 6231–6242. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, X.; Lv, Y. Stability Analysis and Performance Improvement of Power Sharing Control in Islanded Microgrids. IEEE Trans. Smart Grid 2022, 13, 4665–4676. [Google Scholar] [CrossRef]
- Azizi, S.M. Robust controller synthesis and analysis in inverter-dominant droop-controlled islanded microgrids. IEEE/CAA J. Autom. Sin. 2021, 8, 1401–1415. [Google Scholar] [CrossRef]
- Rashwan, A.; Mikhaylov, A.; Senjyu, T.; Eslami, M.; Hemeida, A.M.; Osheba, D.S.M. Modified Droop Control for Microgrid Power-Sharing Stability Improvement. Sustainability 2023, 15, 11220. [Google Scholar] [CrossRef]
- Narváez, D.I. Study and Analysis of Control Techniques for Power Converters in a Hybrid AC/DC Microgrid with Energy Storage System and Photovoltaic Generating Unit; Universidade Estadual de Campinas Faculdade de Engenharia Elétrica e de Computação: Campinas, Brazil, 2021; ISBN 0000000314787. [Google Scholar]
- Zhou, K.; Wu, Y.; Wu, X.; Sun, Y.; Teng, D.; Liu, Y. Research and Development Review of Power Converter Topologies and Control Technology for Electric Vehicle Fast-Charging Systems. Electronics 2023, 12, 1581. [Google Scholar] [CrossRef]
- Engineering, I. Integrated Modelling of Distribution Networks for Strategic Valuation of Distributed Energy Resources Deployment and Investment. Ph.D. Dissertation, The University of Sydney, Sydney, NSW, Australia, 2021. [Google Scholar]
- Dong, J.; Gong, C.; Chen, H.; Wang, Z. Secondary frequency regulation and stabilization method of islanded droop inverters based on integral leading compensator. Energy Rep. 2022, 8, 1718–1730. [Google Scholar] [CrossRef]
- Mohammed, N.; Lashab, A.; Ciobotaru, M.; Guerrero, J.M. Accurate Reactive Power Sharing Strategy for Droop-Based Islanded AC Microgrids. IEEE Trans. Ind. Electron. 2023, 70, 2696–2707. [Google Scholar] [CrossRef]
- Vasquez, J.C.; Guerrero, J.M.; Savaghebi, M.; Eloy-Garcia, J.; Teodorescu, R. Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source inverters. IEEE Trans. Ind. Electron. 2013, 60, 1271–1280. [Google Scholar] [CrossRef]
- Vasquez, J.C.; Mastromauro, R.A.; Guerrero, J.M.; Liserre, M. Voltage support provided by a droop-controlled multifunctional inverter. IEEE Trans. Ind. Electron. 2009, 56, 4510–4519. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, J.; Dorrell, D.G.; Guerrero, J.M. Virtual flux droop method—A new control strategy of inverters in microgrids. IEEE Trans. Power Electron. 2014, 29, 4704–4711. [Google Scholar] [CrossRef]
- Golsorkhi, M.S.; Lu, D.D.C. A control method for inverter-based islanded microgrids based on V-I droop characteristics. IEEE Trans. Power Deliv. 2015, 30, 1196–1204. [Google Scholar] [CrossRef]
- Han, H.; Liu, Y.; Sun, Y.; Su, M.; Guerrero, J.M.; Member, S. An Improved Droop Control Strategy for Reactive Power Sharing in Islanded Microgrid. IEEE Trans. Power Electron. 2014, 30, 3133–3141. [Google Scholar] [CrossRef]
- Zheng, L.; Zhuang, C.; Zhang, J.; Du, X. An Enhanced Droop Control Scheme for Islanded Microgrids. Int. J. Control Autom. 2015, 8, 63–74. [Google Scholar] [CrossRef]
- Singh, P.K.; Dharmendra, K.D. Distributed robust Volt-VAr control strategy for accurate reactive power sharing in islanded microgrid. Sci. Technol. Energy Transit. 2025, 80, 10–11. [Google Scholar] [CrossRef]
- Hou, S.; Chen, J.; Chen, G. Distributed control strategy for voltage and frequency restoration and accurate reactive power-sharing for islanded microgrid. Energy Rep. 2023, 9, 742–751. [Google Scholar] [CrossRef]
- Nasser, N.; Fazeli, M. Buffered-Microgrid Structure for Future Power Networks; A Seamless Microgrid Control. IEEE Trans. Smart Grid 2021, 12, 131–140. [Google Scholar] [CrossRef]
- Datta, U.; Kalam, A.; Shi, J. Frequency performance analysis of multi-gain droop controlled DFIG in an isolated microgrid using real-time digital simulator. Eng. Sci. Technol. Int. J. 2020, 23, 1028–1041. [Google Scholar] [CrossRef]
- Li, D.; Wu, Z.; Zhao, B.; Zhang, L. An improved droop control for balancing state of charge of battery energy storage systems in AC microgrid. IEEE Access 2020, 8, 71917–71929. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, B.; Feng, X.; Hu, S. Small-signal stability and robustness analysis for microgrids under time-constrained DoS attacks and a mitigation adaptive secondary control method. Sci. China Inf. Sci. 2022, 65, 162202. [Google Scholar] [CrossRef]
- Monica, P.; Kowsalya, M. Control strategies of parallel operated inverters in renewable energy application: A review. Renew. Sustain. Energy Rev. 2016, 65, 885–901. [Google Scholar] [CrossRef]
- Mohammadi, F.; Mohammadi-Ivatloo, B.; Gharehpetian, G.B.; Ali, M.H.; Wei, W.; Erdinc, O.; Shirkhani, M. Robust Control Strategies for Microgrids: A Review. IEEE Syst. J. 2022, 16, 2401–2412. [Google Scholar] [CrossRef]
- Nakka, P.C.; Mishra, M.K. Droop characteristics based damping and inertia emulation of DC link in a hybrid microgrid. IET Renew. Power Gener. 2020, 14, 1044–1052. [Google Scholar] [CrossRef]
- Eskandari, M.; Savkin, A.V. A Critical Aspect of Dynamic Stability in Autonomous Microgrids: Interaction of Droop Controllers Through the Power Network. IEEE Trans. Ind. Inform. 2022, 18, 3159–3170. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Zheng, M.; Ma, L. A distributed reactive power sharing approach in microgrids with improved droop control. CSEE J. Power Energy Syst. 2021, 7, 1238–1246. [Google Scholar] [CrossRef]
- Guerrero, J.M.; García de Vicuña, L.; Matas, J.; Miret, J.; Castilla, M. A Wireless Controller for Parallel Inverters in Distributed Online UPS Systems. In Proceedings of the IECON’03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468), Roanoke, VA, USA, 2–6 November 2003; Volume 2, pp. 1637–1642. [Google Scholar] [CrossRef]
- Srikanth, M.; Venkata Pavan Kumar, Y. A State Machine-Based Droop Control Method Aided with Droop Coefficients Tuning through In-Feasible Range Detection for Improved Transient Performance of Microgrids. Symmetry 2023, 15, 1. [Google Scholar] [CrossRef]
- Deng, W.; Dai, N.Y.; Lao, K.W.; Guerrero, J.M. A Virtual-Impedance Droop Control for Accurate Active Power Control and Reactive Power Sharing Using Capacitive-Coupling Inverters. IEEE Trans. Ind. Appl. 2020, 56, 6722–6733. [Google Scholar] [CrossRef]
- Buraimoh, E.; Aluko, A.O.; Oni, O.E.; Davidson, I.E. Decentralized Virtual Impedance-Conventional Droop Control for Power Sharing for Inverter-Based Distributed Energy Resources of a Microgrid. Energies 2022, 15, 4439. [Google Scholar] [CrossRef]
- Wang, L.; Li, T.; Cheng, Z.; Hu, X.; Li, Z.; Liu, Z.; Huang, J.; Hou, X. A unified droop control of AC microgrids under different line impedances: Revisiting droop control and virtual impedance method. Front. Energy Res. 2023, 11, 1190833. [Google Scholar] [CrossRef]
- Dashtdar, M.; Dashtdar, M. Power Control in an Islanded Microgrid Using Virtual Impedance. Sci. Bull. Electr. Eng. Fac. 2020, 20, 44–49. [Google Scholar] [CrossRef]
- Sellamna, H.; Pavan, A.M.; Mellit, A.; Guerrero, J.M. An iterative adaptive virtual impedance loop for reactive power sharing in islanded meshed microgrids. Sustain. Energy Grids Netw. 2020, 24, 100395. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, J.; Si, J.; Xiao, X.; Zhou, P.; Zhao, J. Power quality enhancement in islanded microgrids via closed-loop adaptive virtual impedance control. Prot. Control Mod. Power Syst. 2023, 8, 10. [Google Scholar] [CrossRef]
- Li, Z.; Chan, K.W.; Hu, J.; Guerrero, J.M. Adaptive Droop Control Using Adaptive Virtual Impedance for Microgrids with Variable PV Outputs and Load Demands. IEEE Trans. Ind. Electron. 2021, 68, 9630–9640. [Google Scholar] [CrossRef]
- Qian, H.; Xu, Q.; Xia, Y.; Zhao, J.; Du, P. Analysis and implementation of virtual impedance for fixed-frequency control strategy in microgrid. IET Gener. Transm. Distrib. 2021, 15, 2262–2276. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Y. Dual Ascent Algorithm-Based Improved Droop Control for Efficient Operation of AC Microgrid. Front. Electron. 2022, 3, 926865. [Google Scholar] [CrossRef]
- Hussien, A.M.; Hasanien, H.M.; Mekhamer, S.F. Sunflower optimization algorithm-based optimal PI control for enhancing the performance of an autonomous operation of a microgrid. Ain Shams Eng. J. 2021, 12, 1883–1893. [Google Scholar] [CrossRef]
- Kanwal, S.; Rauf, M.Q.; Khan, B.; Mokryani, G. Artificial neural network assisted robust droop control of autonomous microgrid. IET Renew. Power Gener. 2023, 18, 1346–1369. [Google Scholar] [CrossRef]
- Razi, R.; Iman-Eini, H.; Hamzeh, M.; Bacha, S. A Novel Extended Impedance-Power Droop for Accurate Active and Reactive Power Sharing in a Multi-Bus Microgrid with Complex Impedances. IEEE Trans. Smart Grid 2020, 11, 3795–3804. [Google Scholar] [CrossRef]
- Alizadeh, E.; Birjandi, A.M.; Hamzeh, M. Triple-harmonic-droop control strategy for accurate harmonic power sharing in low-voltage islanded microgrids. IET Gener. Transm. Distrib. 2021, 15, 1740–1751. [Google Scholar] [CrossRef]
- Wong, Y.C.C.; Lim, C.S.; Rotaru, M.D.; Cruden, A.; Kong, X. Consensus Virtual Output Impedance Control Based on the Novel Droop Equivalent Impedance Concept for a Multi-Bus Radial Microgrid. IEEE Trans. Energy Convers. 2020, 35, 1078–1087. [Google Scholar] [CrossRef]
- Felipe, J.; Montenegro, P. An Integrated Power Sharing Control Method for Three-Phase Inverter-Based Generators with Applications in Microgrids. Ph.D. Thesis, University of Puerto Rico, San Juan, Puerto Rico, 2019; p. 164. [Google Scholar]
- Eskandari, M.; Li, L.; Moradi, M.H.; Siano, P.; Blaabjerg, F. Active Power Sharing and Frequency Restoration in an Autonomous Networked Microgrid. IEEE Trans. Power Syst. 2019, 34, 4706–4717. [Google Scholar] [CrossRef]
- Purushotham, M.; Muniswamy, K. Reinforced Droop for Active Current Sharing in Parallel NPC Inverter for Islanded AC Microgrid Application. Energies 2019, 12, 3090. [Google Scholar] [CrossRef]
- Khanabdal, S.; Banejad, M.; Blaabjerg, F.; Hosseinzadeh, N. Adaptive Virtual Flux Droop Control Based on Virtual Impedance in Islanded AC Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 1095–1107. [Google Scholar] [CrossRef]
- Savaghebi, M.; Jalilian, A.; Vasquez, J.C.; Guerrero, J.M. Secondary control scheme for voltage unbalance compensation in an Islanded droop-controlled microgrid. IEEE Trans. Smart Grid 2012, 3, 797–807. [Google Scholar] [CrossRef]
- Hossain, M.A.; Pota, H.R.; Issa, W.; Hossain, M.J. Overview of AC microgrid controls with inverter-interfaced generations. Energies 2017, 10, 1300. [Google Scholar] [CrossRef]
- Legry, M.; Dieulot, J.Y.; Colas, F.; Saudemont, C.; Ducarme, O. Non-Linear Primary Control Mapping for Droop-Like Behavior of Microgrid Systems. IEEE Trans. Smart Grid 2020, 11, 4604–4613. [Google Scholar] [CrossRef]
- Zafari, P.; Zangeneh, A.; Moradzadeh, M.; Ghafouri, A.; Parazdeh, M.A. Various Droop Control Strategies in Microgrids. In Microgrid Architectures, Control and Protection Methods. Power Systems; Springer: Cham, Switzerland, 2020; pp. 527–554. [Google Scholar] [CrossRef]
- Pham, M.D.; Lee, H.H. Coordinated virtual resistance and capacitance control scheme for accurate reactive power sharing and selective harmonic compensation in islanded microgrid. IET Gener. Transm. Distrib. 2020, 14, 5104–5113. [Google Scholar] [CrossRef]
- Skjellnes, T.; Skjellnes, A.; Norum, L. Load sharing for parallel inverters without communication. In Proceedings of the Nordic Workshop on Power and Industrial Electronics (Norpie 2002), Stockholm, Sweden, 12–14 August 2002; pp. 1–4. [Google Scholar]
- Yao, W.; Chen, M.; Matas, J.; Guerrero, J.M.; Qian, Z.M. Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing. IEEE Trans. Ind. Electron. 2011, 58, 576–588. [Google Scholar] [CrossRef]
- Akdogan, M.E.; Ahmed, S. Control Hardware-in-the-loop for Voltage Controlled Inverters with Unbalanced and Non-linear Loads in Stand-alone Photovoltaic (PV) Islanded Microgrids. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 2431–2438. [Google Scholar] [CrossRef]
- Prodanovic, M. A survey of control methods for three-phase inverters in parallel connection. In 8th International Conference on Power Electronics and Variable Speed Drives; IEEE: London, UK, 2005; pp. 472–477. [Google Scholar] [CrossRef]
- Alsafran, A.S.; Daniels, M.W. Consensus control for reactive power sharing using an adaptive virtual impedance approach. Energies 2020, 13, 2026. [Google Scholar] [CrossRef]
- He, J.; Li, Y.W.; Blaabjerg, F. Power, Imbalance Power and Harmonic Power Sharing Scheme. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 1337–1343. [Google Scholar] [CrossRef]
- Savaghebi, M.; Jalilian, A.; Vasquez, J.C.; Guerrero, J.M. Autonomous voltage unbalance compensation in an islanded droop-controlled microgrid. IEEE Trans. Ind. Electron. 2013, 60, 1390–1402. [Google Scholar] [CrossRef]
- Li, P.; Wang, X.; Lee, W.J.; Xu, D. Dynamic Power Conditioning Method of Microgrid Via Adaptive Inverse Control. IEEE Trans. Power Deliv. 2015, 30, 906–913. [Google Scholar] [CrossRef]
- He, J.; Li, Y.W. An enhanced microgrid load demand sharing strategy. IEEE Trans. Power Electron. 2012, 27, 3984–3995. [Google Scholar] [CrossRef]
- Mahmood, H.; Michaelson, D.; Jiang, J. Reactive Power Sharing in Islanded Microgrids Using Adaptive Voltage Droop Control. IEEE Trans. Smart Grid 2015, 6, 3052–3060. [Google Scholar] [CrossRef]
- Mohamed, Y.A.R.I.; Radwan, A.A. Hierarchical control system for robust microgrid operation and seamless mode transfer in active distribution systems. IEEE Trans. Smart Grid 2011, 2, 352–362. [Google Scholar] [CrossRef]
- Mohamed, Y.A.R.I.; Zeineldin, H.H.; Salama, M.M.A.; Seethapathy, R. Seamless formation and robust control of distributed generation microgrids via direct voltage control and optimized dynamic power sharing. IEEE Trans. Power Electron. 2012, 27, 1283–1294. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, A.; Chen, Z.; Zhou, L.; Long, J.; Lü, Z. A rapid reactive power control method for parallel inverters using resistive-capacitive output impedance. Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng. 2014, 34, 5296–5305. [Google Scholar] [CrossRef]
- Li, Y.W.; Kao, C.-N. An Accurate Power Control Strategy for Power-Electronics-Interfaced Distributed Generation Units Operating in a Low-Voltage Multibus Microgrid. IEEE Trans. Power Electron. 2009, 24, 2977–2988. [Google Scholar] [CrossRef]
- Mulligan, R.M.; Altom, M.W.; Simkin, D.K. Technical correspondence. Commun. ACM 1992, 35, 19. [Google Scholar] [CrossRef]
- Milczarek, A.; Malinowski, M.; Guerrero, J.M. Reactive Power Management in Islanded Microgrid—Proportional Power Sharing in Hierarchical Droop Control. IEEE Trans. Smart Grid 2015, 6, 1631–1638. [Google Scholar] [CrossRef]
- Simpson-Porco, J.W.; Shafiee, Q.; Dorfler, F.; Vasquez, J.C.; Guerrero, J.M.; Bullo, F. Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging. IEEE Trans. Ind. Electron. 2015, 62, 7025–7038. [Google Scholar] [CrossRef]
- Schiffer, J.; Seel, T.; Raisch, J.; Sezi, T. Voltage Stability and Reactive Power Sharing in Distributed Voltage Control. IEEE Trans. Control Syst. Technol. 2016, 24, 96–109. [Google Scholar] [CrossRef]
- Li, Q.; Chen, F.; Chen, M.; Guerrero, J.M.; Abbott, D. Agent-Based Decentralized Control Method for Islanded Microgrids. IEEE Trans. Smart Grid 2016, 7, 637–649. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Zhao, Z. Grid-connected photovoltaic power systems: Technical and potential problems—A review. Renew. Sustain. Energy Rev. 2010, 14, 112–129. [Google Scholar] [CrossRef]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A.V. Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 2006, 53, 1398–1409. [Google Scholar] [CrossRef]
- Sao, C.K.; Lehn, P.W. Control and power management of converter fed microgrids. IEEE Trans. Power Syst. 2008, 23, 1088–1098. [Google Scholar] [CrossRef]
- Yu, X.; Khambadkone, A.M.; Wang, H.; Terence, S.T.S. Control of parallel-connected power converters for low-voltage microgrid—Part I: A hybrid control architecture. IEEE Trans. Power Electron. 2010, 25, 2962–2970. [Google Scholar] [CrossRef]
- Liang, H.; Choi, B.J.; Zhuang, W.; Shen, X. Stability enhancement of decentralized inverter control through wireless communications in microgrids. IEEE Trans. Smart Grid 2013, 4, 321–331. [Google Scholar] [CrossRef]
- Shafiee, Q.; Guerrero, J.M.; Vasquez, J.C. Distributed secondary control for islanded microgrids-a novel approach. IEEE Trans. Power Electron. 2014, 29, 1018–1031. [Google Scholar] [CrossRef]
- Kahrobaeian, A.; Mohamed, Y.A.R.I. Networked-based hybrid distributed power sharing and control for islanded microgrid systems. IEEE Trans. Power Electron. 2015, 30, 603–617. [Google Scholar] [CrossRef]
- Nutkani, I.U.; Loh, P.C.; Wang, P.; Blaabjerg, F. Cost-prioritized droop schemes for autonomous AC microgrids. IEEE Trans. Power Electron. 2015, 30, 1109–1119. [Google Scholar] [CrossRef]
- Nutkani, I.U.; Loh, P.C.; Blaabjerg, F. Droop scheme with consideration of operating costs. IEEE Trans. Power Electron. 2014, 29, 1047–1052. [Google Scholar] [CrossRef]
- Nutkani, I.U.; Loh, P.C.; Wang, P.; Blaabjerg, F. Autonomous droop scheme with reduced generation cost. IEEE Trans. Ind. Electron. 2014, 61, 6803–6811. [Google Scholar] [CrossRef]
- Zhong, Q.-C. Robust Droop Controller for Accurate Proportional Load Sharing Among Inverters Operated in Parallel. IEEE Trans. Ind. Electron. 2000, 8, 223–241. [Google Scholar] [CrossRef]
- Chen, G.; Feng, E. Distributed secondary control and optimal power sharing in microgrids. IEEE/CAA J. Autom. Sin. 2015, 2, 304–312. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Z.; Liu, J.; An, R.; Zheng, H.; Shi, Y. An Adaptive Virtual Impedance Control Scheme Based on Small-AC-Signal Injection for Unbalanced and Harmonic Power Sharing in Islanded Microgrids. IEEE Trans. Power Electron. 2019, 34, 12333–12355. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhuo, F.; Wang, F.; Liu, B.; Zhao, Y. A Wireless Load Sharing Strategy for Islanded Microgrid Based on Feeder Current Sensing. IEEE Trans. Power Electron. 2015, 30, 6706–6719. [Google Scholar] [CrossRef]
- Shahgholian, G.; Mohammadreza, M.; Arman, F. Droop control strategy in inverter-based microgrids: A brief review on analysis and application in islanded mode of operation. IET Renew. Power Gener. 2025, 1, e13186. [Google Scholar] [CrossRef]
- Vijay, A.S.; Parth, N.; Doolla, S.; Chandorkar, M.C. An Adaptive Virtual Impedance Control for Improving Power Sharing among Inverters in Islanded AC Microgrids. IEEE Trans. Smart Grid 2021, 12, 2991–3003. [Google Scholar] [CrossRef]
- Mohammed, N.; Callegaro, L.; Ciobotaru, M.; Guerrero, J.M. Accurate power sharing for islanded DC microgrids con-sidering mismatched feeder resistances. Appl. Energy 2023, 340, 121060. [Google Scholar] [CrossRef]
- Ding, X.; Yao, R.; Zhai, X.; Li, C.; Dong, H. An adaptive compensation droop control strategy for reactive power sharing in islanded microgrid. Electr. Eng. 2020, 102, 267–278. [Google Scholar] [CrossRef]
- De Brabandere, K.; Bolsens, B.; Van Den Keybus, J.; Woyte, A.; Driesen, J.; Belmans, R. A voltage and frequency droop control method for parallel inverters. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, Germany, 20–25 June 2004; Volume 4, pp. 2501–2507. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, B.; Wang, F.; Zhuo, F.; Zhao, Y. A virtual resistance based reactive power sharing strategy for networked microgrid. In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia: “Green World with Power Electronics”, (ICPE-ECCE Asia), Seoul, Republic of Korea, 1–5 June 2015; pp. 1564–1572. [Google Scholar] [CrossRef]
- He, J.; Li, Y.W.; Guerrero, J.M.; Blaabjerg, F.; Vasquez, J.C. Microgrid reactive and harmonic power sharing using enhanced virtual impedance. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 447–452. [Google Scholar] [CrossRef]
- Mahmood, H.; Member, S.; Michaelson, D. Accurate Reactive Power Sharing in an Islanded Microgrid using Adaptive Virtual Impedances. IEEE Trans. Power Electron. 2014, 30, 1605–1617. [Google Scholar] [CrossRef]
- Savaghebi, M.; Shafiee, Q.; Vasquez, J.C.; Guerrero, J.M. Adaptive virtual impedance scheme for selective compensation of voltage unbalance and harmonics in microgrids. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015. [Google Scholar] [CrossRef]
- Han, H.; Hou, X.; Yang, J.; Wu, J.; Su, M.; Guerrero, J.M. Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids. IEEE Trans. Smart Grid 2015, 7, 200–215. [Google Scholar] [CrossRef]
- Christensen, C.; Lee, J.W.; Liu, S.; Bremer, P.T.; Scorzelli, G.; Pascucci, V. Embedded domain-specific language and runtime system for progressive spatiotemporal data analysis and visualization. In Proceedings of the 2016 IEEE 6th Symposium on Large Data Analysis and Visualization (LDAV), Baltimore, MD, USA, 23–28 October 2016; pp. 1–10. [Google Scholar] [CrossRef]
- Gu, Y.; Li, W.; He, X. Frequency-coordinating virtual impedance for autonomous power management of DC microgrid. IEEE Trans. Power Electron. 2015, 30, 2328–2337. [Google Scholar] [CrossRef]
- Mao, M.; Dong, Z.; Ding, Y.; Chang, L. A unified controller for A microgrid based on adaptive virtual impedance and conductance. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 695–701. [Google Scholar] [CrossRef]
- He, D.; Shi, D.; Sharma, R. Consensus-based distributed cooperative control for microgrid voltage regulation and reactive power sharing. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Europe, Istanbul, Turkey, 12–15 October 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Wang, K. Graph Theory-Based Approach for Stability Analysis of Stochastic Coupled Systems with Lévy Noise on Networks. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1698–1709. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Collings, I.; Lipman, J.; Wang, X.; Tao, M.; Abolhasan, M. Graph theory and its applications to future network planning: Software-defined online small cell management. IEEE Wirel. Commun. 2015, 22, 52–60. [Google Scholar] [CrossRef]
- Nelson, M.; Jordan, P.E. Automatic Reconfiguration of a Ship’s Power System Using Graph Theory Principles. IEEE Trans. Ind. Appl. 2015, 51, 2651–2656. [Google Scholar] [CrossRef]
- Lu, L.Y.; Chu, C.C. Autonomous power management and load sharing in isolated micro-grids by consensus-based droop control of power converters. In Proceedings of the 2013 1st International Future Energy Electronics Conference (IFEEC), Tainan, Taiwan, 3–6 November 2013; pp. 365–370. [Google Scholar] [CrossRef]
- Farag, H.E.; Abdelaziz, M.M.A.; El-Saadany, E.F. Voltage and reactive power impacts on successful operation of islanded microgrids. IEEE Trans. Power Syst. 2013, 28, 1716–1727. [Google Scholar] [CrossRef]
- Vokony, I.; Dan, A. Reactive power- and voltage regulation in smart grid environment. In Proceedings of the 2013 IEEE Grenoble Conference, Grenoble, France, 16–20 June 2013. [Google Scholar] [CrossRef]
- De Sousa-Perez, O.; Miret, J.; Camacho, A.; Marti, P.; Guzman, R. Power sharing control in islanded microgrid using event driven communication. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 2151–2156. [Google Scholar] [CrossRef]
- Chunfeng, G.; Rengang, Y.; Jiao, J.; Zhenhai, D. Power control strategy design in an islanded microgrid based on virtual frequency. IET Conf. Publ. 2013, 2013, 3–6. [Google Scholar] [CrossRef]
- Micallef, A.; Apap, M.; Spiteri-Staines, C.; Guerrero, J.M.; Vasquez, J.C. Reactive power sharing and voltage harmonic distortion compensation of droop controlled single phase islanded microgrids. IEEE Trans. Smart Grid 2014, 5, 1149–1158. [Google Scholar] [CrossRef]
- He, J.; Li, Y.W.; Blaabjerg, F. An enhanced islanding microgrid reactive power, imbalance power, and harmonic power sharing scheme. IEEE Trans. Power Electron. 2015, 30, 3389–3401. [Google Scholar] [CrossRef]
- Colson, C.M.; Nehrir, M.H. Algorithms for distributed decision-making for multi-agent microgrid power management. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Zhang, J.; Ning, J.; Huang, L.; Wang, H.; Shu, J. Adaptive droop control for accurate power sharing in islanded microgrid using virtual impedance. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 2383–2388. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, C.; Dong, L.; Li, Y.; Zhao, J.; Nian, H.; Kong, L. An Enhanced Droop Control Strategy for Accurate Reactive Power Sharing in Islanded Microgrids. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; Volume 19, pp. 2352–2356. [Google Scholar] [CrossRef]
- Khan, M.H.; Zulkifli, S.A.; Pathan, E.; Garba, E.; Jackson, R.; Arshad, H. Decentralize power sharing control strategy in islanded microgrids. Indones. J. Electr. Eng. Comput. Sci. 2020, 20, 752–760. [Google Scholar] [CrossRef]
- Saleh-ahmadi, A.; Moattari, M.; Gahedi, A.; Pouresmaeil, E. Droop method development for microgrids control considering higher order sliding mode control approach and feeder impedance variation. Appl. Sci. 2021, 11, 967. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, G.; Li, X. A voltage unbalance compensation strategy based on virtual impedance for DGs in island microgrid without sequence component separation. Int. J. Electr. Power Energy Syst. 2021, 127, 106641. [Google Scholar] [CrossRef]
- Hidalgo-León, R.; Sanchez-Zurita, C.; Jácome-Ruiz, P.; Wu, J.; Muñoz-Jadan, Y. Roles, challenges, and approaches of droop control methods for microgrids. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America), Quito, Ecuador, 20–22 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Choudhury, S.; Mohapatra, L.; Rout, P.K. A comprehensive review on modeling, control, protection and future prospects of Microgrid. In Proceedings of the 2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO), Visakhapatnam, India, 24–25 January 2015. [Google Scholar] [CrossRef]
- Razi, R.; Pham, M.C.; Hably, A.; Bacha, S.; Tran, Q.T.; Iman-Eini, H. Robust hybrid control of parallel inverters for accurate power-sharing in microgrid. In Proceedings of the 2020 IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina, 26–28 February 2020; pp. 860–865. [Google Scholar] [CrossRef]
- Gupta, Y.; Chatterjee, K.; Doolla, S. A Simple Control Scheme for Improving Reactive Power Sharing in Islanded Microgrid. IEEE Trans. Power Syst. 2020, 35, 3158–3169. [Google Scholar] [CrossRef]
- Liang, Y.; Marquez, H.J. Robust gain scheduling synchronization method for quadratic chaotic systems with channel time delay. IEEE Trans. Circuits Syst. I Regul. Pap. 2009, 56, 604–615. [Google Scholar] [CrossRef]
- Pham, H.T.; Lim, J.T. Gain scheduling for non-linear time-delay systems using approximated model. IET Control Theory Appl. 2012, 6, 157–164. [Google Scholar] [CrossRef]
- Yin, Y.; Shi, P.; Liu, F. Gain-scheduled robust fault detection on time-delay stochastic nonlinear systems. IEEE Trans. Ind. Electron. 2011, 58, 4908–4916. [Google Scholar] [CrossRef]
- Sreenath, K.; Giordano, V.; Lewis, F.L. Avoiding Shared Resource Conflicts in Mobile Sensor Networks. IFAC Proc. Vol. 2005, 16, 263–268. [Google Scholar]
- Liu, S.; Wang, X.; Liu, P.X. Impact of Communication Delays on Secondary Frequency Control in an Islanded Microgrid. IEEE Trans. Ind. Electron. 2015, 62, 2021–2031. [Google Scholar] [CrossRef]
- Ghoushkhanehee, S.V.; Alfi, A. Model Predictive Control of transparent bilateral teleoperation systems under uncertain communication time-delay. In Proceedings of the 2013 9th Asian Control Conference (ASCC), Istanbul, Turkey, 23–26 June 2013; pp. 2–7. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Liu, G.P. Limit-bandwidth networked predictive control of systems with communication delay and data loss in the feedback channel. In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 3925–3930. [Google Scholar] [CrossRef]
- Liu, G.P.; Xia, Y.; Rees, D. Predictive control of networked systems with random delays. IFAC Proc. Vol. 2005, 38, 85–90. [Google Scholar] [CrossRef]
- Ahumada, C.; Cárdenas, R.; Sáez, D.; Guerrero, J.M. Secondary Control Strategies for Frequency Restoration in Islanded Microgrids with Consideration of Communication Delays. IEEE Trans. Smart Grid 2016, 7, 1430–1441. [Google Scholar] [CrossRef]
Conventional Droop Control with Additional Loops | Advantages | Limitations | Operational Mode |
---|---|---|---|
Conventional droop with addition of virtual impedance loop [30] | Good harmonic current-sharing ability; accuracy in load sharing and voltage regulation | Synchronization error and parameter mismatch; restricted to separate modules only | Grid-connected and islanded |
Conventional droop + virtual impedance + separate loops for frequency and amplitude adjustment [31] | Assures system stability and good synchronization characteristics | Power sharing concerns in systems with unevenly distributed line impedances | Grid-connected and islanded |
Conventional droop with virtual resistive droop [32] | Ensures active power balancing of system by addition of virtual inductor | Does not address behavior of system under frequency variation condition | Islanded |
Conventional droop with effective utilization of harmonic power sharing and virtual impedance [33] | Good power sharing and phase synchronization of system | Trade-off between frequency and amplitude | Islanded |
Method | P and Q Control Characteristics | Advantages | Disadvantages |
---|---|---|---|
Optimization in droop [89,90,91,92,93,94,95,96,97,98] | Improvement in primary level control; addition of inductive feeder impedance | Highly reliable and stable communication-less strategy; suitable to mitigate frequency and voltage deviation | Complexity in design; does not address complex loads; cannot be applied to MG system with multiple DG inverters |
Optimization in secondary-level, graph-theory algorithms [99,100,101], multi-agent-based control [102] | Improvement in hierarchal control levels | Simplicity and stability of control technique; low-bandwidth communication | Slow response of controller; deviations with non-linear loads |
Decoupling-based control [103,104,105] and modified P-V and Q-f [106,107] | P-V and Q-f droop controls with resistive domination in impedance | Improved stability with good transient response | Cannot be applied to microgrids with complex integrated structure |
Network-based control [108,109,110] | Power sharing without pre-knowledge of feeder impedances | Robust performance for P sharing accuracy | Parameter estimation is not easy to obtain; design and implementation complexity |
Common linear and non-linear cost-based droop controls [111,112,113,114,115] | Proportional active power sharing | Active power-sharing capability is good; voltage and frequency deviations can be efficiently removed | Communication delay; not suitable for complex feeder impedances |
Method | P and Q Sharing Issues | Merits | Demerits |
---|---|---|---|
Droop-based adaptive virtual impedance [85,122,123,124,125,126,127,128,129,130] | Modified virtual impedance | Enhanced performance to mitigate Q deviations; addresses complex loading conditions and abrupt load changes | Complexity in design and implementation |
Optimization in secondary control [101,131,132,133,134,135] | Mismatch in feeder impedances connected to same system | Frequency and voltage deviations are easily removed; better performance for complex MGs | Accurate power sharing is difficult to achieve under non-linear load condition; slow response of controller |
Programmable algorithms [99,136,137,138,139] | Congestion | Easily implemented in MG system with parallel-connected inverters; good performance for Q sharing with stability | Difficult to design control strategy; delayed execution of programmable algorithms |
Virtual-impedance-based secondary control [90,140,141] | Linear/non-linear or unbalanced loads | Suitable for unstable loads; ensures stability of system; suitable to mitigate voltage errors | Reactive power-sharing performance is poor; not suitable for complex MG system |
Multi-agent system [102,142] | Environmental changes affect performance | Stability and expandability is ensured; information exchange management system is possible | Pre-adjusted values of algorithms cause problems; complicated design |
Method | Explanation | Advantages | Limitations |
---|---|---|---|
Gain scheduling control [152,153,154,155,156] | Data adjusted by gain scheduler | Good power-sharing accuracy control; provides stability of system | Gain coefficient selection is complex |
Predictive control [157,158,159,160] | Predicts unknown parameters | Good power-sharing capability; shows robustness and stability of system | Design complexity is drawback of control scheme |
Cooperative distributed control [161,162] | Extra channel is provided for P and Q | Good power-sharing accuracy with stable operation; provides excellent plug-and-play facility | Slow dynamic response; complex structure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.H.; Zulkifli, S.A.; Tutkun, N.; Şimşir, M. Progressing Towards Sustainability: Power-Sharing Control Topologies for Microgrids with Parallel-Connected Inverters for Grid Stability. Sustainability 2025, 17, 4277. https://doi.org/10.3390/su17104277
Khan MH, Zulkifli SA, Tutkun N, Şimşir M. Progressing Towards Sustainability: Power-Sharing Control Topologies for Microgrids with Parallel-Connected Inverters for Grid Stability. Sustainability. 2025; 17(10):4277. https://doi.org/10.3390/su17104277
Chicago/Turabian StyleKhan, Mubashir Hayat, Shamsul Aizam Zulkifli, Nedim Tutkun, and Mehmet Şimşir. 2025. "Progressing Towards Sustainability: Power-Sharing Control Topologies for Microgrids with Parallel-Connected Inverters for Grid Stability" Sustainability 17, no. 10: 4277. https://doi.org/10.3390/su17104277
APA StyleKhan, M. H., Zulkifli, S. A., Tutkun, N., & Şimşir, M. (2025). Progressing Towards Sustainability: Power-Sharing Control Topologies for Microgrids with Parallel-Connected Inverters for Grid Stability. Sustainability, 17(10), 4277. https://doi.org/10.3390/su17104277