Land Cover Patterns of Urban Lots and Their Contribution to Ecological Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Urban Lot Dataset and Sampling Design
2.3. Land Cover Mapping
2.4. Land Cover Clusters and Ecological Performance
- EF1…7—ecological function from 1 to 7;
- C1…4—cluster from 1 to 4;
- Ʃ—sum;
- LC%—land cover percentage for each land cover type in each of the clusters;
- LCT%—land cover total percentage or sum of all percentages for each land cover type;
- EF1…7 W1….10—ecological function from 1 to 7, weight of each ecological function for the 10 land cover types.
- EP1….7—ecological performance for ecological functions 1 to 7;
- C1…4—cluster from 1 to 4;
- Ʃ—sum;
- EF1….7—ecological function from 1 to 7.
3. Results
3.1. Land Cover Mapping
3.2. Land Cover Clusters and Ecological Performance
4. Discussion
5. Conclusions
- -
- The creation and application of governance instruments for the use of vacant lots;
- -
- The promotion of diagnoses of the neighborhoods of the lots in terms of the equipment and green areas that exist around them and their socioeconomic aspects;
- -
- Attention to residents and their demands, as well as the owners of the lots;
- -
- Understanding of the public perception of the environment and the economic value of ecosystem services for urban residents through a willingness-to-pay (WTP) approach;
- -
- The adoption of actions that are guided by the concept of multifunctionality aiming to cover the multiple socio-ecological functions arising from the lots, including scientific research, such as that related to ecosystem services;
- -
- The quantification of the extent and value of the full range of ecosystem services provided by these lots, including regulatory and habitat services.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carvalho-Ribeiro, S.M.; Boscolo, D.; Ciochetti, G.; Firmino, A.; Guiomar, N. Ecologia da Paisagem no Contexto Luso-Brasileiro; Volume II, Editora Appris. Ltda.: Curitiba, Brazil, 2021; 465p. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Horta, M.B.; Cabral, M.I.; Teixeira, C.P.; Pinto, J.L.C.; Fernandes, G.W.; Nobrega, R.A.A.; Carvalho-Ribeiro, S.M. Paisagem Urbana. In Ecologia da Paisagem no Contexto Luso-Brasileiro; v.2.; Carvalho-Ribeiro, S.M., Boscolo, D., Ciochetti, G., Firmino, A., Guiomas, N., Eds.; Editora Appris. Ltda.: Curitiba, Brazil, 2021. [Google Scholar]
- Kim, G.; Miller, P.A.; Nowak, D.J. Urban vacant land typology: A tool for managing urban vacant land. Sustain. Cities Soc. 2018, 36, 144–156. [Google Scholar] [CrossRef]
- Evans, D.L.; Falagán, N.; Hardman, C.A.; Kourmpetli, S.; Liu, L.; Mead, B.R.; Davies, J.A.C. Eco-system service delivery by urban agriculture and green infrastructure–a systematic review. Ecosyst. Serv. 2022, 54, 101405. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Pro-moting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Grimm, N.B.; Grove, J.M.; Pickett, S.T.A.; Redman, C.L. Integrated approaches to long-term studies of urban ecological systems: Urban ecological systems present multiple challenges to ecol-ogists—Pervasive human impact and extreme heterogeneity of cities, and the need to integrate social and ecological ap-proaches, concepts, and theory. Bioscience 2000, 50, 571–584. [Google Scholar] [CrossRef]
- Haase, A.; Bernt, M.; Großmann, K.; Mykhnenko, V.; Rink, D. Varieties of shrinkage in European cities. Eur. Urban Reg. Stud. 2016, 23, 86–102. [Google Scholar] [CrossRef]
- Szlavecz, K.; Warren, P.; Pickett, S. Biodiversity on the urban landscape. In Human Population: Its Influence on Biological Diversity; Cincotta, R.P., Gorenflo, L.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Chapter 6; pp. 75–101. [Google Scholar]
- Forman, R.T. Urban Ecology: Science of Cities; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Lu, D.; Weng, Q. Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery. Photogramm. Eng. Remote Sens. 2004, 70, 1053–1062. [Google Scholar] [CrossRef]
- Bierwagen, B.G. Connectivity in urbanizing landscapes: The importance of habitat configuration, urban area size, and dispersal. Urban Ecosyst. 2007, 10, 29–42. [Google Scholar] [CrossRef]
- Breuste, J.; Haase, D.; Elmqvist, T. Urban Landscapes and Ecosystem Services. In Ecosystem Services in Agricultural and Urban Landscapes; Wratten, S., Sandhu, H., Cullen, R., Costanza, R., Eds.; Wiley-Blackwell: Oxford, UK, 2013; Chapter 6; pp. 83–104. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Elmqvist, T.; Fragkias, M.; Goodness, J.; Güneralp, B.; Marcotullio, P.J.; McDonald, R.I.; Parnell, S.; Schewenius, M.; Sendstad, M.; Seto, K.C.; et al. Urbanization, Biodiversity and Eco-System Services: Challenges and Opportunities: A Global Assessment; Springer: Cham, The Netherlands, 2013. [Google Scholar]
- MEA. Ecosystems and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Alberti, M.; Marzluff, J.M. Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban Ecosyst. 2004, 7, 241–265. [Google Scholar] [CrossRef]
- Casetta, E.; da Silva, J.M.; Vecchi, D. From Assessing to Conserving Biodiversity: Conceptual and Practical Challenges; Springer: Berlin/Heidelberg, Germany, 2019; 452p. [Google Scholar]
- Dussault, A.C. Functional Biodiversity and the Concept of Ecological Function. Chapter 14. In From Assessing to Conserving Biodiversity: Conceptual and Practical Challenges; Casetta, E., da Silva, J.M., Vecchi, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 297–316. [Google Scholar]
- McDonald, R. Ecosystem service demand and supply along the urban-to-rural gradient. J. Conserv. Plan. 2009, 5, 1–14. [Google Scholar]
- Banerjee, O.; Crossman, N.; de Groot, R. Ecological processes, functions and ecosystem services: Inextricable linkages between wetlands and agricultural systems. In Ecosystem Services in Agricultural and Urban Landscapes; Wratten, S.D., Sandhu, H., Cul-len, R., Costanza, R., Eds.; Wiley–Blackwell: Hoboken, NJ, USA, 2013; pp. 16–27. [Google Scholar] [CrossRef]
- Bolliger, J.; Bättig, M.; Gallati, J.; Kläy, A.; Stauffacher, M.; Kienast, F. Landscape multifunctionality: A powerful concept to identify effects of environmental change. Reg. Environ. Chang. 2011, 11, 203–206. [Google Scholar] [CrossRef]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). The Global Assessment Report on Biodiversity and Ecosystem Services. 2019. Available online: https://ipbes.net/system/tdf/ipbes_global_assessment_report_summary_for_policymakers.pdf?file=1andtype=nodeandid=35329 (accessed on 1 January 2022).
- Oikonomou, V.; Dimitrakopoulos, P.G.; Troumbis, A.Y. Incorporating Ecosystem Function Concept in Environmental Planning and Decision Making by Means of Multi-Criteria Evaluation: The Case-Study of Kalloni, Lesbos, Greece. Environ. Manag. 2011, 47, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Fitter, A.; Elmqvist, T.; Haines-Young, R.; Potschin, M.; Rinaldo, A.; Sëtalä, H.; Stoll-Kleemann, S.; Zobel, M.; Murlis, J. An assessment of ecosystem services and biodiversity in Europe. Chapter 1. In Issues in Envi-ronmental Science and Technology: Ecosystem Services; Hester, R.E., Harrison, R.M., Eds.; RSC Publishing: Washington, DC, USA, 2010; pp. 1–28. [Google Scholar]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Breuste, J.; Schnellinger, J.; Qureshi, S.; Faggi, A. Urban Ecosystem services on the local level: Urban green spaces as providers. Ekologia 2013, 32, 290–304. [Google Scholar] [CrossRef]
- Avissar, R. Potential effects of vegetation on the urban thermal environment. Atmos. Environ. 1996, 30, 437–448. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Haase, D. Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landsc. Urban Plan. 2012, 104, 95–104. [Google Scholar] [CrossRef]
- Suchenwirth, L.; Stümer, W.; Schmidt, T.; Förster, M.; Kleinschmit, B. Large-Scale Mapping of Carbon Stocks in Riparian Forests with Self-Organizing Maps and the k-Nearest-Neighbor Algorithm. Forests 2014, 5, 1635–1652. [Google Scholar] [CrossRef]
- Endsley, K. Remote Sensing of Socio-Ecological Dynamics in Urban Neighborhoods; Elsevier: Amsterdam, The Netherlands, 2018; Volume 9, pp. 90–105. [Google Scholar]
- Sukopp, H.; Werner, P. Urban environments and vegetation. In Man’s Impact on Vegetation; Holzner, W., Werger, M.J.A., Ikusima, I., Eds.; Springer: Cham, The Netherlands, 1983; pp. 247–260. [Google Scholar]
- Kim, G.; Miller, P.A.; Nowak, D.J. Assessing urban vacant land ecosystem services: Urban vacant land as green infrastructure in the City of Roanoke, Virginia. Urban For. Urban Green. 2015, 14, 519–526. [Google Scholar] [CrossRef]
- Crabbé, P.; Holland, A.; Ryszkowski, L.; Westra, L. Implementing Ecological lntegrity: Restoring Regional and Global Environmental and Human Health; Springer: Berlin/Heidelberg, Germany, 2000; 490p. [Google Scholar]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- De Groot, R.; van der Perk, J.; Chiesura, A.; Marguliew, S. Ecological functions and socioeconomic values of critical natural capital as a measure for ecological integrity and environmental health. In Implementing Ecological lntegrity: Restoring Regional and Global Environmental and Human Health; Crabbé, P., Holland, A., Ryszkowski, L., Westra, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; Chapter 12; pp. 191–214. [Google Scholar]
- Jacobs, S.; Burkhard, B.; Van Daele, T.; Staes, J.; Schneiders, A. ‘The Matrix Reloaded’: A review of expert knowledge use for mapping ecosystem services. Ecol. Model. 2015, 295, 21–30. [Google Scholar] [CrossRef]
- Maes, J.; Egoh, B.; Willemen, L.; Liquete, C.; Vihervaara, P.; Schägner, J.P.; Grizzetti, B.; Drakou, E.G.; La Notte, A.; Zulian, G.; et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 2012, 1, 31–39. [Google Scholar] [CrossRef]
- Nunes, C.A.; Berenguer, E.; França, F.; Ferreira, J.; Lees, A.C.; Louzada, J.; Sayer, E.J.; Solar, R.; Smith, C.C.; Aragão, L.E.O.C.; et al. Linking land-use and land-cover transitions to their ecological impact in the Amazon. Proc. Natl. Acad. Sci. USA 2022, 119, e2202310119. [Google Scholar] [CrossRef] [PubMed]
- Muratet, A.; Porcher, E.; Devictor, V.; Arnal, G.; Moret, J.; Wright, S.; Machon, N. Evaluation of floristic diversity in urban areas as a basis for habitat management. Appl. Veg. Sci. 2008, 11, 451–460. [Google Scholar] [CrossRef]
- Horta, M.B.; Cabral, M.I.; Pires, I.; Bachi, L.S.; Luz, A.; Fernandes, G.W.; Drumond, M.A.; Caravalho-Ribeiro, S. Assessing urban ecosystem services: Different methodological approaches applied in Brazil, Germany, and Portugal. Chapter 8. In Handbook of Research on Methods and Tools for Assessing Cultural Landscape Adaptation; Rosa, I.S., Lopes, J.C., Ribeiro, R., Mendes, A., Eds.; Engineering Science Reference; IGI Global: Hershey, PA, USA, 2018; pp. 183–220. [Google Scholar]
- Shuster, W.; Barkasi, A.; Clark, P.; Dadio, S.; Drohan, P.; Furio, B.; Gerber, T.; Houser, T.; Kelty, A.; Losco, R.; et al. Moving beyond the Udorthent—A Proposed Protocol for Assessing Urban Soils to Service Data Needs for Contemporary Urban Ecosystem Management. Soil Horiz. 2011, 52, 1–8. [Google Scholar] [CrossRef]
- Smith, M.L. Urban empty spaces. Contentious places for consensus-building. Archaeol. Dialog 2008, 15, 216–231. [Google Scholar] [CrossRef]
- Nefs, M. Unused urban space: Conservation or transformation? Polemics about the future of urban wastelands and abandoned buildings. City Time 2006, 2, 47–58. Available online: http://www.ct.ceci-br.org (accessed on 1 January 2022).
- Larangeira, A. Vacant Land in Latin America: Challenges and Opportunities; Working Paper; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2003. [Google Scholar]
- Kim, G. The Public Value of Urban Vacant Land: Social Responses and Ecological Value. Sustainability 2016, 8, 486. [Google Scholar] [CrossRef]
- Spirn, A.W.; Cameron, M.; Pollio, M.; Smith, W.G. Vacant land: A resource for reshaping urban neighborhoods. In The West Philadelphia Landscape Plan; Department of Landscape Architecture and Regional Planning, University of Pennsylvania: Philadelphia, PA, USA, 1991. [Google Scholar]
- Anderson, E.C.; Minor, E.S. Vacant lots: An underexplored resource for ecological and social benefits in cities. Urban For. Urban Green. 2017, 21, 146–152. [Google Scholar] [CrossRef]
- Bernt, M. The Limits of Shrinkage: Conceptual Pitfalls and Alternatives in the Discussion of Urban Population Loss. Int. J. Urban Reg. Res. 2016, 40, 441–450. [Google Scholar] [CrossRef]
- Bowman, A.O.; Pagano, M.A. Terra Incognita: Vacant Land and Urban Strategies; Georgetown University Press: Washington, DC, USA, 2004. [Google Scholar]
- Kremer, P.; Hamstead, Z.A.; McPhearson, T. A social–ecological assessment of vacant lots in New York City. Landsc. Urban Plan. 2013, 120, 218–233. [Google Scholar] [CrossRef]
- Maes, M.J.; Jones, K.E.; Toledano, M.B.; Milligan, B. Mapping synergies and trade-offs between urban ecosystems and the sustainable development goals. Environ. Sci. Policy 2019, 93, 181–188. [Google Scholar] [CrossRef]
- Oliveira, J.A.; Bellezoni, R.A.; Shih, W.Y.; Bayulken, B. Innovations in Urban Green and Blue Infra-structure: Tackling local and global challenges in cities. J. Clean. Prod. 2022, 362, 132355. [Google Scholar] [CrossRef]
- Felson, A.; Pollak, L. Experimentos urbanos ecológicos em espaços públicos. Capítulo 7. In Urbanismo Ecológico São Paulo; Mostafavi, M., Doherty, G., Canedo, J., Eds.; Gustavo Gili (GG): Barcelona, Spain, 2014; pp. 356–363. [Google Scholar]
- Hara, Y.; Murakami, A.; Tsuchiya, K.; Palijon, A.M.; Yokohari, M. A quantitative assessment of vegetable farming on vacant lots in an urban fringe area in Metro Manila: Can it sustain long-term local vegetable demand? Appl. Geogr. 2013, 41, 195–206. [Google Scholar] [CrossRef]
- McPhearson, T.; Kremer, P.; Hamstead, Z.A. Mapping ecosystem services in New York City: Applying a social–ecological approach in urban vacant land. Ecosyst. Serv. 2013, 5, 11–26. [Google Scholar] [CrossRef]
- Ramirez-Rubio, O.; Gonzalo, C.D.; Fanjul, M.G.; Muller, N.; Pajin, L.; Plasencia, A.; Rojas-Rueda, D.; Meelan, T.; Nieu-wenhuijsen, M.J. Urban health: An example of a “health in all policies” ap-proach in the context of SDGs implementation. Glob. Health 2019, 15, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Pearsall, H.; Christman, Z. Tree-lined lanes or vacant lots? Evaluating non-stationarity between urban greenness and socio-economic conditions in Philadelphia, Pennsylvania, USA at multiple scales. Appl. Geogr. 2012, 35, 257–264. [Google Scholar] [CrossRef]
- Basso, F.; Bove, E.; Dumontet, S.; Ferrara, A.; Pisante, M.; Quaranta, G.; Taberner, M. Evaluating environmental sensitivity at the basin scale through the use of geographic information systems and remotely sensed data: An example covering the Agri basin (Southern Italy). CATENA 2000, 40, 19–35. [Google Scholar] [CrossRef]
- Hadeel, A.S.; Jabbar, M.T.; Chen, X. Application of remote sensing and GIS in the study of environmental sensitivity to desertification: A case study in Basrah Province, southern part of Iraq. Appl. Geomat. 2010, 2, 101–112. [Google Scholar] [CrossRef]
- Grandi, T.S.M.; Carvalho, R.C.F.; del Vigna, E.A.G.; Rennó, R.L. Levantamento florístico da margem da Lagoa da Pampulha, Belo Horizonte, Minas Gerais. In Anais do Seminário da Bacia Hidrográfica da Pampulha; SEGRAC: Belo Horizonte, Brazil, 1992; pp. 15–29. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Mapas Interativos. Mapa de Biomas. 2005. Available online: http://mapas.ibge.gov.br/biomas2/viewer.htm (accessed on 1 January 2022).
- Cochran, W.G. Sampling Techniques; John Wiley and Sons: New York, NY, USA, 1977. [Google Scholar]
- Belo Horizonte, Lei Municipal nº 8327, de 07 de Fevereiro de 2002. Dispõe Sobre Plantio, Extração, Poda, Substituição de Árvores e dá Outras Providências. 2002. Available online: https://cm-belo-horizonte.jusbrasil.com.br/legislacao/236821/lei-8327-02 (accessed on 1 January 2022).
- Belo Horizonte, 2009. Lei Municipal nº 9725, de 15 de Julho de 2009. Institui o Código de Edificações do Município de Belo Horizonte e dá Outras Providências. Available online: https://www.cmbh.mg.gov.br/atividade-legislativa/pesquisar-legislacao/lei/9725/2009 (accessed on 1 January 2022).
- Belo Horizonte, 2010. Lei Municipal nº 9959, de 20 de Julho de 2010. Altera a Lei n° 7.165, de 27 de Agosto de 1996, a Lei n° 7.166, de 27 de Agosto de 1996, Estabelece Normas e Condições Para a Urbanização e a Regularização Fundiária da Zona de Especial Interesse Social-ZEIS, dispõe sobre Parcelamento, Ocupação e Uso do solo nas Áreas de Especial Interesse Social-AEIS, e dá Outras Providências. Available online: https://www.cmbh.mg.gov.br/atividade-legislativa/pesquisar-legislacao/lei/9959/2010 (accessed on 1 January 2022).
- De Marco, J.C. Requisitos de desenvolvimento sustentável na legislação urbanística de Belo Horizonte: O caso da taxa de permeabilidade. In Monografia–Especialização; Universidade Federal de Minas Gerais, UFMG: Belo Horizonte, Brazil, 2013; 225p. [Google Scholar]
- Perera, A.H.; Drew, C.A.; Johnson, C.J. Expert Knowledge and Its Application in Landscape Ecology; Springer: New York, NY, USA, 2012. [Google Scholar]
- Tempfli, K.; Kerle, N.; Huurneman, G.C.; Janssen, L.L.F. Principles of Remote Sensing; ITC: En-schede, The Netherlands, 2009; p. 591. [Google Scholar]
- Felix, D.F. Composição Florística do Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais; Dissertação de Mestrado; ICB: Belo Horizonte, Brazil; UFMG: Belo Horizonte, Brazil, 2009; p. 111. [Google Scholar]
- Miranda, P.L.S. Estrutura e Diversidade Do Estrato Arbóreo De Fragmentos Florestais Secundários Urbanos De Belo Horizonte Com Diferentes Tamanhos e Históricos De Impacto; Departamento de Botânica, ICB: Belo Horizonte, Brazil; UFMG, Dissertação de Mestrado: Belo Horizonte, Brazil, 2014; p. 83. [Google Scholar]
- Brasil, 2007. Ministério do Meio Ambiente (MMA). Conselho Nacional do Meio Ambiente (CONAMA). Resolução CONAMA Nº 393, de 25 de Junho de 2007. Definição de Vegetação Primária e Secundária de Regeneração de Mata Atlântica no Estado de Minas Gerais. Available online: https://www.siam.mg.gov.br/sla/download.pdf?idNorma=6991 (accessed on 1 January 2022).
- Fernandes, G.W.; Pedroni, F.; Sanchez, M.; Scariot, A.; Aguiar, L.M.S.; Ferreira, G.; Machado, R.; Ferreira, M.E.; Diniz, S.; Pinheiro, R.; et al. Cerrado: Em Busca de Soluções Sustentáveis; v.1.; Editora Vozes: Rio de Janeiro, Brazil, 2018; 211p. [Google Scholar]
- Oliveira-Filho, A.T.; Ratter, J.A. Vegetation Physiognomies and Woody Flora of the Cerrado Biome. In The Cerrados of Brazil: Ecology and Natural History of a Neotropi-Cal Savanna; Oliveira, P.S., Marquis, R.J., Eds.; Columbia University Press: New York, NY, USA, 2002; pp. 91–120. [Google Scholar]
- Rizzini, C.T. Tratado de Fitogeografia do Brasil: Aspectos Sociológicos e Florísticos: Hucitec Ltda; Editora da Universidade de São Paulo: São Paulo, Brazil, 1979; v.2; 374p. [Google Scholar]
- van Tongeren, O.F.R. Cluster Analysis. In Data Analysis in Community and Landscape Ecology; Jongman, R.H.G., ter Braak, C.J.F., van Tongeren, O.F.R., Eds.; Cambridge University Press: New York, NY, USA, 1995; Chapter 6; pp. 174–212. [Google Scholar]
- Gjorgjioski, V.; Dzeroski, S.; White, M. Clustering Analysis of Vegetation Data; Technical Report 10065; Jožef Stefan Institute: Ljubljana, Slovenia, 2008. [Google Scholar]
- Scott, A.J.; Knott, M. A Cluster Analysis Method for Grouping Means in the Analysis of Variance. Biometrics 1974, 30, 507. [Google Scholar] [CrossRef]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef]
- Lovell, S.T.; DeSantis, S.; Nathan, C.A.; Olson, M.B.; Méndez, V.E.; Kominami, H.C.; Erickson, D.L.; Morris, K.S.; Morris, W.B. Integrating agroecology and landscape multifunctionality in Vermont: An evolving framework to evaluate the design of agroecosystems. Agric. Syst. 2010, 103, 327–341. [Google Scholar] [CrossRef]
- Lovell, S.T.; Taylor, J.R. Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landsc. Ecol. 2013, 28, 1447–1463. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteux, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 1 January 2022).
- Belo Horizonte, 2012. Lei Municipal nº 10.534, de 10 de Setembro de 2012. Dispõe sobre a Limpeza Urbana, Seus Serviços e o Manejo de Resíduos Sólidos Urbanos no Município, e dá Outras Providências. Available online: https://www.cmbh.mg.gov.br/atividade-legislativa/pesquisar-legislacao/lei/10534/2012 (accessed on 1 January 2022).
- Robinson, S.L.; Lundholm, J.T. Ecosystem services provided by urban spontaneous vegetation. Urban Ecosyst. 2012, 15, 545–557. [Google Scholar] [CrossRef]
- Effland, W.R.; Pouyat, R.V. The genesis, classification, and mapping of soils in urban areas. Urban Ecosyst. 1997, 1, 217–228. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Nilon, C.H.; Pouyat, R.V.; Zipperer, W.C.; Costanza, R. Urban Ecological Systems: Linking Terrestrial Ecological, Physical, and Socioeconomic Components of Metropolitan Areas. Annu. Rev. Ecol. Syst. 2001, 32, 127–157. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Morel, J.L.; Chenu, C.; Lorenz, K. Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). J. Soils Sediments 2015, 15, 1659–1666. [Google Scholar] [CrossRef]
- Gilbert, O. The Ecology of Urban Habitats; Chapman and Hall: London, UK; New York, NY, USA, 1989. [Google Scholar]
- Arreguy, C.A.C.; Ribeiro, R.R. Histórias de bairros de Belo Horizonte: Regionais Barreiro, Centro-Sul, Leste, Nordeste, Noroeste, Oeste, Pampulha, Venda Nova Belo Horizonte, Minas Gerais: APCBH.; ACAP-BH. 2008. Available online: https://crb6.org.br/materias/colecao-historias-de-bairros-de-belo-horizonte/ (accessed on 1 January 2023).
- Manes, F.; Salvatori, E. Ecosystem Services of urban trees: The case of Rome. Agrochimica 2014, 58, 222–233. [Google Scholar] [CrossRef]
- Roshnath, R.; Sinu, P.A. Nesting tree characteristics of heronry birds of urban ecosystems in peninsular India: Implications for habitat management. Curr. Zool. 2017, 63, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Ganz, L. Lotes Vagos: Ação Coletiva De Ocupação Urbana Experimental; ARS (São Paulo) USP: São Paulo, Brazil, 2008; p. 6. [Google Scholar] [CrossRef]
- Sunita; Kumar, D.; Shahnawaz; Shekhar, S. Evaluating urban green and blue spaces with space-based multi-sensor datasets for sustainable development. Comput. Urban Sci. 2023, 3, 1–25. [Google Scholar] [CrossRef]
- White, M.P.; Elliott, L.R.; Grellier, J.; Economou, T.; Bell, S.; Bratman, G.N.; Cirach, M.; Gascon, M.; Lima, M.L.; Lõhmus, M.; et al. Associations between green/blue spaces and mental health across 18 countries. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
Vegetation Quality Classes | Acronym | Components | Percentage |
---|---|---|---|
Very High Vegetation Quality | VHVQ | Forest in Advanced–Intermediate Stage of Regeneration | >75–100% |
Very High Vegetation Quality Very High Vegetation Quality | VHVQ VHVQ | Forest in Initial Stage of Regeneration Savanna; Tree Clumps | >75–100% >75–100% |
High Vegetation Quality | HVQ | Forest in Advanced-Intermediate Stage of Regeneration | >50–75% |
High Vegetation Quality | HVQ | Forest in Initial Stage of Regeneration | >50–75% |
High Vegetation Quality | HVQ | Savanna; Tree Clumps | >50–75% |
Moderate Vegetation Quality | MVQ | Forest in Advanced-Intermediate Stage of Regeneration | >25–50% |
Moderate Vegetation Quality | MVQ | Forest in Initial Stage of Regeneration | >25–50% |
Moderate Vegetation Quality Moderate Vegetation Quality | MVQ MVQ | Savanna; Tree Clumps Herbaceous-Shrubby Vegetation; Pasture; Agriculture | >25–50% >50–100% |
Low Vegetation Quality | LVQ | Forest in Advanced-Intermediate Stage of Regeneration | >0–25% |
Low Vegetation Quality Low Vegetation Quality Low Vegetation Quality | LVQ LVQ LVQ | Forest in Initial Stage of Regeneration Savanna; Tree Clumps Herbaceous-Shrubby Vegetation; Pasture; Agriculture | >0–25% >0–25% >0–50% |
No Vegetation Permeable | NVP | Bare Soil | 100% |
No Vegetation Permeable | NVP | Water | 100% |
No Vegetation Impermeable | NVI | Asphalt, Cement, Construction | 100% |
Land Cover | LVQ | MVQ | HVQ | VHVQ | NVP | Total |
---|---|---|---|---|---|---|
1—Bare Soil | - | - | - | - | 210 | 210 |
2—Forest in Advanced-Intermediate Stage/Tree Clumps/Herbaceous Shrubby Vegetation | - | 1 | - | - | - | 1 |
3—Forest in Advanced-Intermediate Stage/Savanna/Bare Soil | - | - | - | 1 | - | 1 |
4—Forest in Advanced-Intermediate Stage/Savanna/Herbaceous Shrubby Vegetation/Bare Soil | - | 1 | - | - | - | 1 |
5—Forest in Advanced-Intermediate Stage | - | - | - | 10 | - | 10 |
6—Forest in Advanced-Intermediate Stage/Bare Soil | - | - | 2 | - | - | 2 |
7—Forest in Advanced-Intermediate Stage/Initial Stage | - | 1 | 1 | 1 | - | 3 |
8—Forest in Advanced-Intermediate Stage/Initial Stage/Herbaceous Shrubby Vegetation | - | 2 | 1 | - | - | 3 |
9—Forest in Advanced-Intermediate Stage/Initial Stage/Herbaceous-Shrubby Vegetation/Bare Soil | - | 1 | - | - | - | 1 |
10—Forest in Advanced-Intermediate Stage/Herbaceous Shrubby Vegetation | - | 3 | 5 | 4 | - | 12 |
11—Forest in Advanced-Intermediate Stage/Herbaceous-Shrubby Vegetation/Bare Soil | - | 4 | - | - | - | 4 |
12—Forest in Advanced-Intermediate Stage/Pasture | - | - | 1 | - | - | 1 |
13—Forest in Advanced-Intermediate Stage/Savanna | - | - | 2 | - | 2 | |
14—Forest in Initial Stage | - | - | - | 5 | - | 5 |
15—Forest in Initial Stage/Bare Soil | - | 1 | 1 | 3 | - | 5 |
16—Forest in Initial Stage/Herbaceous Shrubby Vegetation/Tree Clumps | - | 1 | - | - | 1 | |
17—Forest in Initial Stage/Herbaceous Shrubby Vegetation | 1 | 12 | 6 | 2 | - | 21 |
18—Forest in Initial Stage/Herbaceous-Shrubby Vegetation/Bare Soil | 1 | 11 | 3 | 2 | - | 17 |
19—Forest in Initial Stage/Herbaceous-Shrubby Vegetation/Pasture/Bare Soil | - | - | 1 | - | - | 1 |
20—Forest in Initial Stage/Savanna/Bare Soil | - | - | 1 | - | - | 1 |
21—Forest in Initial Stage/Savanna/Herbaceous Shrubby Vegetation/Bare Soil | 1 | - | - | - | - | 1 |
22—Forest in Initial Stage/Tree Clumps/Herbaceous-Shrubby Vegetation/Bare Soil | - | 1 | - | - | - | 1 |
23—Forest in Initial Stage/Tree Clumps/Herbaceous-Shrubby Vegetation | - | 1 | - | - | - | 1 |
24—Forest in Initial Stage/Tree Clumps/Herbaceous-Shrubby Vegetation/Bare Soil | - | 1 | - | - | - | 1 |
25—Forest in Initial Stage/Tree Clumps/Herbaceous-Shrubby Vegetation/Water/Bare Soil | 1 | 1 | - | - | - | 2 |
26—Herbaceous-Shrubby Vegetation | - | 298 | - | - | - | 298 |
27—Herbaceous-Shrubby Vegetation/Bare Soil | 75 | 216 | - | 1 | - | 292 |
28—Herbaceous-Shrubby Vegetation/Tree Clumps | - | 168 | 30 | 24 | - | 222 |
29—Herbaceous-Shrubby Vegetation/Tree Clumps/Agriculture/Bare Soil | - | 1 | - | - | - | 1 |
30—Herbaceous-Shrubby Vegetation/Tree Clumps/Bare Soil | 45 | 88 | 12 | 2 | - | 147 |
31—Herbaceous-Shrubby Vegetation/Water | - | 1 | - | - | - | 1 |
32—Pasture | - | 1 | - | 1 | - | 2 |
33—Savanna | - | - | - | 1 | - | 1 |
34—Savanna/Herbaceous-Shrubby Vegetation | - | 1 | - | - | 1 | |
35—Savanna/Herbaceous-Shrubby Vegetation/Bare Soil | - | 1 | 1 | - | - | 2 |
36—Savanna/Tree Clumps/Herbaceous-Shrubby Vegetation/Bare Soil | - | - | 1 | - | - | 1 |
37—Tree Clumps | - | - | - | 30 | - | 30 |
38—Tree Clumps/Agriculture/Water/Bare Soil | - | 1 | - | - | - | 1 |
39—Tree Clumps/Bare Soil | 63 | 40 | 25 | 23 | - | 151 |
Total | 187 | 857 | 94 | 110 | 210 | 1458 |
Land Cover | LVQ | MVQ | HVQ | VHVQ | NVP | NVI | Total |
---|---|---|---|---|---|---|---|
1—Impermeable Surfaces | - | - | - | - | - | 595 | 595 |
2—Impermeable Surfaces/Bare Soil | - | - | - | - | 104 | - | 104 |
3—Impermeable Surfaces/Forest in Advanced-Intermediate Stage | - | 1 | - | - | - | - | 1 |
4—Impermeable Surfaces/Forest in Advanced-Intermediate Stage/Bare Soil | 1 | - | - | - | - | - | 1 |
5—Impermeable Surfaces/Forest in Advanced-Intermediate Stage/Forest in Initial Stage | - | - | 1 | - | - | - | 1 |
6—Impermeable Surfaces/Forest in Advanced-Intermediate Stage/Forest in Initial Stage/Herbaceous-Shrubby Vegetation/Bare Soil | 1 | - | - | - | - | - | 1 |
7—Impermeable Surfaces/Forest in Advanced-Intermediate Stage/Forest in Initial Stage/Savanna/Tree Clumps/Herbaceous-Shrubby Vegetation | 1 | - | - | - | - | - | 1 |
8—Impermeable Surfaces/Forest in Advanced-Intermediate Stage/Forest in Initial Stage/Tree Clumps/Herbaceous-Shrubby Vegetation/Bare Soil | - | 1 | - | - | - | - | 1 |
9—Impermeable Surfaces/Forest in Advanced-Intermediate Stage/Herbaceous-Shrubby Vegetation | 1 | 2 | 1 | - | - | - | 4 |
10—Impermeable Surfaces/Forest in Advanced-Intermediate Stage/Herbaceous-Shrubby Vegetation/Bare Soil | 1 | 1 | - | - | - | - | 2 |
11—Impermeable Surfaces/Forest in Advanced-Intermediate Stage/Tree Clumps | 1 | - | - | - | - | - | 1 |
12—Impermeable Surfaces/Forest in Advanced-Intermediate Stage/Tree Clumps/Herbaceous-Shrubby Vegetation | - | 1 | - | - | - | - | 1 |
13—Impermeable Surfaces/Forest in Advanced-Intermediate Stage/Tree Clumps/Herbaceous-Shrubby Vegetation/Bare Soil | - | 1 | - | - | - | - | 1 |
14—Impermeable Surfaces/Forest in Advanced-Intermediate Stage/Tree Clumps/Herbaceous-Shrubby Vegetation/Pasture | - | 1 | - | - | - | - | 1 |
15—Impermeable Surfaces/Forest in Initial Stage | - | - | 1 | 1 | - | - | 2 |
16—Impermeable Surfaces/Forest in Initial Stage/Bare Soil | 2 | - | - | - | - | - | 2 |
17—Impermeable Surfaces/Forest in Initial Stage/Herbaceous-Shrubby Vegetation | - | 2 | - | - | - | - | 2 |
18—Impermeable Surfaces/Forest in Initial Stage/Herbaceous-Shrubby Vegetation/Bare Soil | 1 | 1 | - | - | - | - | 2 |
19—Impermeable Surfaces/Forest in Initial Stage/Pasture/Bare Soil | - | 1 | - | - | - | - | 1 |
20—Impermeable Surfaces/Forest in Initial Stage/Savanna | - | 1 | - | - | - | - | 1 |
21—Impermeable Surfaces/Forest in Initial Stage/Tree Clumps | - | 1 | - | - | - | - | 1 |
22—Impermeable Surfaces/Forest in Initial Stage/Tree Clumps/Herbaceous-Shrubby Vegetation | 1 | - | - | - | - | - | 1 |
23—Impermeable Surfaces/Forest in Initial Stage/Tree Clumps/Herbaceous-Shrubby Vegetation/Water | 1 | - | - | - | - | - | 1 |
24—Impermeable Surfaces/Herbaceous-Shrubby Vegetation | 101 | 31 | - | - | 1 | - | 133 |
25—Impermeable Surfaces/Herbaceous-Shrubby Vegetation/Bare Soil | 45 | 12 | - | - | - | - | 57 |
26—Impermeable Surfaces/Herbaceous-Shrubby Vegetation/Water | 3 | - | - | - | - | - | 3 |
27—Impermeable Surfaces/Pasture/Bare Soil | - | 1 | - | - | - | - | 1 |
28—Impermeable Surfaces/Savanna/Bare Soil | - | 1 | - | - | - | 1 | |
29—Impermeable Surfaces/Savanna/Tree Clumps/Herbaceous-Shrubby Vegetation | - | 1 | - | - | - | - | 1 |
30—Impermeable Surfaces/Tree Clumps | 134 | 44 | 10 | 4 | - | - | 192 |
31—Impermeable Surfaces/Tree Clumps/Bare Soil | 44 | 14 | 10 | - | 1 | - | 69 |
32—Impermeable Surfaces/Tree Clumps/Bare Soil/Water | 1 | - | - | - | - | - | 1 |
33—Impermeable Surfaces/Tree Clumps/Herbaceous-Shrubby Vegetation | 72 | 25 | 10 | - | - | - | 107 |
34—Impermeable Surfaces/Tree Clumps/Herbaceous-Shrubby Vegetation/Bare Soil | 37 | 18 | 1 | - | - | - | 56 |
35—Impermeable Surfaces/Tree Clumps/Herbaceous-Shrubby Vegetation/Bare Soil/Water | - | 1 | - | - | - | - | 1 |
36—Impermeable Surfaces/Tree Clumps/Herbaceous-Shrubby Vegetation/Water | 7 | 3 | - | 1 | - | - | 11 |
37—Impermeable Surfaces/Tree Clumps/Water | 4 | 2 | - | - | - | - | 6 |
38—Impermeable Surfaces/Water | - | - | - | - | 3 | - | 3 |
Total | 459 | 167 | 34 | 6 | 109 | 595 | 1370 |
Cluster Number | Main Component | Definition | Number of Lots |
---|---|---|---|
1 | Cluster of built-up areas | Average land cover: 89% built-up areas, 4% tree clumps, 4% herbaceous-shrubby vegetation, and 2% bare soil | 280 |
2 | Cluster of bare soil | Average land cover: 86% bare soil, 5% herbaceous-shrubby vegetation, 5% built-up areas, and 4% tree clumps | 477 |
3 | Cluster of trees | Average land cover: 49% tree clumps, 15% herbaceous-shrubby vegetation, 12% bare soil, 8% built-up areas, 6% forest in advanced-intermediate stage of regeneration, 6% forest in initial stage of regeneration, 2% savanna, and 1% pasture | 1193 |
4 | Cluster of herbaceous-shrubby vegetation | Average land cover: 84% herbaceous-shrubby vegetation, 8% bare soil, 5% tree clumps, 3% built-up areas, 1% forest in advanced-intermediate stage of regeneration, and 1% forest in initial stage of regeneration | 878 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horta, M.B.; Carvalho-Ribeiro, S.M.; Mas, J.F.; Martins, F.M.; Resende, F.d.M.; Goulart, F.F.; Fernandes, G.W. Land Cover Patterns of Urban Lots and Their Contribution to Ecological Functions. Sustainability 2024, 16, 3063. https://doi.org/10.3390/su16073063
Horta MB, Carvalho-Ribeiro SM, Mas JF, Martins FM, Resende FdM, Goulart FF, Fernandes GW. Land Cover Patterns of Urban Lots and Their Contribution to Ecological Functions. Sustainability. 2024; 16(7):3063. https://doi.org/10.3390/su16073063
Chicago/Turabian StyleHorta, Marise Barreiros, Sònia Maria Carvalho-Ribeiro, Jean François Mas, Francisco Medeiros Martins, Fernando de Moura Resende, Fernando Figueiredo Goulart, and Geraldo Wilson Fernandes. 2024. "Land Cover Patterns of Urban Lots and Their Contribution to Ecological Functions" Sustainability 16, no. 7: 3063. https://doi.org/10.3390/su16073063