Optimizing an Anaerobic Hybrid Reactor Series for Effective High-Strength Fresh Leachate Treatment and Biogas Generation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anaerobic Hybrid Reactor (AHR) Series System
2.2. Experimental Procedure
2.3. Sample Collection and Analysis Methods
3. Results and Discussion
3.1. COD Removal Efficiency
3.2. Removal of Organics in Solid
3.3. Quantitative Assessment of Biogas and Methane Production
3.4. Assessment of the Quality of Biogas and CH4 Production
3.5. Methane Production Rate
3.6. Identifying the Optimum OLR
3.7. Biomass and Microbial Activities
4. Future Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.; Mubeen, I.; Yu, C.; Zhu, G.; Khalid, A.; Yan, M. Waste to energy incineration technology: Recent development under climate change scenarios. Waste Manag. Res. 2022, 40, 1708–1729. [Google Scholar] [CrossRef] [PubMed]
- Mabalane, P.; Oboirien, B.; Sadiku, E.; Masukume, M. A techno-economic analysis of anaerobic digestion and gasification hybrid system: Energy recovery from municipal solid waste in south Africa. Waste Biomass Valor. 2020, 12, 1167–1184. [Google Scholar] [CrossRef]
- Tun, M.; Palacky, P.; Juchelková, D.; Síťař, V. Renewable waste-to-energy in Southeast Asia: Status, challenges, opportunities, and selection of waste-to-energy technologies. Appl. Sci. 2020, 10, 7312. [Google Scholar] [CrossRef]
- Devendran, A.A.; Mainali, B.; Khatiwada, D.; Golzar, F.; Mahapatra, K.; Toigo, C.H. Optimization of municipal waste streams in achieving urban circularity in the city of Curitiba, Brazil. Sustainability 2023, 15, 3252. [Google Scholar] [CrossRef]
- Lara-Topete, G.O.; Yebra-Montes, C.; Orozco-Nunnelly, D.A.; Robles-Rodriguez, C.E.; Gradilla-Hernández, M.S. An integrated environmental assessment of MSW management in a large city of a developing country: Taking the first steps towards a circular economy model. Front. Environ. Sci. 2022, 10, 838542. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Elbl, J.; Koda, E.; Adamcová, D.; Bilgin, A.; Lukas, V.; Podsalek, A.; Kintl, A.; Wdowska, M.; Brtnickỳ, M.; et al. Chemical composition and hazardous effects of leachate from the active municipal solid waste landfill surrounded by farmlands. Sustainability 2020, 12, 4531. [Google Scholar] [CrossRef]
- Chakri, A.; Ouarghi, H.; Ghalit, M.; Ahari, M. Elimination of orthophosphate from synthetic leachate using adsorption on bentonite clay. E3S Web Conf. 2023, 364, 02011. [Google Scholar]
- Pinpatthanapong, K.; Khetkorn, W.; Honda, R.; Phattarapattamawong, S.; Treesubsuntorn, C.; Panasan, N.; Boonmawat, P.; Tianthong, Y.; Lipiloet, S.; Sorn, S.; et al. Effects of high-strength landfill leachate effluent on stress-induced microalgae lipid production and post-treatment micropollutant degradation. J. Environ. Manag. 2022, 324, 116367. [Google Scholar] [CrossRef]
- Feng, D.; Song, C.; Mo, W. Environmental, human health, and economic implications of landfill leachate treatment for per-and polyfluoroalkyl substance removal. J. Environ. Manag. 2021, 289, 112558. [Google Scholar] [CrossRef]
- Reddy, C.; Rao, D.; Kalamdhad, A. Statistical modelling and assessment of landfill leachate emission from fresh municipal solid waste: A laboratory-scale anaerobic landfill simulation reactor study. Waste Manag. Res. 2020, 38, 1161–1175. [Google Scholar] [CrossRef]
- Abouri, M.; Elmaguiri, A.; Souabi, S.; Aboulhassan, M.A. Valorisation of a wastewater in the treatment of leachate from municipal solid waste in Morocco. Int. J. Environ. Waste Manag. 2019, 23, 27–39. [Google Scholar] [CrossRef]
- Wang, Z.; Banks, C.J. Treatment of a high-strength sulphate-rich alkaline leachate using an anaerobic filter. Waste Manag. 2007, 27, 359–366. [Google Scholar] [CrossRef]
- Liu, J.; Luo, J.; Zhou, J.; Liu, Q.; Qian, G.; Xu, Z.P. Inhibitory effect of high-strength ammonia nitrogen on bio-treatment of landfill leachate using EGSB reactor under mesophilic and atmospheric conditions. Bioresour. Technol. 2012, 113, 239–243. [Google Scholar] [CrossRef]
- Xaypanya, P.; Takemura, J.; Chiemchaisri, C.; Hul, S.; Tanchuling, M. Characterization of landfill leachates and sediments in major cities of Indochina peninsular countries heavy metal partitioning in municipal solid waste leachate. Environments 2018, 5, 65. [Google Scholar] [CrossRef]
- Zloch, J.; Vaverková, M.D.; Adamcová, D.; Radziemska, M.; Vyhnánek, T.; Trojan, V.; Đorđević, B.; Brtnický, M. Seasonal changes and toxic potency of landfill leachate for white mustard (Sinapis alba L.). Acta Univ. Agric. Silvic. Mendel. Brun. 2018, 66, 235–242. [Google Scholar] [CrossRef]
- Metcalf & Eddy Inc. Wastewater Engineering: Treatment and Reuse, 4th ed.; McGraw Hill: New York, NY, USA, 2003. [Google Scholar]
- Banerjee, S.; Prasad, N.; Selvaraju, S. Reactor design for biogas production-a short review. J. Energy Power Technol. 2022, 4, 004. [Google Scholar] [CrossRef]
- Anjum, M.; Anees, M.; Qadeer, S.; Khalid, A.; Kumar, R.; Barakat, M. A recent progress in the leachate pretreatment methods coupled with anaerobic digestion for enhanced biogas production: Feasibility, trends, and techno-economic evaluation. Int. J. Mol. Sci. 2023, 24, 763. [Google Scholar] [CrossRef]
- Siciliano, A.; Limonti, C.; Curcio, G.; Calabrò, V. Biogas generation through anaerobic digestion of compost leachate in semi-continuous completely stirred tank reactors. Processes 2019, 7, 635. [Google Scholar] [CrossRef]
- Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system. Waste Manag. 2010, 30, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Dhamsaniya, M.; Sojitra, D.; Modi, H.; Shabiimam, M.A.; Kandya, A. A review of the techniques for treating the landfill leachate. Mater. Today Proc. 2023, 77, 358–364. [Google Scholar] [CrossRef]
- Bera, S.; Godhaniya, M.; Kothari, C. Emerging and advanced membrane technology for wastewater treatment: A review. J. Basic Microbiol. 2021, 62, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, M.A.; Khan, N.A.; Khan, A.H.; Ahmed, S.; Siddiqui, A.A.; Husain, A.; Tirth, V.; Islam, S.; Shukla, N.K.; Changani, F.; et al. Upgrading combined anaerobic-aerobic UASB-FPU to UASB-DHS system: Cost comparison and performance perspective for developing countries. J. Clean. Prod. 2021, 284, 124723. [Google Scholar] [CrossRef]
- Sutthiprapa, S.; Towprayoon, S.; Chiemchaisri, C.; Chaiprasert, P.; Wangyao, K. Performance Comparison between Anaerobic Hybrid Reactor and Anaerobic Continuous Stirred-Tank Reactor for High-Strength Fresh Leachate Treatment. Pol. J. Environ. Stud. 2024, 33, 2307–2315. [Google Scholar] [CrossRef]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Burrière, P.; Carballa, M.; de Wilde, V.; et al. Towards a standardization of biomethane potential tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef]
- American Public Health Association. APHA Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Maleki, E.; Catalan, L.; Liao, B. Effect of organic loading rate on the performance of a submerged anaerobic membrane bioreactor (SAnMBR) for malting wastewater treatment and biogas production. J. Chem. Technol. Biotechnol. 2018, 93, 1636–1647. [Google Scholar] [CrossRef]
- Genethliou, C.; Tatoulis, T.; Charalampous, N.; Dailianis, S.; Tekerlekopoulou, A.G.; Vayenas, D.V. Treatment of raw sanitary landfill leachate using a hybrid pilot-scale system comprising adsorption, electrocoagulation and biological process. J. Environ. Manag. 2023, 330, 117129. [Google Scholar] [CrossRef]
- Rinquest, Z.; Basitere, M.; Mewa-Ngongang, M.; Ntwampe, S.K.O.; Njoya, M. Optimization of the COD Removal Efficiency for a Static Granular Bed Reactor Treating Poultry Slaughterhouse Wastewater. Preprints 2019, 2019020036. [Google Scholar]
- Harsha, G.; Maurya, N. Liquid state anaerobic co-digestion of cattle manure and wheat straw at various mix ratios for optimal biogas production. Orient. J. Chem. 2022, 38, 777–784. [Google Scholar] [CrossRef]
- Rumsey, D.J. Statistics for Dummies; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Reddy, C.V.; Rao, D.S.; Kalamdhad, A.S. Combined treatment of high-strength fresh leachate from municipal solid waste landfill using coagulation-flocculation and fixed bed upflow anaerobic filter. J. Water Process Eng. 2022, 46, 102554. [Google Scholar] [CrossRef]
- Safari, E.; Valizadeh, R. Analysis of biological clogging potential in a simulated compacted clay liner subjected to high-strength leachate infiltration. Int. J. Environ. Sci. Technol. 2018, 15, 1029–1038. [Google Scholar] [CrossRef]
- Dang, Y.; Ye, J.; Mu, Y.; Qiu, B.; Sun, D. Effective anaerobic treatment of fresh leachate from MSW incineration plant and dynamic characteristics of microbial community in granular sludge. Appl. Microbiol. Biotechnol. 2013, 97, 10563–10574. [Google Scholar] [CrossRef] [PubMed]
- Dubber, D.; Gray, N.F. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. J. Environ. Sci. Health A 2010, 45, 1595–1600. [Google Scholar] [CrossRef] [PubMed]
- Moujanni, A.; Qarraey, I.; Ouatmane, A. Biogas recovery from fresh landfill leachates by using a coupled air stripping-up follow anaerobic sludge blanket (UASB) process. Environ. Eng. Res. 2020, 27, 200470. [Google Scholar] [CrossRef]
- Liberti, F.; Pistolesi, V.; Mouftahi, M.; Hidouri, N.; Bartocci, P.; Massoli, S.; Zampilli, M.; Fantozzi, F. An incubation system to enhance biogas and methane production: A case study of an existing biogas plant in Umbria, Italy. Processes 2019, 7, 925. [Google Scholar] [CrossRef]
- Ahmad, I.; Abdullah, N.; Chelliapan, S.; Yuzir, A.; Koji, I.; Al-Dailami, A.; Arumugham, T. Effectiveness of anaerobic technologies in the treatment of landfill leachate. In Strategies of Sustainable Solid Waste Management; IntechOpen: London, UK, 2021. [Google Scholar]
- Collivignarelli, M.C.; Abbà, A.; Caccamo, F.; Calatroni, S.; Torretta, V.; Katsoyiannis, I.A.; Miino, M.C.; Rada, E.C. Applications of up-flow anaerobic sludge blanket (UASB) and characteristics of its microbial community: A review of bibliometric trend and recent findings. Int. J. Environ. Res. Public Health 2021, 18, 10326. [Google Scholar] [CrossRef] [PubMed]
- Umiejewska, K. Conversion of organic compounds into biogas on a full scale brewery WWTP using IC reactor. E3S Web Conf. 2019, 116, 00095. [Google Scholar] [CrossRef]
- Yodthongdee, S.; Weerayutsil, P.; Khuanmar, K. Methane production in batch anaerobic digestion of livestock manures with different substrate concentrations. Int. J. Eng. Technol. 2018, 7, 1380. [Google Scholar] [CrossRef]
- Musa, M.; Idrus, S.; Man, H.; Daud, N. Effect of organic loading rate on anaerobic digestion performance of mesophilic (UASB) reactor using cattle slaughterhouse wastewater as substrate. Int. J. Environ. Res. Public Health 2018, 15, 2220. [Google Scholar] [CrossRef] [PubMed]
- Tritt, W.; Kang, H. Slaughterhouse wastewater treatment in a bamboo ring anaerobic fixed-bed reactor. Environ. Eng. Res. 2017, 23, 70–75. [Google Scholar] [CrossRef]
- Pereira, E.L.; Borges, A.C.; da Silva, G.J. Effect of the progressive increase of organic loading rate in an anaerobic sequencing batch reactor for biodiesel wastewater treatment. Water 2022, 14, 223. [Google Scholar] [CrossRef]
- Yilmaz, T.; Erdirencelebi, D.; Berktay, A. Effect of COD/SO42− ratio on anaerobic treatment of landfill leachate during the start-up period. Environ. Technol. 2012, 33, 313–320. [Google Scholar] [CrossRef] [PubMed]
OLR (kgCOD/m3·d) | Biogas Production (mL/Day) | CH4 Production (mL/Day) | ||||
---|---|---|---|---|---|---|
AHR-1 | AHR-2 | AHR Series | AHR-1 | AHR-2 | AHR Series | |
5 | 1404 | 713 | 2117 | 840 | 377 | 1217 |
10 | 3102 | 1435 | 4537 | 1961 | 810 | 2771 |
15 | 4409 | 2067 | 6476 | 2676 | 1181 | 3857 |
20 | 5357 | 2599 | 7956 | 2628 | 1160 | 3788 |
OLR (kgCOD/m3·d) | Cumulative Biogas (mL) | Cumulative CH4 (mL) | ||||
---|---|---|---|---|---|---|
AHR-1 | AHR-2 | AHR Series | AHR-1 | AHR-2 | AHR Series | |
5 | 84,217 | 42,805 | 127,022 | 50,376 | 22,618 | 72,994 |
10 | 186,116 | 86,107 | 272,223 | 117,651 | 48,591 | 166,242 |
15 | 264,537 | 124,012 | 388,549 | 160,577 | 70,840 | 231,417 |
20 | 160,699 | 77,973 | 238,672 | 78,841 | 34,803 | 113,644 |
Day of Operation | AHR-1, Biomass (gVSS) | AHR-2, Biomass (gVSS) | AHR Series, Biomass (gVSS) | Total Biomass (gVSS) | SMA of AHR Series (LCH4/gCOD Removed) | |||
---|---|---|---|---|---|---|---|---|
Suspended | Attached | Suspended | Attached | Suspended | Attached | |||
0 | 149 | 0 | 149 | 0 | 298 | 0 | 298 | - |
60 | 73 | 5 | 50 | 3 | 129 | 8 | 137 | 0.27 |
120 | 97 | 11 | 58 | 9 | 165 | 20 | 185 | 0.35 |
180 | 106 | 13 | 68 | 11 | 204 | 24 | 228 | 0.52 |
210 | 130 | 16 | 74 | 13 | 274 | 29 | 303 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutthiprapa, S.; Towprayoon, S.; Chiemchaisri, C.; Chaiprasert, P.; Wangyao, K. Optimizing an Anaerobic Hybrid Reactor Series for Effective High-Strength Fresh Leachate Treatment and Biogas Generation. Sustainability 2024, 16, 3076. https://doi.org/10.3390/su16073076
Sutthiprapa S, Towprayoon S, Chiemchaisri C, Chaiprasert P, Wangyao K. Optimizing an Anaerobic Hybrid Reactor Series for Effective High-Strength Fresh Leachate Treatment and Biogas Generation. Sustainability. 2024; 16(7):3076. https://doi.org/10.3390/su16073076
Chicago/Turabian StyleSutthiprapa, Sakulrat, Sirintornthep Towprayoon, Chart Chiemchaisri, Pawinee Chaiprasert, and Komsilp Wangyao. 2024. "Optimizing an Anaerobic Hybrid Reactor Series for Effective High-Strength Fresh Leachate Treatment and Biogas Generation" Sustainability 16, no. 7: 3076. https://doi.org/10.3390/su16073076
APA StyleSutthiprapa, S., Towprayoon, S., Chiemchaisri, C., Chaiprasert, P., & Wangyao, K. (2024). Optimizing an Anaerobic Hybrid Reactor Series for Effective High-Strength Fresh Leachate Treatment and Biogas Generation. Sustainability, 16(7), 3076. https://doi.org/10.3390/su16073076