Thematic and Bibliometric Review of Remote Sensing and Geographic Information System-Based Flood Disaster Studies in South Asia During 2004–2024
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Bibliometric Analysis
2.3.2. Thematic Analysis
3. Results
3.1. Bibliometric Analysis Results
3.2. Keyword Analysis
3.3. Citation Analysis
3.4. Institution Analysis
3.5. Journal Analysis
4. Discussion
4.1. Characteristics of RS and GIS Flood Management Studies
4.2. Data Used in the Studies
4.3. Data Pre-Processing Involved in the Studies
4.4. Methods and Techniques Utilized in the Studies
4.5. Planning Implications
5. Conclusions, Limitations, and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zscheischler, J.; Martius, O.; Westra, S.; Bevacqua, E.; Raymond, C.; Horton, R.M.; van den Hurk, B.; AghaKouchak, A.; Jézéquel, A.; Mahecha, M.D.; et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 2020, 1, 333–347. [Google Scholar] [CrossRef]
- Andersen, T.K.; Shepherd, J.M. Floods in a changing climate. Geogr. Compass 2013, 7, 95–115. [Google Scholar] [CrossRef]
- Ashrafuzzaman, M.; Santos, F.D.; Dias, J.M.; Cerdà, A. Dynamics and causes of sea level rise in the coastal region of southwest Bangladesh at global, regional, and local levels. J. Mar. Sci. Eng. 2022, 10, 779. [Google Scholar] [CrossRef]
- Parks, B.C.; Roberts, J.T. Globalization, vulnerability to climate change, and perceived injustice. Soc. Nat. Resour. 2006, 19, 337–355. [Google Scholar] [CrossRef]
- Khayyam, U. Floods: Impacts on livelihood, economic status, and poverty in the north-west region of Paki-stan. Nat. Hazards 2020, 102, 1033–1056. [Google Scholar] [CrossRef]
- Memon, A.A.; Muhammad, S.; Rahman, S.; Haq, M. Flood monitoring and damage assessment using water indices: A case study of Pakistan flood-2012. Egypt. J. Remote Sens. Space Sci. 2015, 18, 99–106. [Google Scholar] [CrossRef]
- Sajjad, A.; Lu, J.; Chen, X.; Chisenga, C.; Saleem, N.; Hassan, H. Operational monitoring and damage assessment of riverine flood-2014 in the Lower Chenab Plain, Punjab, Pakistan, using remote sensing and GIS techniques. Remote Sens. 2020, 12, 714. [Google Scholar] [CrossRef]
- Dasvarma, G.L. Population and environmental issues in South Asia. In South Asia; Higgins, N., Ed.; Routledge: London, UK, 2016; pp. 64–76. [Google Scholar]
- Memon, F.S. Climate change and violence against women: Study of a flood-affected population in the rural area of Sindh, Pakistan. Pak. J. Women’s Stud. 2020, 27, 65–85. [Google Scholar] [CrossRef]
- Ranger, N.; Hallegatte, S.; Bhattacharya, S.; Bachu, M.; Priya, S.; Dhore, K.; Rafique, F.; Mathur, P.; Naville, N.; Henriet, F.; et al. An assessment of the potential impact of climate change on flood risk in Mumbai. Clim. Chang. 2011, 104, 139–167. [Google Scholar] [CrossRef]
- Geekiyanage, D.; Fernando, T.; Keraminiyage, K. Modelling interrelationships of the factors impeding community engagement in risk-sensitive urban planning: Evidence from Sri Lanka. Sustainability 2023, 15, 146–162. [Google Scholar] [CrossRef]
- Uddin, M.J.; Hasan, M.M.; Eisenreich, S.J.; Quevauviller, P. Strengthening pluvial flood risk management in the southeast region of Bangladesh: Lessons learned from the EU policy and practice. Environ. Proc. 2019, 6, 859–881. [Google Scholar] [CrossRef]
- Parvin, G.; Shimi, A.; Shaw, R.; Biswas, C. Flood in a changing climate: The impact on livelihood and how the rural poor cope in Bangladesh. Climate 2016, 4, 60. [Google Scholar] [CrossRef]
- Mirza, M.M.Q. Climate change, flooding in South Asia and implications. Reg. Environ. Chang. 2011, 11, 95–107. [Google Scholar] [CrossRef]
- Rizwan, M.; Li, X.; Chen, Y.; Anjum, L.; Hamid, S.; Yamin, M.; Chauhdary, J.N.; Shahid, M.A.; Mehmood, Q. Simulating future flood risks under climate change in the source region of the Indus River. J. Flood Risk Manag. 2023, 16, e12857. [Google Scholar] [CrossRef]
- Sarkar, U.K.; Borah, B.C. Flood plain wetland fisheries of India: With special reference to impact of climate change. Wetl. Ecol. Manag. 2018, 26, 1–15. [Google Scholar] [CrossRef]
- Sharma, T.P.; Zhang, J.; Koju, U.A.; Zhang, S.; Bai, Y.; Suwal, M.K. Review of flood disaster studies in Nepal: A remote sensing perspective. Int. J. Disaster Risk Reduct. 2019, 34, 18–27. [Google Scholar] [CrossRef]
- Wijesinghe, W.M.D.C.; Withanage, W.K.N.C. Detection of the changes in land use and land cover using remote sensing and GIS in Thalawa DS Division. Prathimana J. 2021, 14, 72–86. [Google Scholar]
- Withanage, N.C.; Wijesinghe, D.C.; Mishra, P.K.; Abdelrahman, K.; Mishra, V.; Fnais, M.S. An ecotourism suitability index for a world heritage city using GIS-multi criteria decision analysis techniques, Sri Lanka. Heliyon 2024, 10, e31585. [Google Scholar] [CrossRef]
- Wijesinghe, D.C.; Mishra, P.K.; Withanage, N.C.; Abdelrahman, K.; Mishra, V.; Tripathi, S.; Fnais, M.S. Application of GIS, Multi-Criteria Decision-Making Techniques for Mapping Groundwater Potential Zones: A Case Study of Thalawa Division, Sri Lanka. Water 2023, 15, 3462. [Google Scholar] [CrossRef]
- Wimalasena, K.H.M.D.P.; Withanage, W.K.N.C. A GIS-Based Spatial Variations Analysis of Water Quality in Domestic Wells in The Buttala Area, Sri Lanka. J. Soc. Sci. Hum. Rev. 2022, 6, 155–169. [Google Scholar] [CrossRef]
- Withanage, W.K.N.C.; Gunathilaka, M.D.K.L.; Mishra, P.K.; Wijesinghe, W.M.D.C.; Tripathi, S. Indexing habitat suitability and human-elephant conflicts using GIS-MCDA in a human-dominated landscape. Geogr. Sustain. 2023, 4, 343–355. [Google Scholar] [CrossRef]
- Jayasinghe, A.D.S.; Withanage, W.K.N.C. Geographical information system-based multi-criteria decision analysis of potato cultivation land suitability in Welimada divisional secretariat, Sri Lanka. Potato J. 2020, 47, 126–134. [Google Scholar]
- Withanage, W.K.N.C.; Mishra, P.K.; Jayasinghe, B.C. An Assessment of Spatio-temporal Land Use/Land Cover Dynamics Using Landsat Time Series Data (2008–2022) in Kuliyapitiya West Divisional Secretariat Division in Kurunagala District, Sri Lanka. J. Geospat. Surv. 2024, 4, 12–23. [Google Scholar] [CrossRef]
- Withanage, N.C.; Shi, K.; Shen, J. Extracting and Evaluating Urban Entities in China from 2000 to 2020 Based on SNPP-VIIRS-like Data. Remote Sens. 2023, 15, 4632. [Google Scholar] [CrossRef]
- Withanage, N.C.; Jingwei, S. Evaluating the Spatial-Temporal Dynamics of Urbanization in Prefecture Cities of China Using SNPP-VIIRS Nighttime Light Remote Sensing Data. Gazi Univ. J. Sci. Part A Eng. Innov. 2024, 11, 346–371. [Google Scholar] [CrossRef]
- Rijal, S.; Rimal, B.; Sloan, S. Flood hazard mapping of a rapidly urbanizing city in the foothills (Biren-dranagar, Surkhet) of Nepal. Land 2018, 7, 60. [Google Scholar] [CrossRef]
- Zzaman, R.U.; Nowreen, S.; Billah, M.; Islam, A.S. Flood hazard mapping of Sangu River basin in Bangladesh using multi-criteria analysis of hydro-geomorphological factors. J. Flood Risk Manag. 2021, 14, e12715. [Google Scholar] [CrossRef]
- Ali, K.; Bajracharyar, R.M.; Rau, N. Advances and challenges in flash flood risk assessment: A review. J. Geogr. Nat. Disasters 2017, 7, 195. [Google Scholar] [CrossRef]
- Faiz Ahmed, C.; Kranthi, N. Flood vulnerability assessment using geospatial techniques: Chennai, India. Indian J. Sci. Technol. 2018, 11, 1–13. [Google Scholar] [CrossRef]
- Samarasinghe, S.M.J.S.; Nandalal, H.K.; Weliwitiya, D.P.; Fowze, J.S.M.; Hazarika, M.K.; Samarakoon, L. Application of remote sensing and GIS for flood risk analysis: A case study at Kalu Ganga river, Sri Lanka. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 18, 110–115. [Google Scholar]
- Nuwanka, M.W.R.; Withanage, W.K.N.C. A GIS-based framework for flood hazard vulnerability evaluation in Thudawa area, Sri Lanka. Int. J. Inf. Decis. Sci. 2024, 16, 90–108. [Google Scholar] [CrossRef]
- Saha, A.K.; Agrawal, S. Mapping and assessment of flood risk in Prayagraj district, India: A GIS and remote sensing study. Nanotechnol. Environ. Eng. 2020, 5, 11. [Google Scholar] [CrossRef]
- Vemula, S.; Srinivasa Raju, K.; Sai Veena, S. Modelling impact of future climate and land use land cover on flood vulnerability for policy support—Hyderabad, India. Water Policy 2020, 22, 733–747. [Google Scholar] [CrossRef]
- Ahmed, Y.; Choudhury, G.A.; Ahmed, M.S. Strategy formulation and adaptation pathways generation for sustainable development of western floodplain of Ganges. J. Water Resour. Prot. 2017, 9, 663–691. [Google Scholar] [CrossRef]
- Islam, M.M.; Ujiie, K.; Noguchi, R.; Ahamed, T. Flash flood-induced vulnerability and need assessment of wetlands using remote sensing, GIS, and econometric models. Remote Sens. Appl. 2022, 25, 100692. [Google Scholar] [CrossRef]
- Bunch, M.J.; Kumaran, T.V.; Josep, R. Using geographic information systems (GIS) for spatial planning and environmental management in India: Critical considerations. Int. J. Appl. Sci. Tech. 2012, 2, 40–54. [Google Scholar]
- Bhatta, B. Analysis of urban growth pattern using remote sensing and GIS: A case study of Kolkata, India. Int. J. Remote Sens. 2009, 30, 4733–4746. [Google Scholar] [CrossRef]
- Rahman, A. Application of remote sensing and GIS technique for urban environmental management and sustainable development of Delhi, India. In Applied Remote Sensing for Urban Planning, Governance and Sustainability; Springer: Berlin/Heidelberg, Germany, 2007; pp. 165–197. [Google Scholar] [CrossRef]
- Arnall, A.; Oswald, K.; Davies, M.; Mitchell, T.; Coirolo, C. Adaptive social protection: Mapping the evidence and policy context in the agriculture sector in South Asia. In IDS Working Papers; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2010; pp. 11–70. [Google Scholar]
- Sattar, A.; Haritashya, U.K.; Kargel, J.S.; Leonard, G.J.; Shugar, D.H.; Chase, D.V. Modeling lake outburst and down-stream hazard assessment of the Lower Barun Glacial Lake, Nepal Himalaya. J. Hydrol. 2021, 598, 126208. [Google Scholar] [CrossRef]
- Deroliya, P.; Ghosh, M.; Mohanty, M.P.; Ghosh, S.; Rao, K.; HV, D.; Karmakar, S. A novel flood risk mapping approach with machine learning considering geomorphic and socio-economic vulnerability dimensions. Sci. Total Environ. 2022, 851, 158002. [Google Scholar] [CrossRef]
- Singha, M.; Dong, J.; Sarmah, S.; You, N.; Zhou, Y.; Zhang, G.; Doughty, R.; Xiao, X. Identifying floods and flood-affected paddy rice fields in Bangladesh based on sentinel-1 imagery and google earth engine. ISPRS J. Photogramm. Remote Sens. 2020, 166, 278–293. [Google Scholar] [CrossRef]
- Fakhruddin, S.H.M.; Kawasaki, A.; Babel, M.S. Community responses to flood early warning system: Case study in Kaijuri Union, Bangladesh. Int. J. Disaster Risk Reduct. 2015, 14, 323–331. [Google Scholar] [CrossRef]
- Rinzin, S.; Zhang, G.; Wangchuk, S. Glacial Lake Area Change and Potential Outburst Flood Hazard Assessment in the Bhutan Himalaya. Front. Earth Sci. 2021, 9, 775195. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Eriksson, M.; Mool, P.; Ghimire, P.; Mishra, B.; Khanal, N.R. Glacial lake outburst flood risk assessment of Sun Koshi basin, Nepal. Geomatics Nat. Hazards Risk 2010, 1, 157–169. [Google Scholar] [CrossRef]
- Rounce, D.R.; McKinney, D.C.; Lala, J.M.; Byers, A.C.; Watson, C.S. A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya. Hydrol. Earth Syst. Sci. 2016, 20, 3455–3475. [Google Scholar] [CrossRef]
- Sanyal, J.; Lu, X.X. Application of remote sensing in flood management with special reference to monsoon Asia: A review. Nat. Hazards 2004, 33, 283–301. [Google Scholar] [CrossRef]
- Sagintayev, Z.; Sultan, M.; Khan, S.D.; Khan, S.A.; Mahmood, K.; Yan, E.; Milewski, A.; Marsala, P. A remote sensing contribution to hydrologic modelling in arid and inaccessible watersheds, Pishin Lora basin, Pakistan. Hydrol. Process. 2012, 26, 85–99. [Google Scholar] [CrossRef]
- Parajuli, G.; Neupane, S.; Kunwar, S.; Adhikari, R.; Acharya, T.D. A GIS-based evacuation route planning in flood-susceptible area of Siraha municipality, Nepal. ISPRS Int. J. Geo-Inf. 2023, 12, 286. [Google Scholar] [CrossRef]
- Allen, S.K.; Sattar, A.; King, O.; Zhang, G.; Bhattacharya, A.; Yao, T.; Bolch, T. Glacial lake outburst flood hazard under current and future conditions: Worst-case scenarios in a transboundary Himalayan basin. Nat. Hazards Earth Syst. Sci. 2022, 22, 3765–3785. [Google Scholar] [CrossRef]
- Ahmed, R.; Rawat, M.; Wani, G.F.; Ahmad, S.T.; Ahmed, P.; Jain, S.K.; Meraj, G.; Mir, R.A.; Rather, A.F.; Farooq, M. Glacial lake outburst flood hazard and risk assessment of Gangabal Lake in the Upper Jhelum Basin of Kashmir Himalaya using geospatial technology and hydrodynamic modeling. Remote Sens. 2022, 14, 5957. [Google Scholar] [CrossRef]
- Bhuvana, N.; Aram, A.I. Facebook and WhatsApp as disaster management tools during the Chennai (India) floods of 2015. Int. J. Disaster Risk Reduct. 2019, 39, 101135. [Google Scholar] [CrossRef]
- Hoque, R.; Nakayama, D.; Matsuyama, H.; Matsumoto, J. Flood monitoring, mapping and assessing capabilities using RADARSAT remote sensing, GIS and ground data for Bangladesh. Nat. Hazards 2011, 57, 525–548. [Google Scholar] [CrossRef]
- Rehman, S.; Sayeed, M.; Hasan, U.; Rai, A.K.; Avtar, R.; Sajjad, H. Assessing flood-induced ecological vulnerability and risk using GIS-based in situ measurements in Bhagirathi sub-basin, India. Arab. J. Geosci. 2021, 14, 1520. [Google Scholar] [CrossRef]
- Wijesinghe, W.M.D.C.; Mishra, P.K.; Tripathi, S.; Abdelrahman, K.; Tiwari, A.; Fnais, M.S. Integrated flood hazard vulnerability modeling of Neluwa (Sri Lanka) using analytical hierarchy process and geospatial techniques. Water 2023, 15, 1212. [Google Scholar] [CrossRef]
- Waseem, B.H.; Rana, I.A. Floods in Pakistan: A state-of-the-art review. Nat. Hazards Res. 2023, 3, 359–373. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Bassi, N.; Kumar, M.D.; Shrma, A.; Pardha-Saradhi, P. Status of wetlands in India: A review of extent, ecosystem benefits, threats and management strategies. J. Hydrol. 2014, 2, 1–19. [Google Scholar] [CrossRef]
- Sheppard, S.R.J.; Cizek, P. The ethics of Google Earth: Crossing thresholds from spatial data to landscape visualisation. J. Environ. Manag. 2009, 90, 2102–2117. [Google Scholar] [CrossRef]
- Sun, A.Y.; Scanlon, B.R. How can Big Data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environ. Res. Lett. 2019, 14, 073001. [Google Scholar] [CrossRef]
- Comiti, F.; Da Canal, M.; Surian, N.; Mao, L.; Picco, L.; Lenzi, M.A. Channel adjustments and vegetation cover dynamics in a large gravel-bed river over the last 200 years. Geomorphology 2010, 125, 147–159. [Google Scholar] [CrossRef]
- Sanyal, J.; Lu, X.X. Remote sensing and GIS-based flood vulnerability assessment of human settlements: A case study of Gangetic West Bengal, India. Hydrol. Process. 2005, 19, 3699–3716. [Google Scholar] [CrossRef]
- Kargel, J.; Furfaro, R.; Kaser, G.; Leonard, G.; Fink, W.; Huggel, C.; Kääb, A.; Raup, B.; Reynolds, J.; Wolfe, D.; et al. (Eds.) ASTER imaging and analysis of glacier hazards. In Land Remote Sensing and Global Environmental Change; Remote Sensing and Digital Image Processing; Springer: New York, NY, USA, 2010; Volume 11, pp. 323–373. [Google Scholar] [CrossRef]
- Neill, A.O. Analytical Hierarchical Modeling of Glacial Lake Outburst Flood Potential in the Khumbu Region, Nepal. Ph.D. Dissertation, Appalachian State University, Khumbu, Nepal, 2021. [Google Scholar]
- Gautam, M.R.; Timilsina, G.R.; Acharya, K. Climate change in the Himalayas: Current state of knowledge. Policy Res. Work. Pap. 2013, 6516, 1–64. [Google Scholar]
- Kaltenborn, B.P.; Nellemann, C.; Vistnes, I.I. (Eds.) High Mountain Glaciers and Climate Change: Challenges to Human Livelihoods and Adaptation; United Nations Environment Programme, GRID-Arendal; Birkeland Trykkeri AS: Birkeland, Norway, 2010; pp. 6–52. [Google Scholar]
- Guillaumont, P. Vulnerability and Resilience: A Conceptual Framework Applied to Three Asian Countries—Bhutan, Maldives, and Nepal; ADB South Asia working paper series; Asian Development Bank: Mandaluyong, Philippines, 2017; Volume 53, pp. 1–76. [Google Scholar]
- Emmanuel, O. Application of remote sensing and geographical information systems in flood management: A review. Res. J. Appl. Sci. 2013, 6, 1884–1894. [Google Scholar] [CrossRef]
- Yu, D.J.; Haeffner, M.; Jeong, H.; Pande, S.; Dame, J.; Di Baldassarre, G.; Garcia-Santos, G.; Hermans, L.; Muneepeerakul, R.; Nardi, F.; et al. On capturing human agency and methodological interdisciplinarity in socio-hydrology research. Hydrol. Sci. J. 2022, 67, 1905–1916. [Google Scholar] [CrossRef]
- Telli, K.; Kraa, O.; Himeur, Y.; Ouamane, A.; Boumehraz, M.; Atalla, S.; Mansoor, W. A comprehensive review of recent research trends on unmanned aerial vehicles (UAVs). Systems 2023, 11, 400. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.A.; Waller, S.T. A review on flood management technologies related to image processing and machine learning. Autom. Constr. 2021, 132, 103916. [Google Scholar] [CrossRef]
- Yuan, F.; Fan, C.; Farahmand, H.; Coleman, N.; Esmalian, A.; Lee, C.C.; Patrascu, F.I.; Zhang, C.; Dong, S.; Mostafavi, A. Smart flood resilience: Harnessing community-scale big data for predictive flood risk monitoring, rapid impact assessment, and situational awareness. Environ. Res. Infrastruct. Sustain. 2022, 2, 025006. [Google Scholar] [CrossRef]
- Amaratunga, D.; Malalgoda, C.; Haigh, R.; Panda, A.; Rahayu, H. Sound practices of disaster risk reduction at local level. Procedia Eng. 2018, 212, 1163–1170. [Google Scholar] [CrossRef]
- Rauf, A.; Ghumman, A. Impact assessment of rainfall-runoff simulations on the flow duration curve of the upper Indus River: A comparison of data-driven and hydrologic models. Water 2018, 10, 876. [Google Scholar] [CrossRef]
- Sattaru, J.S.; Bhatt, C.M.; Saran, S. Utilizing geosocial media as a proxy data for enhanced flood Monitoring. J. Indian Soc. Remote Sens. 2021, 49, 2173–2186. [Google Scholar] [CrossRef]
- Li, Y.; Osei, F.B.; Hu, T.; Stein, A. Urban flood susceptibility mapping based on social media data in Chengdu City, China. Sustain. Cities Soc. 2023, 88, 104307. [Google Scholar] [CrossRef]
- Helmrich, A.M.; Ruddell, B.L.; Bessem, K.; Chester, M.V.; Chohan, N.; Doerry, E.; Eppinger, J.; Garcia, M.; Goodall, J.L.; Lowry, C.; et al. Opportunities for crowdsourcing in urban flood monitoring. Environ. Model. Softw. 2021, 143, 105124. [Google Scholar] [CrossRef]
- Amante, C.J.; Love, M.; Carignan, K.; Sutherland, M.G.; MacFerrin, M.; Lim, E. Continuously updated digital elevation models (CUDEMs) to support coastal inundation modeling. Remote Sens. 2023, 15, 1702. [Google Scholar] [CrossRef]
- Ban, H.J.; Kwon, Y.J.; Shin, H.; Ryu, H.S.; Hong, S. Flood monitoring using satellite-based RGB composite imagery and refractive index retrieval in visible and near-infrared bands. Remote Sens. 2017, 9, 313. [Google Scholar] [CrossRef]
- Khan, S.I.; Flamig, Z.; Hong, Y. Flood monitoring system using distributed hydrologic modeling for Indus River Basin. In Water Security and Sustainability; Elsevier: Amsterdam, The Netherlands, 2019; pp. 335–355. [Google Scholar] [CrossRef]
- Kilsedar, C.E.; Fissore, F.; Pirotti, F.; Brovelli, M.A. Extraction and visualization of 3D building models in urban areas for flood simulation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 19, 669–673. [Google Scholar] [CrossRef]
- Vamvakeridou-Lyroudia, L.S.; Chen, A.S.; Khoury, M.; Gibson, M.J.; Kostaridis, A.; Stewart, D.; Wood, M.; Djordjevic, S.; Savic, D.A. Assessing and visualizing hazard impacts to enhance the resilience of critical infrastructures to urban flooding. Sci. Total Environ. 2020, 707, 136078. [Google Scholar] [CrossRef]
- Bhuyan, M.J.; Deka, N.; Saikia, A. Micro-spatial flood risk assessment in Nagaon district, Assam (India) using GIS-based multi-criteria decision analysis (MCDA) and analytical hierarchy process (AHP). Risk Anal. 2023, 44, 817–832. [Google Scholar] [CrossRef]
- Sukhwani, V.; Shaw, R. Operationalizing crowdsourcing through mobile applications for disaster management in India. Prog. Disaster Sci. 2020, 5, 100052. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.U. Urbanization and climate change implications in flood risk management: Developing an efficient decision support system for flood susceptibility mapping. Sci. Total Environ. 2018, 636, 152–167. [Google Scholar] [CrossRef]
- Shadabfar, M.; Mahsuli, M.; Zhang, Y.; Xue, Y.; Ayyub, B.M.; Huang, H.; Medina, R.A. Resilience-based design of infrastructure: Review of models, methodologies, and computational tools. ASCE-ASME J. Risk Uncertain. Eng. Syst. 2022, 8, 03121004. [Google Scholar] [CrossRef]
- Cooray, M.S.S.; Bandara, A.A.N.S.; Perera, A.A.H.; Lankeshwarie, A.B.D.; Dassanayake, S.M.; Prasanna, R. Com-munity-based evacuation routes for hydrometeorological hazards resilience: A case study of Ratnapura district in Sri Lanka. In Proceedings of the 6th International Conference on Business Research (ICBR 2023), Moratuwa, Sri Lanka, 4 December 2023; pp. 1–12. [Google Scholar] [CrossRef]
- Kumar, S.; Thomas, A.; Panicker, V.V. Analysis of community engagement on social networking sites during the Kerala floods in 2018. In Recent Advances in Mechanical Engineering. ICRAMERD 2022; Lecture Notes in Mechanical Engineering; Tripathy, S., Samantaray, S., Ramkumar, J., Mahapatra, S.S., Eds.; Springer: Singapore, 2022; pp. 117–126. [Google Scholar] [CrossRef]
- Karki, M.B.; Shrestha, A.B.; Winiger, M. Enhancing knowledge management and adaptation capacity for integrated management of water resources in the Indus River Basin. Mt. Res. Dev. 2019, 31, 242–251. [Google Scholar] [CrossRef]
- Rasul, G. Why Eastern Himalayan countries should cooperate in transboundary water resource management. Water Policy 2014, 16, 19–38. [Google Scholar] [CrossRef]
- Krivtsov, V.; Ahilan, S.; Arthur, S.; Birkinshaw, S.; Dawson, D.; Everett, G.; Glenis, V.; Kapetas, L.; Kilsby, C.; Lamond, J.; et al. Blue-Green cities: Achieving urban flood resilience, water security, and biodiversity. In The Palgrave Encyclopedia of Urban and Regional Futures; Springer International Publishing: New York, NY, USA, 2022; pp. 86–93. [Google Scholar] [CrossRef]
- Jayasiri, G.P.; Siriwardena, C.S.A.; Hettiarachchi, S.S.L.; Dissanayake, P.B.R.; Bandara, C.S. Evaluation of community resilience aspects of Sri Lankan coastal districts. Int. J. Adv. Sci. Eng. Inf. Tech. 2018, 8, 2161. [Google Scholar] [CrossRef]
- Ran, J.; Nedovic-Budic, Z. Integrating spatial planning and flood risk management: A new conceptual framework for the spatially integrated policy infrastructure. Comput. Environ. Urban Syst. 2016, 57, 68–79. [Google Scholar] [CrossRef]
- Dhyani, S.; Lahoti, S.; Khare, S.; Pujari, P.; Verma, P. Ecosystem based disaster risk reduction approaches (EBDRR) as a prerequisite for inclusive urban transformation of Nagpur City, India. Int. J. Disaster Risk Reduct. 2018, 32, 95–105. [Google Scholar] [CrossRef]
- Saikia, P.; Nag, A.; Kumari, R.; Kumar, A.; Khan, M.L. Forest degradation prevention through nature-based solutions. In Handbook of Ecological and Ecosystem Engineering; Wiley: Hoboken, NJ, USA, 2021; pp. 333–352. [Google Scholar] [CrossRef]
- Rather, M.A.; Meraj, G.; Farooq, M.; Shiekh, B.A.; Kumar, P.; Kanga, S.; Singh, S.K.; Sahu, N.; Tiwari, S.P. Identifying the potential dam sites to avert the risk of catastrophic floods in the Jhelum Basin, Kashmir, NW Himalaya, India. Remote Sens. 2022, 14, 1538. [Google Scholar] [CrossRef]
- Meraj, G.; Romshoo, S.A.; Yousuf, A.R.; Altaf, S.; Altaf, F. Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Nat. Hazards 2015, 77, 153–175. [Google Scholar] [CrossRef]
- Debnath, J.; Sahariah, D.; Mazumdar, M.; Lahon, D.; Meraj, G.; Hashimoto, S.; Kumar, P.; Singh, S.K.; Kanga, S.; Chand, K.; et al. Evaluating flood susceptibility in the brahmaputra river basin: An insight into Asia’s Eastern Himalayan floodplains using machine learning and multi-criteria decision-making. Earth Syst. Environ. 2023, 7, 733–760. [Google Scholar] [CrossRef]
- Debnath, J.; Sahariah, D.; Nath, N.; Saikia, A.; Lahon, D.; Islam, M.N.; Hashimoto, S.; Meraj, G.; Kumar, P.; Singh, S.K. Modelling on assessment of flood risk susceptibility at the Jia Bharali River basin in Eastern Himalayas by integrating multicollinearity tests and geospatial techniques. Model. Earth Syst. Environ. 2024, 10, 2393–2419. [Google Scholar] [CrossRef]
Main Keywords | Additional Keywords | Databases | Document Type | Target Period | Results |
---|---|---|---|---|---|
“Floods” and “South Asia” | “GIS”, “RS”, “Flood disaster” | Scopus, Google Scholar, Science Direct | Articles, reviews, book chapters | 2004–2024 | 206 |
Author, Year & Ref. | Study Area | Method | Features | RS/Other Data Type | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|---|---|
Sattar et al. (2021) [41] | Barun glacier, Nepal | Simulations | Glacier outburst floods susceptibility mapping | Advanced Land Observing Satellite (ALOS)—Phased Array L-band Synthetic Aperture Radar (PALSAR) Digital Elevation Model (DEM) | 12.5 m | 46 days |
Deloriya et al. (2022) [42] | Jagatsinghpur, India | Decision Tree (DT), Random Forest (RF), and Gradient-boosted Decision Trees | Flood susceptibility mapping | CartoDEM | 2.5 m | 126 days |
(GBDT) | (generated using CartoSat-1 stereo pairs) | |||||
Memon et al. (2015) [6] | Pakistan | Extracting hydrological parameters | Delineating and mapping of surface water and flood inundated areas | MODIS TERRA & Landsat-7 Enhanced Thematic Mapper (ETM)+ | 500 m and 30 m | 1–2 days, 16 days |
Singha et al. (2020) [43] | Bangladesh | GEE platform | Extracting flood and flood affected paddy fields | Sentinel-1 Synthetic Aperture Radar (SAR) & | 10 m and 10–60 m | 6 days |
Sentinel-2 Multi Spectral Instrument (MSI) | ||||||
Fakhruddin et al. (2015) [44] | Kaijuri Union, Bangladesh | Probabilistic forecast | Flood risk mapping | Community response data | - | - |
Islam et al. (2022) [36] | Kisoreganj, Bangladesh | Bivariate statistical modeling and Multi Criteria Decision Analysis (MCDA) | Flash flood vulnerability mapping | Sentinel 2 | 60 m and 30 m | 6 days |
(MSI) and the Shuttle Radar Topography Mission (SRTM) DEM | ||||||
Vemula et al. (2020) [34] | Hyderabad, India | Geophysical Fluid Dynamics Laboratory-Coupled Model 3 | Flood vulnerability mapping | Carto- DEM | 30 m | 126 days |
Ahmed & Kanthi, (2018) [30] | Chennai, India | Biophysical indices and ISO classification | Damage assessment | Landsat-8, Sentinel-1 and | 30 m, 10 m, and 2.5 m | 16 days, 6 days, 126 days |
and vulnerability mapping | CartoDEM-3 R1 data | |||||
Rinzin et al. (2021) [45] | Butan, Himalaya | GIS, (Analytical Hierarchy Process) AHP -MCDA | Glacier outburst flood hazard mapping | Corona Key Hole (KH)-4, Sentinel-2, & Sentinel-1 | 1.8–7.6 m, 10 m, 20 m | 10 days |
Shrestha et al. (2010) [46] | Koshi basin, Nepal | Dambreak model | Glacial lake outburst flood risk assessment | SRTM- DEM | 90 m | 11 days |
Rounce et al. (2016) [47] | Nepal Himalaya | Remote hazard assessment | Glacial lake outburst floods mapping | Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), Landsat 4/5 Thematic Mapper (TM), Landsat 7 (ETM+), and Landsat -8 | 30 m, 10 m, 15 m, and 30 m | 16 days |
Sanyal & Lu, (2005) [48] | West Bengal, India | Semi-automatic digital image processing | Flood vulnerability mapping | ASTER DEM, Landsat 7 (ETM+) ERS-1 Synthetic Aperture Radar (SAR) | 30 m, 15 m, and 26 m | 16 days |
Sagintayev et al. (2012) [49] | Pishin Lora basin, Pakistan | Soil and Water | Construction and calibration of rainfall-runoff models | SRTM-DEM, NASA’s Tropical Rainfall Measuring Mission (TRMM) | 90 m, and 0.25 m | 11 days, 91 min |
Assessment tool (SWAT) | ||||||
Samarasinghe et al. (2022) [31] | Kelani river basin, Sri Lanka | Classification, Peak over threshold (POT) method, Nonparametric tests | LULC mapping and POT analysis | Landsat 5 TM, and Landsat 8 | 30 m, and 30 m | 16 days |
Parajuli et al. (2023) [50] | Siraha MC, Nepal | GIS and AHP | Flood susceptibility and evacuation route mapping | ALOS PALSAR, SENTINEL-2A | 12.5 m, 10 m | 46 days, 10 days |
Zzaman et al. (2021) [28] | Sangu river basin, Bangladesh | GIS, and AHP | Flood hazard mapping | SRTM-DEM | 90 m | 11 days |
Rizwan et al. (2022) [15] | Indus River basin, Pakistan | Integrated flood analysis system (IFAS) model | Future flood risks mapping | Beijing Climate Center Climate System Model (BCC-CSM1-1), Beijing Normal University Earth System Model (BNU-ESM), Max Planck Institute for Meteorology Earth System Model-Low Resolution (MPI-ESM-LR), Institut Pierre-Simon Laplace Climate Model-Low Resolution (IPSL-CM5A-LR), IPSL-CM5A- (Medium Resolution) MR, Geophysical Fluid Dynamics Laboratory Earth System Model version 2M (GFDL-ESM2M) | Range from ~2°x~3.75° | 16 days |
Rijal et al. (2018) [27] | Birendranagar, Nepal | Maximum Likelihood Classification (MLC) algorithm | Flood hazard mapping | Landsat 5 TM, Landsat Landsat 7 (ETM+) | 30 m, 15 m | |
Allen et al. (2022) [51] | Himalayan basin, Nepal | Glacial Lake Outburst Flood (GLOF) modelling and simulating | Glacial lake outburst flood mapping | SRTM -DEM, Pléiades DEM | 30 m, 1 m | 11 days, 26 days |
Sajjad et al. (2020) [7] | Panjab, Pakistan | Supervised classification | Inundation mapping | Landsat 8 | 30 m | 16 days |
Ahmed et al. (2022) [52] | Jhelum Basin, Kashmir | Combined approaches of RS, GIS | Assessment of GLOF propagation and inundation mapping | Resourcesat-2 LISS-IV, | 5.8 m, 12 m, 30 m, 12.5 m, 90 m | 5 days, 6 days, 16 days |
Sentinel-2A, Landsat TM, Landsat ETM, Landsat | ||||||
ETM+, and Landsat-8, ALOS PALSAR, SRTM-DEM | ||||||
Bhuyan et al. (2024) [53] | Assam, India | GIS-MCDA | Identification and mapping of flood hazards, flood vulnerability | Landsat 8, SRTM-DEM | 30 m, 30 m | 16 days, 11 days |
Ranger et al. (2010) [10] | Mumbai, India | Storm Water Management Model (SWMM) | Future risk mapping | Indian Remote Sensing Linear Imaging Self-Scanning Sensor (IRS LISS III) data | 10 m | 5 days |
Hoque et al. (2011) [54] | Maghna river basin, Bangladesh | Supervised classification | Quantifying and mapping flood impacts | Landsat-7 ETM+, RADAR SATELLITE (RADARSAT) | 30 m, 50 m | 16 days, 4 days |
Rehman et al. (2021) [55] | Bhagirathi sub-basin, India | GIS-MCDA | Ecological vulnerability and risk mapping | IRS-P6 LISS III, SRTM-DEM, Moderate Resolution Imaging Spectroradiometer (MODIS-MCD12Q1), Landsat-8 | 24 m, 30 m, 500 m, 30 m | 5 days, 11 days, 8 days |
Saha & Agrawal. (2020) [33] | Prayagraj district, India | GIS-MCDA | Mapping and assessment of food risk | SRTM-DEM, Landsat 8 | 90 m, 30 m | 11 days, 16 days |
Wijesinghe et al. (2023) [56] | Southern Sri Lanka | GIS-MCDA | Flood hazard vulnerability modeling | Landsat-8 | 30 m | 16 days |
Serial No. | Keywords | No of Occurrence | Total Link Strength |
---|---|---|---|
1 | climate change | 360 | 359 |
2 | vulnerability | 224 | 224 |
3 | risk | 199 | 197 |
4 | impact | 192 | 191 |
5 | flood | 162 | 158 |
6 | adaptation | 153 | 153 |
7 | model | 153 | 151 |
8 | management | 152 | 151 |
9 | hazard | 151 | 150 |
10 | Bangladesh | 141 | 140 |
Serial No. | Name of Author and Year | Citations |
---|---|---|
1 | Zscheischler et al., 2020 [1] | 669 |
2 | Sanyal & Lu, 2004 [48] | 621 |
3 | Bassi et al., 2014 [59] | 551 |
4 | Mirza, 2011 [14] | 436 |
5 | Bhatta, 2009 [38] | 432 |
6 | Ranger et al., 2011 [10] | 333 |
7 | Sheppard & Cizek, 2009 [60] | 329 |
8 | Sun & Scanlon, 2019 [61] | 314 |
9 | Comiti, 2011 [62] | 235 |
10 | Sanyal & Lu, 2005 [63] | 230 |
Serial No. | Author | Documents | Citations | Total Link Strength |
---|---|---|---|---|
1 | Islam, Abureza MD Towfiqul | 21 | 657 | 276 |
2 | Shah, Ashfaq Ahmad | 23 | 641 | 741 |
3 | Rana, Irfan Ahmad | 20 | 612 | 367 |
4 | Pal, Subodh Chandra | 14 | 490 | 277 |
5 | Chakrabortty, Rabin | 8 | 452 | 196 |
6 | Talukdar, Swapan | 10 | 405 | 125 |
7 | Ye, Jingzhong | 5 | 367 | 358 |
8 | Ullah, Raza | 5 | 301 | 239 |
9 | Jamshed, Ali | 11 | 291 | 281 |
10 | Chowdhuri, Indrajit | 5 | 280 | 115 |
Serial No. | Name of University/Institute | Year | Citations |
---|---|---|---|
1 | University of Bern, Switzerland | 2020 | 669 |
2 | National University of Singapore, Singapore | 2004 | 621 |
3 | University of Delhi, India | 2014 | 551 |
4 | University of Toronto, Canada | 2011 | 436 |
5 | Jadavpur University, India | 2009 | 432 |
6 | London School of Economics and Political Science, England | 2011 | 333 |
7 | University of British Columbia, Canada | 2009 | 329 |
8 | University of Texas, Austin, USA | 2019 | 314 |
9 | Free University of Bozen-Bolzano, Italy | 2011 | 235 |
10 | National University of Singapore, Singapore | 2005 | 230 |
Serial No. | Name of Organization/Institute | Documents | Citations | Link Strength |
---|---|---|---|---|
1 | Chinese Academy of Sciences, China | 80 | 1213 | 715 |
2 | Indian Institute of Technology, India | 63 | 1142 | 300 |
3 | Begum Rokeya University, Bangladesh | 49 | 1079 | 712 |
4 | Asian Institute of Technology, Thailand | 31 | 1028 | 618 |
5 | Duy Tan University, Vietnam | 9 | 837 | 368 |
6 | Nanjing Univ. Infor. Sci & Techno, China | 39 | 676 | 632 |
7 | University of Peshawar, Pakistan | 18 | 619 | 403 |
8 | University of Zurich, Switzerland | 12 | 612 | 232 |
9 | Tarbiat Modares University, Iran | 13 | 570 | 335 |
10 | University of Burdwan, India | 23 | 569 | 381 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madushani, J.A.T.; Withanage, N.C.; Mishra, P.K.; Meraj, G.; Kibebe, C.G.; Kumar, P. Thematic and Bibliometric Review of Remote Sensing and Geographic Information System-Based Flood Disaster Studies in South Asia During 2004–2024. Sustainability 2025, 17, 217. https://doi.org/10.3390/su17010217
Madushani JAT, Withanage NC, Mishra PK, Meraj G, Kibebe CG, Kumar P. Thematic and Bibliometric Review of Remote Sensing and Geographic Information System-Based Flood Disaster Studies in South Asia During 2004–2024. Sustainability. 2025; 17(1):217. https://doi.org/10.3390/su17010217
Chicago/Turabian StyleMadushani, Jathun Arachchige Thilini, Neel Chaminda Withanage, Prabuddh Kumar Mishra, Gowhar Meraj, Caxton Griffith Kibebe, and Pankaj Kumar. 2025. "Thematic and Bibliometric Review of Remote Sensing and Geographic Information System-Based Flood Disaster Studies in South Asia During 2004–2024" Sustainability 17, no. 1: 217. https://doi.org/10.3390/su17010217
APA StyleMadushani, J. A. T., Withanage, N. C., Mishra, P. K., Meraj, G., Kibebe, C. G., & Kumar, P. (2025). Thematic and Bibliometric Review of Remote Sensing and Geographic Information System-Based Flood Disaster Studies in South Asia During 2004–2024. Sustainability, 17(1), 217. https://doi.org/10.3390/su17010217