Integrating Remote Sensing Techniques and Allometric Models for Sustainable Carbon Sequestration Estimation in Prosopis cineraria-Druce Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Study Site
2.2. Sample Processing and Laboratory Measurements
2.3. Carbon Storage and Sequestration
2.4. Aboveground Biomass
2.5. Developing a Local Prosopis cineraria-Druce AGB Model
2.6. Testing Existing Allometric Model Equations
2.7. Developing a Local Remote Sensing-Based AGB Model
3. Results
3.1. Destructive AGB Measurements
3.2. New In Situ Aboveground Biomass Models
3.3. Remote Sensing-Based New Aboveground Biomass Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jinu, U.; Gomathi, M.; Saiqa, I.; Geetha, N.; Benelli, G.; Venkatachalam, P. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microb. Pathog. 2017, 105, 86–95. [Google Scholar] [CrossRef] [PubMed]
- El-Keblawy, A.; Abdelfatah, M.A. Impacts of native and invasive exotic Prosopis congeners on soil properties and associated flora in the arid United Arab Emirates. J. Arid. Environ. 2014, 100, 1–8. [Google Scholar] [CrossRef]
- Baibout, M.; Corcket, E.; Kothari, S.L.; Fievet, V. Ecosystem services provided by Prosopis cineraria (L.) Druce in the drylands of Southern and Western Asia. Bot. Lett. 2022, 169, 30–42. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, G.; Pandey, S.N.; Verma, B.; Pal, V.; Agrawal, S.S. Prosopis cineraria and its various therapeutic effects with special reference to diabetes: A novel approach. Int. J. Pharm. Sci. Rev. Res. 2014, 27, 328–333. [Google Scholar]
- Khatri, A.; Rathore, A.; Patil, U.K. Prosopis cineraria (L.) druce: A boon plant of desert—An overview. Int. J. Biomed. Adv. Res. 2010, 1, 141–149. [Google Scholar] [CrossRef]
- Howari, F.M.; Sharma, M.; Nazzal, Y.; El-Keblawy, A.; Mir, S.; Xavier, C.M.; Salem, I.B.; Al-Taani, A.A.; Alaydaroos, F. Changes in the invasion rate of Prosopis juliflora and its impact on depletion of groundwater in the northern part of the United Arab Emirates. Plants 2022, 11, 682. [Google Scholar] [CrossRef]
- Rani, B.; Singh, U.; Sharma, R.; Gupta, A.; Dhawan, N.G.; Sharma, A.K.; Sharma, S.; Maheshwari, R.K. Prosopis cineraria (L.) Druce: A desert tree to brace livelihood in Rajasthan. Asian J. Pharm. Res. Health Care 2013, 5, 58–64. [Google Scholar]
- Aspinall, S. Environmental Development and Protection in the UAE. United Arab. Emir. A New Perspect. 2001, 277–304. [Google Scholar]
- Hegazy, A.K.; Doust, J.L. Plant Ecology in the Middle East; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Girase, M.V.; Jadhav, M.L.; Jain, A.S. Prosopis Spicigera: A nature’s gift. Int. J. Pharm. Chem. Anal. 2016, 3, 49–52. [Google Scholar] [CrossRef]
- Bolin, J.F.; Lupton, D.; Musselman, L.J. Hydnora arabica (Aristolochiaceae), a new species from the Arabian Peninsula and a key to Hydnora. Phytotaxa 2018, 338, 99–108. [Google Scholar] [CrossRef]
- Arora, J.; Goyal, S.; Ramawat, K.G. Biodiversity, biology and conservation of medicinal plants of the Thar Desert. Desert Plants Biol. Biotechnol. 2010, 3–36. [Google Scholar]
- Salem, I.B.; El Gamal, M.; Sharma, M.; Howari, F.M.; Nazzal, Y.; Xavier, C.; Almenhali, F.M. Characterization of biochar produced from Al Ghaf Tree for CO2 Capture. Energy Rep. 2022, 8, 525–532. [Google Scholar] [CrossRef]
- Morton, S. Australian Deserts: Ecology and Landscapes; CSIRO PUBLISHING: Clayton, VIC, Australia, 2022. [Google Scholar]
- Saxena, S.K. Taxonomy, Morphology, Growth and Reproduction of Khejri and Its Succession in N.W. India. In Khejri (Prosopis cineraria) in the Indian Desert; Mann, H.S., Saxena, S.K., Eds.; CAZRI Monograph: Jodhpur, India, 2022; Volume 11, pp. 5–13. [Google Scholar]
- Roshetko, J.M.; Gutteridge, R.C. (Eds.) Nitrogen fixing fodder trees (Appendix D: Special FACT sheets). In Nitrogen Fixing Trees for Fodder Production—A Field Manual; Winrock International: Morrilton, AR, USA, 1996; pp. 81–125. [Google Scholar]
- Tanwar, S.P.S.; Kumar, P.; Verma, A.; Bhatt, R.K.; Singh, A.; Lal, K.; Patidar, M.; Mathur, B.K. Carbon sequestration potential of agroforestry systems in the Indian arid zone. Curr. Sci. 2019, 117, 2014–2022. [Google Scholar] [CrossRef]
- Grünzweig, J.M.; Lin, T.; Rotenberg, E.; Schwartz, A.; Yakir, D. Carbon sequestration in arid-land forest. Glob. Change Biol. 2003, 9, 791–799. [Google Scholar] [CrossRef]
- Murthy, I.K.; Gupta, M.; Tomar, S.; Munsi, M.; Tiwari, R.; Hegde, G.T.; Ravindranath, N.H. Carbon sequestration potential of agroforestry systems in India. J. Earth Sci. Clim. Change 2013, 4, 1–7. [Google Scholar] [CrossRef]
- Jaiswal, D.G.; Maheta, V.R.; Patel, Y.B.; Pandya, H.A. Carbon stock estimation major tree species in Attarsumba range, Gandhinagar forest division, India. Ann. Biol. Res. 2014, 5, 46–49. [Google Scholar]
- Giri RK, K.V.; Madla, V.R. Study and Evaluation of Carbon Sequestration using Remote Sending and GIS: A Review on Various Techniques. Int. J. Civ. Eng. Technol. 2017, 8, 287–300. [Google Scholar]
- Vashum, K.T.; Jayakumar, S. Methods to estimate above-ground biomass and carbon stock in natural forests—A review. J. Ecosyst. Ecography 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Khan, P.; Ullah, K.; Hung, B.M.; Ahmad, A.; Lee, S.Y.; Hai, L.D.; Ahmad, S.; Khan, F.; Ullah, R.; Ullah, S.; et al. Assessing the Biomass and Carbon Productivity of Pure Pinus willachiana Forest in Kumrat Valley, Pakistan. Biol. Bull. 2024, 51, 1863–1876. [Google Scholar] [CrossRef]
- Dilling, L.; King, A.W.; Fairman, D.M.; Houghton, R.A.; Marland, G.; Rose, A.Z.; Wilbanks, T.J.; Zimmerman, G.P. What Is the Carbon Cycle and Why Do We Care. Draft by SOCCR 2006, CCSP Product, 2. U.S. Climate Change Science Program, Synthesis and Assessment Product 2.2. Available online: https://sciencepolicy.colorado.edu/admin/publication_files/2006.26.pdf (accessed on 20 December 2024).
- Latifah, S.; Purwoko, A.; Hartini, K.S.; Fachrudin, K.A. Allometric models to estimate the aboveground biomass of forest: A literature review. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1122, p. 012047. [Google Scholar]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.; Eamus, D.; Kira, T. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Gahagan, A.; Giardina, C.P.; King, J.S.; Binkley, D.; Pregitzer, K.S.; Burton, A.J. Carbon fluxes, storage and harvest removals through 60years of stand development in red pine plantations and mixed hardwood stands in Northern Michigan, USA. For. Ecol. Manag. 2015, 337, 88–97. [Google Scholar] [CrossRef]
- Mosseler, A.; Major, J.; Labrecque, M.; Larocque, G. Allometric relationships in coppice biomass production for two North American willows (Salix sp.) across three different sites. For. Ecol. Manag. 2014, 20, 190–196. [Google Scholar] [CrossRef]
- Hunter, M.O.; Keller, M.; Victoria, D.; Morton, D.C. Tree height and tropical forest biomass estimation. Biogeosciences 2013, 10, 8385–8399. [Google Scholar] [CrossRef]
- Cai, S.; Kang, X.; Zhang, L. Allometric models for aboveground biomass of ten tree species in northeast China. Ann. For. Res. 2013, 56, 105–122. [Google Scholar]
- Zarzosa, P.S.; Navarro-Cerrillo, R.M.; Mc Cubbin, E.P.; Cruz, G.; Lopez, M. Biomass estimation models for four priority Prosopis species: Tools required for forestry management in overexploited arid ecosystems. J. Arid. Environ. 2023, 209, 104904. [Google Scholar] [CrossRef]
- Muturi, G.M.; Kariuki, J.G.; Poorter, L.; Mohren, G.M. Allometric equations for estimating biomass in naturally established Prosopis stands in Kenya. J. Hortic. For. 2011, 4, 69–77. [Google Scholar]
- Batanouny, K.H. Plants in the Deserts of the Middle East; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Searle, M. Geology of the Oman Mountains, Eastern Arabia; Springer Nature: Dordrecht, The Netherlands, 2019; pp. 379–410. [Google Scholar]
- Whitford, W.G.; Duval, B.D. Ecology of Desert Systems; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Asari, N.; Suratman, M.N.; Jaafar, J.; Khalid, M.M. Estimation of aboveground biomass for oil palm plantations using allometric equations. In Proceedings of the 4th International Conference on Biology, Environment and Chemistry, Phuket, Thailand, 23–24 November 2013. [Google Scholar]
- King, D.A.; Davies, S.J.; Tan, S.; Noor NS, M. The role of wood density and stem support costs in the growth and mortality of tropical trees. J. Ecol. 2006, 94, 670–680. [Google Scholar] [CrossRef]
- Walker, S.M.; Murray, L.; Tepe, T. Allometric Equation Evaluation Guidance Document; Winrock International: Little Rock, AR, USA, 2016. [Google Scholar]
- Fu, W.; Wu, Y. Estimation of aboveground biomass of different mangrove trees based on canopy diameter and tree height. Procedia Environ. Sci. 2011, 10, 2189–2194. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2016, I.C. Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014, 1454, 147. Available online: https://www.ipcc.ch/report/ar5/wg3/ (accessed on 20 December 2024).
- Goslee, K.; Walker, S.M.; Grais, A.; Murray, L.; Casarim, F.; Brown, S. Module C-CS: Calculations for estimating carbon stocks. In Leaf Technical Guidance Series for the Development of a Forest Carbon Monitoring System for REDD; 2016; Available online: https://winrock.org/wp-content/uploads/2018/08/Winrock-Guidance-on-calculating-carbon-stocks-1.pdf (accessed on 20 December 2024).
- Wang, G.; Zhang, M.; Gertner, G.Z.; Oyana, T.; McRoberts, R.E.; Ge, H. Uncertainties of mapping aboveground forest carbon due to plot locations using national forest inventory plot and remotely sensed data. Scand. J. For. Res. 2011, 26, 360–373. [Google Scholar] [CrossRef]
- Ma, S.; He, F.; Tian, D.; Zou, D.; Yan, Z.; Yang, Y.; Zhou, T.; Huang, K.; Shen, H.; Fang, J. Variations and determinants of carbon content in plants: A global synthesis. Biogeosciences 2018, 15, 693–702. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change, IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- Howard, J.; Hoyt, S.; Isensee, K.; Telszewski, M.; Pidgeon, E. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and SeagrassesCIFOR publications, Bogor, Indonesia. 2014. Available online: https://www.cifor.org/knowledge/publication/5095 (accessed on 20 December 2024).
- Amiri, A.; Ottelin, J.; Sorvari, J.; Junnila, S. Cities as Carbon Sinks—Classification of Wooden Buildings. Environ. Res. Lett. 2020, 15, 094076. [Google Scholar] [CrossRef]
- Al-Nadabi, A.S.; Sulaiman, H. Screening Tree Species for Carbon Storage Potential through Urban Tree Inventory in Planted Vegetation. Open J. For. 2022, 13, 61–74. [Google Scholar] [CrossRef]
- Conti, G.; Gorne, L.D.; Zeballos, S.R.; Lipoma, M.L.; Gatica, G.; Kowaljow, E.; Whitworth-Hulse, J.I.; Cuchietti, A.; Poca, M.; Pestoni, S.; et al. Developing allometric models to predict the individual aboveground biomass of shrubs worldwide. Glob. Ecol. Biogeogr. 2019, 28, 961–975. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Zhang, G.; Wang, J. Estimating nitrogen status of rice using the image segmentation of GR thresholding method. Field Crops Res. 2013, 149, 33–39. [Google Scholar] [CrossRef]
- Petach, A.R.; Toomey, M.; Aubrecht, D.M.; Richardson, A.D. Monitoring vegetation phenology using an infrared-enabled security camera. Agric. For. Meteorol. 2014, 195, 143–151. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Hague, T.; Tillett, N.D.; Wheeler, H. Automated crop and weed monitoring in widely spaced cereals. Precis. Agric. 2006, 7, 21–32. [Google Scholar] [CrossRef]
- Putra, B.T.W.; Soni, P. Evaluating NIR-Red and NIR-Red edge external filters with digital cameras for assessing vegetation indices under different illumination. Infrared Phys. Technol. 2017, 81, 148–156. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberl, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground Based Multispectral Data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Ju, C.-H.; Tian, Y.-C.; Yao, X.; Cao, W.-X.; Zhu, Y.; Hannaway, D. Estimating leaf chlorophyll content using red edge parameters. Pedosphere 2010, 20, 633–644. [Google Scholar] [CrossRef]
- Pettorelli, N. The Normalized Difference Vegetation Index; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Wiman, B.L.; Gaydarova, P.N. Spectral composition of shade light in coastal-zone oak forests in SE Bulgaria, and relationships with leaf area index: A first overview. Trees 2008, 22, 63–76. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Zhen, Z.; Chen, S.; Qin, W.; Li, J.; Mike, M.; Yang, B. A Modified Transformed Soil Adjusted Vegetation Index for Cropland in Jilin Province, China. Acta Geol. Sin.-Engl. Ed. 2019, 93, 173–176. [Google Scholar] [CrossRef]
- Gilabert, M.A.; González-Piqueras, J.; Garcıía-Haro, F.J.; Meliá, J. A generalized soil-adjusted vegetation index. Remote Sens. Environ. 2002, 82, 303–310. [Google Scholar] [CrossRef]
- Belhadj, A.; Boulghobra, N.; Demnati Allache, F. Multi-temporal Landsat imagery and MSAVI index for monitoring rangeland degradation in arid ecosystem, case study of Biskra (southeast Algeria). Environ. Monit. Assess. 2023, 195, 656. [Google Scholar] [CrossRef]
- Escobar, D.E.; Everitt, J.H.; Davis, M.R.; Fletcher, R.S.; Yang, C. Relationship between plant spectral reflectances and their image tonal responses on aerial photographs. Geocarto Int. 2002, 17, 65–76. [Google Scholar] [CrossRef]
- Poorazimy, M.; Shataee, S.; McRoberts, R.E.; Mohammadi, J. Integrating airborne laser scanning data, space-borne radar data and digital aerial imagery to estimate aboveground carbon stock in Hyrcanian forests, Iran. Remote Sens. Environ. 2020, 240, 111669. [Google Scholar] [CrossRef]
- Dhupper, R. Growth response of three important differentially water stress tolerant species during early stage of growth. Int. J. Environ. Sci. 2012, 3, 550–561. [Google Scholar]
Equation | Source |
---|---|
[20] | |
[48] | |
[48] | |
[29,47] |
No. | Spectral Index Name | Formula Definition | References |
---|---|---|---|
1 | Color Intensity Index | [49] | |
2 | Green–Red Vegetation Index | [50] | |
3 | Visible Atmospherically Resistant Index | [51] | |
4 | Vegetative Index | [52] | |
5 | Excess Color Index | [53] | |
6 | Normalized Difference Red-Edge Index | [54] | |
7 | Simple Ratio Red-Edge Index | [55] | |
8 | Normalized Difference Vegetation Index | [56] | |
9 | Simple Ratio Vegetation Index | [57] | |
10 | Green Ratio Vegetation Index | [58] | |
11 | Canopy Chlorophyll Content Index | [54] | |
12 | Noise-Adjusted Vegetation Index | [53] | |
13 | Chlorophyll Index | [59] | |
14 | Red-Edge Index | [59] | |
15 | Transformed Soil-Adjusted Vegetation Index | [60] | |
16 | Soil-Adjusted Vegetation Index | [61] | |
17 | Modified Soil-Adjusted Vegetation Index | [62] | |
18 | Red–Blue Ratio Index | [63] |
Equation | Factor | Slope (a) | Intercept (b) | R2 | Correlation |
---|---|---|---|---|---|
LnActualAGB 1 | DBH | 1.9498 | −0.9565 | 0.5451 | Medium |
H | 5.6748 | −5.0827 | 0.9385 | High | |
CD | 1.8438 | +2.3221 | 0.3856 | Very low | |
LnAGB1 2 | DBH | 2.2765 | −1.9133 | 0.9763 | High |
H | 3.3652 | +0.0327 | 0.3736 | Low | |
CD | 1.0838 | +3.6482 | 0.1751 | Very Low | |
LnAGB2 3 | DBH | 1.8981 | −1.1746 | 0.8315 | High |
H | 3.8602 | −2.1433 | 0.6339 | Medium | |
CD | 1.5642 | +2.391 | 0.4468 | low | |
LnAGB3 4 | DBH | 2.003 | −1.3579 | 0.8624 | High |
H | 3.8037 | −1.8943 | 0.6339 | Medium | |
CD | 1.5492 | +2.5606 | 0.4093 | low | |
LnAGB4 5 | DBH | 2.4821 | −1.7833 | 0.9999 | Very High |
H | 3.724 | −1.4158 | 0.531 | Medium | |
CD | 0.8443 | +4.8277 | 0.0915 | Very low |
Model | Model Equation |
---|---|
1 | |
2 | |
3 | |
4 | |
5—destructive-driven |
Study/Model | Average AGB Kg/Tree | Average AG Carbon Dioxide Sequestered. t C/Tree |
---|---|---|
Destructive tree (n = 5) | 208.27 | 0.36 |
AGB1 | 231.20 | 0.39 |
AGB2 | 142.40 | 0.25 |
AGB3 | 165.06 | 0.28 |
AGB4 | 512.45 | 0.88 |
Destructive tree (n = 607) | 350.47 | 0.605 |
Model-1 | 591.02 | 1.019 |
Model-2 | 385.31 | 0.665 |
Model-3 | 411.11 | 0.709 |
Model-4 | 1021.88 | 1.763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Jabri, K.; Al-Mulla, Y.; Al-Abri, A.; Al-Battashi, F.; Al-Sulaimani, M.; Tabook, A.; Al-Raba’Ni, S.; Sulaiman, H.; Al-Salmi, N.; Al-Shukaili, T. Integrating Remote Sensing Techniques and Allometric Models for Sustainable Carbon Sequestration Estimation in Prosopis cineraria-Druce Trees. Sustainability 2025, 17, 123. https://doi.org/10.3390/su17010123
Al-Jabri K, Al-Mulla Y, Al-Abri A, Al-Battashi F, Al-Sulaimani M, Tabook A, Al-Raba’Ni S, Sulaiman H, Al-Salmi N, Al-Shukaili T. Integrating Remote Sensing Techniques and Allometric Models for Sustainable Carbon Sequestration Estimation in Prosopis cineraria-Druce Trees. Sustainability. 2025; 17(1):123. https://doi.org/10.3390/su17010123
Chicago/Turabian StyleAl-Jabri, Khaled, Yaseen Al-Mulla, Ahmed Al-Abri, Fathiya Al-Battashi, Mohammed Al-Sulaimani, Ahmed Tabook, Salma Al-Raba’Ni, Hameed Sulaiman, Nasser Al-Salmi, and Talal Al-Shukaili. 2025. "Integrating Remote Sensing Techniques and Allometric Models for Sustainable Carbon Sequestration Estimation in Prosopis cineraria-Druce Trees" Sustainability 17, no. 1: 123. https://doi.org/10.3390/su17010123
APA StyleAl-Jabri, K., Al-Mulla, Y., Al-Abri, A., Al-Battashi, F., Al-Sulaimani, M., Tabook, A., Al-Raba’Ni, S., Sulaiman, H., Al-Salmi, N., & Al-Shukaili, T. (2025). Integrating Remote Sensing Techniques and Allometric Models for Sustainable Carbon Sequestration Estimation in Prosopis cineraria-Druce Trees. Sustainability, 17(1), 123. https://doi.org/10.3390/su17010123