Can Regional Integration Policies Enhance the Win–Win Situation of Economic Growth and Environmental Protection? New Evidence for Achieving Carbon Neutrality Goals
Abstract
:1. Introduction
2. Literature Review
2.1. The Win–Win Situation
2.2. Regional Integration
2.3. The Mechanism of Regional Integration to Attain the Win–Win Situation
3. Materials and Methods
3.1. Identifying Regional Integration and the Win–Win Situation of Economic Growth and Environmental Protection
3.1.1. Identifying Regional Integration
3.1.2. Identifying the Win–Win Situation for Economic Growth and Environmental Protection
3.2. Models
3.2.1. Identifying Whether Regional Integration Can Achieve a Win–Win Situation for Economic Growth and Environmental Protection
3.2.2. Identifying How Regional Integration Enhances the Win–Win Situation concerning Economic Growth and Environmental Protection
3.3. Variables
3.3.1. Independent Variable: Regional Integration (INT)
3.3.2. Dependent Variable: The Win–Win Situation for Economic Growth and Environmental Protection (GTFP)
3.3.3. The Win–Win Mechanism Variables
3.3.4. Control Variables
3.4. Descriptive Statistics of Variables
4. Empirical Results and Discussions
4.1. Whether Regional Integration Can Enhance the Win–Win Effect of Economic Growth and Environmental Protection
4.2. How Regional Integration Enhances the Win–Win Situation of Economic Growth and Environmental Protection
4.2.1. Inhibiting Pollution Transfer
4.2.2. Promoting Green Transformation
4.3. Robustness Test
4.3.1. Parallel Trend Test
4.3.2. Placebo Test
4.3.3. Replacing the Dependent Variable
4.3.4. Other Robustness Tests
4.4. Heterogeneity Discussion
4.4.1. Heterogeneous Effects of Regional Integration
4.4.2. Heterogeneous Effects of Win–Win Mechanisms
5. Conclusions and Policy Implication
5.1. Conclusions
5.2. Policy Implications
5.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Massaro, L.; Calvimontes, J.; Ferreira, L.C.; De Theije, M. Balancing economic development and environmental responsibility: Perceptions from communities of garimpeiros in the Brazilian Amazon. Resour. Policy 2022, 79, 103063. [Google Scholar] [CrossRef]
- Wu, Y.; Tam, V.W.; Shuai, C.; Shen, L.; Zhang, Y.; Liao, S. Decoupling China’s economic growth from carbon emissions: Empirical studies from 30 Chinese provinces (2001–2015). Sci. Total Environ. 2019, 656, 576–588. [Google Scholar] [CrossRef]
- Ramzan, M.; Abbasi, K.R.; Salman, A.; Dagar, V.; Alvarado, R.; Kagzi, M. Towards the dream of go green: An empirical importance of green innovation and financial depth for environmental neutrality in world’s top 10 greenest economies. Technol. Forecast. Soc. Chang. 2023, 189, 122370. [Google Scholar] [CrossRef]
- Green, F.; Healy, N. How inequality fuels climate change: The climate case for a Green New Deal. One Earth 2022, 5, 635–649. [Google Scholar] [CrossRef]
- Wu, C.; Ge, M.; Huang, Z.; Wang, L.; Liu, T. An extended STIRPAT model and forecast of carbon emission based on green consumption behaviors: Evidence from China. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Sheldon, I. Trade and environmental policy: A race to the bottom? J. Agric. Econ. 2006, 57, 365–392. [Google Scholar] [CrossRef]
- Brewer, T.L. Climate change technology transfer: A new paradigm and policy agenda. Clim. Policy 2008, 8, 516–526. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, J.; Xia, Y.; Liu, J.Y. How will a nationwide carbon market affect regional economies and efficiency of CO2 emission reduction in China? China Econ. Rev. 2016, 38, 151–166. [Google Scholar] [CrossRef]
- Nordhaus, W. Climate clubs: Overcoming free-riding in international climate policy. Am. Econ. Rev. 2015, 105, 1339–1340. [Google Scholar] [CrossRef]
- Gladstone, F.; Liverman, D.; Rodríguez, R.A.S.; Santos, A.E.M. NAFTA and environment after 25 years: A retrospective analysis of the US-Mexico border. Environ. Sci. Policy 2021, 119, 18–33. [Google Scholar] [CrossRef]
- Li, Y.; Wu, F. Understanding city-regionalism in China: Regional cooperation in the Yangtze River delta. Reg. Stud. 2018, 52, 313–324. [Google Scholar] [CrossRef]
- She, Q.; Cao, S.; Zhang, S.; Zhang, J.; Zhu, H.; Bao, J.; Meng, X.; Liu, M.; Liu, Y. The impacts of comprehensive urbanization on PM2.5 concentrations in the Yangtze River delta, China. Ecol. Indic. 2021, 132, 108337. [Google Scholar] [CrossRef]
- Phillips, K.; Caas, J. Regional business cycle integration along the US-Mexico border. Ann. Reg. Sci. 2008, 42, 153–168. [Google Scholar] [CrossRef]
- Ehrlich, M.V.; Seidel, T. The persistent effects of place-based policy: Evidence from the West-German zone randgebiet. Am. Econ. J. Econ. Policy 2018, 10, 344–374. [Google Scholar] [CrossRef]
- Brown, W.M.; Dar-Brodeur, A.; Tweedle, J. Firm networks, borders, and regional economic integration. J. Reg. Sci. 2020, 60, 374–395. [Google Scholar] [CrossRef]
- Shen, Y.F.; Yuan, Y. Regional integration and inequality comovement: Evidence from Europe. Appl. Econ. Lett. 2020, 27, 539–543. [Google Scholar] [CrossRef]
- Hamdi-Cherif, M.; Waisman, H. Global carbon pricing and the “Common but Differentiated Responsibilities”: The case of China. Int. Environ. Agreem. Politics Law Econ. 2016, 16, 671–689. [Google Scholar] [CrossRef]
- Velde, D.W.T. Regional integration, growth and convergence. J. Econ. Integr. 2011, 26, 1–28. [Google Scholar] [CrossRef]
- Geldi, H.K. Trade effects of regional integration: A panel cointegration analysis. Econ. Model. 2012, 29, 1566–1570. [Google Scholar] [CrossRef]
- Li, H.; Lu, J. Can regional integration control transboundary water pollution? A test from the Yangtze River economic belt. Environ. Sci. Pollut. Res. 2020, 27, 28288–28305. [Google Scholar] [CrossRef]
- Ai, K.P.; Xu, N. Does Regional Integration Improve Carbon Emission Performance?—A Quasi-Natural Experiment on Regional Integration in the Yangtze River Economic Belt. Sustainability 2023, 15, 15154. [Google Scholar] [CrossRef]
- He, P.; An, C.J.; Chen, Z.K.; Tian, X.L.; Sun, Y. Promoting Cross-Regional Integration of Maritime Emission Management: A Euro-American Linkage of Carbon Markets. Environ. Sci. Technol. 2023, 57, 12180–12190. [Google Scholar]
- Feng, Y.; Peng, D.Y.; Li, Y.F.; Liu, S. Can regional integration reduce carbon intensity? Evidence from city cluster in China. Environ. Dev. Sustain. 2024, 26, 5249–5274. [Google Scholar] [CrossRef]
- Murty, M.N.; Kumar, S. Win–win opportunities and environmental regulation: Testing of porter hypothesis for Indian manufacturing industries. J. Environ. Manag. 2003, 67, 139–144. [Google Scholar] [CrossRef]
- Yang, T.B.; Zhu, Y.M.; Li, Y.; Zhou, B. Achieving win-win policy outcomes for water resource management and economic development: The experience of Chinese cities. Sustain. Prod. Consum. 2021, 27, 873–888. [Google Scholar] [CrossRef]
- Porter, M.E.; Van Der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Nahman, A.; Mahumani, B.K.; De Lange, W.J. Beyond GDP: Towards a green economy index. Dev. South. Afr. 2016, 33, 215–233. [Google Scholar] [CrossRef]
- Kasztelan, A. The use of the Hellwig’s pattern model for the evaluation of green growth in OECD countries. In Proceedings of the 29th International Business Information Management Association Conference, Vienna, Austria, 3–4 May 2017; pp. 3–4. [Google Scholar]
- Zinia, N.J.; McShane, P. Ecosystem services management: An evaluation of green adaptations for urban development in Dhaka, Bangladesh. Landsc. Urban Plan. 2018, 173, 23–32. [Google Scholar] [CrossRef]
- Li, X.X.; Liu, Y.M.; Song, T. Measurement of human green development Index. Soc. Sci. China 2014, 6, 69–95+207–208. [Google Scholar]
- Wang, B.; Liu, G.T. Energy conservation and emission reduction and China’s green economy growth: Based on the perspective of total factor productivity. China Ind. Econ. 2015, 5, 57–69. [Google Scholar]
- Tu, Z.G.; Wang, K.; Chen, R.J. Economic growth and pollution reduction: An integrated analysis framework. Econ. Res. 2022, 57, 154–171. [Google Scholar]
- Kumbhakar, S.C.; Lovell, C.K. Stochastic Frontier Analysis; Cambridge University Press: Cambridge, UK, 2000; pp. 136–142. [Google Scholar]
- Anser, M.K.; Iqbal, W.; Ahmad, U.S.; Fatima, A.; Chaudhry, I.S. Environmental efficiency and the role of energy innovation in emissions reduction. Environ. Sci. Pollut. Res. 2020, 27, 29451–29463. [Google Scholar] [CrossRef]
- Walz, R.; Pfaff, M.; Marscheider-Weidemann, F.; Glöser-Chahoud, S. Innovations for reaching the green sustainable development goals: Where will they come from? Int. Econ. Econ. Policy 2017, 14, 449–480. [Google Scholar] [CrossRef]
- Abid, N.; Ceci, F.; Ahmad, F.; Aftab, J. Financial development and green innovation, the ultimate solutions to an environmentally sustainable society: Evidence from leading economies. J. Clean. Prod. 2022, 369, 133223. [Google Scholar] [CrossRef]
- Lis, A.M.; Mackiewicz, M. The implementation of green transformation through clusters. Ecol. Econ. 2023, 209, 107842. [Google Scholar] [CrossRef]
- Sun, H.Y.; Liu, Z.J. Urban sprawl, producer services agglomeration and green total factor productivity: A study of the underlying logic based on the concept of green development. Macroecon. Res. 2023, 2, 85–101. [Google Scholar]
- Huang, L.; Wu, C.Q. Foreign investment, environmental regulation and urban green development efficiency in the Yangtze River Economic Belt. Reform 2021, 3, 94–110. [Google Scholar]
- Naqvi, B.; Rizvi SK, A.; Mirza, N.; Umar, M. Financial market development: A potentiating policy choice for the green transition in G7 economies. Int. Rev. Financ. Anal. 2023, 87, 102577. [Google Scholar] [CrossRef]
- Wang, R.; Tan, J.L. Exploring the coupling and forecasting of financial development, technological innovation, and economic growth. Technol. Forecast. Soc. Chang. 2020, 43, 120466. [Google Scholar] [CrossRef]
- Du, L.Z.; Zhao, Y.H.; Tao, K.T.; Lin, W.F. The compound effect of environmental regulation and governance transformation on the improvement of green competitiveness: Based on the empirical evidence of Chinese industry. Econ. Res. 2019, 54, 106–120. [Google Scholar]
- Zhang, W.; Hu, Y. The impact of innovative human capital on green total factor productivity in the Yangtze River Delta region: An empirical analysis based on the spatial Durbin model. China Population. Resour. Environ. 2020, 30, 106–120. [Google Scholar]
- Ma, D.; Zhu, Q. Innovation in emerging economies: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Chen, Y. Evaluation of regional industrial green development efficiency in China: From the perspective of R&D investment. Econ. Issues 2018, 12, 77–83. [Google Scholar]
- Cutrini, E. Specialization and concentration from a twofold geographical perspective: Evidence from Europe. Reg. Stud. 2010, 44, 315–336. [Google Scholar] [CrossRef]
- Duranton, G.; Puga, D. From sectoral to functional urban specialisation. J. Urban Econ. 2005, 57, 343–370. [Google Scholar] [CrossRef]
- Semenets, A.; Tiurina, D.; Kuzkin, Y.; Yarmak, O. An analysis of the European integration processes in Ukraine. Financ. Credit. Act. Probl. Theory Pract. 2020, 4, 495–506. [Google Scholar]
- Pang, X.M. The theoretical concept and development of regional integration. Adv. Geogr. Sci. 1997, 2, 39–47. [Google Scholar]
- Liebman, A.; Obtenkova, A.; Zhang, H. Historical Heritage and Eurasian Regional Integration. Russ. Stud. 2017, 6, 40–56. [Google Scholar]
- Nawaz, S.; Mangla, I.U. The economic geography of infrastructure in Asia: The role of institutions and regional integration. Res. Transp. Econ. 2021, 88, 101061. [Google Scholar] [CrossRef]
- Santos-Paulino, A.U.; DiCaprio, A.; Sokolova, M.V. The development trinity: How regional integration impacts growth, inequality and poverty. World Econ. 2019, 42, 1961–1993. [Google Scholar] [CrossRef]
- Tian, Y.S.; Mao, Q.H. The effect of regional integration on urban sprawl in urban agglomeration areas: A case study of the Yangtze River Delta, China. Habitat Int. 2022, 130, 102695. [Google Scholar] [CrossRef]
- Jiang, N.N.; Jiang, W. How does regional integration policy affect urban resilience? Evidence from urban agglomeration in China. Environ. Impact Assess. Rev. 2024, 104, 107298. [Google Scholar] [CrossRef]
- Qi, F.M.; Wu, W.F.; Xu, Q.; Xiao, P. The impact of digital economy and regional integration on common prosperity-an empirical study based on the data of the Yangtze River Delta. Stat. Decis. 2023, 39, 70–74. [Google Scholar]
- Yang, Q.K.; Duan, X.J.; Wang, L.; Wang, S. synergy Measurement and Interactive Response of Regional Integration and Urban Land Use Efficiency in Yangtze River Delta. Resour. Sci. 2021, 43, 2091–2104. [Google Scholar]
- Luan, Q.L.; Jin, Q.Q. Government subsidies, regional integration and high-quality economic development in the western region: A new economic geography theory based on enterprise heterogeneity. J. Hebei Univ. Econ. Bus. 2023, 44, 99–109. [Google Scholar]
- Feng, Y.; Lee, C.C.; Peng, D.D. Does regional integration improve economic resilience? Evidence from urban agglomerations in China. Sustain. Cities Soc. 2023, 88, 104273. [Google Scholar] [CrossRef]
- Copeland, B.R.; Taylor, M.S. Trade, growth and the environment. Econ. Lit. 2004, 42, 7–71. [Google Scholar] [CrossRef]
- Derek, K. An empirical investigation of the pollution haven effect with strategic environment and trade policy. J. Int. Econ. 2009, 78, 242–255. [Google Scholar]
- Jaffe, B.; Peterson, R. Environmental regulation and the competitiveness of US manufacturing: What does the evidence tell us? J. Econ. Lit. 1995, 33, 132–163. [Google Scholar]
- Peter, G.P.; Hertwich, E.G. Pollution embodied in trade: The Norwegian case. Glob. Environ. Chang. 2006, 16, 379–387. [Google Scholar] [CrossRef]
- Fan, W.; Yan, L.; Chen, B.; Ding, W.; Wang, P. Environmental governance effects of local environmental protection expenditure in China. Resour. Policy 2022, 77, 102760. [Google Scholar] [CrossRef]
- Yoo, I.T.; Kim, I. Free trade agreements for the environment? Regional economic integration and environmental cooperation in East Asia. Int. Environ. Agreem. 2016, 16, 721–738. [Google Scholar] [CrossRef]
- He, W.; Wang, B.; Danish; Wang, Z. Will regional economic integration influence carbon dioxide marginal abatement costs? Evidence from Chinese panel data. Energy Econ. 2018, 74, 263–274. [Google Scholar] [CrossRef]
- Baghdadi, L.; Martinez-Zarzoso, I.; Suarez-Burguet, C. Is the Road to Regional Integration Paved with Pollution Convergence? Working Papers 2012/03; Economics Department, Universitat Jaume I: Castellón, Spain, 2012. [Google Scholar]
- Nwosu, E.O.; Orji, A.; Urama, N. Regional integration and foreign investment: The case of ASEAN countries. Asian Econ. Financ. Rev. 2013, 3, 1670–1680. [Google Scholar]
- Peluffo, A. Regional integration and technology diffusion: The case of Uruguay. J. Int. Trade Econ. Dev. 2013, 22, 786–816. [Google Scholar] [CrossRef]
- Florence, B. Regional integration and income inequality: A synthetic counterfactual analysis of the European monetary union. Oxf. Rev. Econ. Policy 2021, 37, 172–200. [Google Scholar]
- Muhammad, I.S. Investigating the role of regional economic integration on growth: Fresh insights from South Asia. Glob. J. Emerg. Mark. Econ. 2021, 13, 35–57. [Google Scholar]
- Campos, N.F.; Coricelli, F.; Franceschi, E. Institutional integration and productivity growth: Evidence from the 1995 enlargement of the European Union. Eur. Econ. Rev. 2022, 142, 104014. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Z.; Shen, N.; Liu, T. Have Chinese cities achieved the win-win between environmental protection and economic development? From the perspective of environmental efficiency. Ecol. Indic. 2015, 51, 151–158. [Google Scholar] [CrossRef]
- Tian, K.; Zhang, Y.; Li, Y.; Ming, X.; Jiang, S.; Duan, H.; Yang, C.; Wang, S. Regional trade agreement burdens global carbon emissions mitigation. Nat. Commun. 2022, 13, 408. [Google Scholar] [CrossRef]
- Huan, H.; Zhu, Y.; Liu, J. A quasi-natural experiment research regarding the impact of regional integration expansion in the Yangtze River Delta on foreign direct investment. Growth Change 2022, 53, 1854–1876. [Google Scholar] [CrossRef]
- Lyu, Y.; Zhang, J.; Wang, L.; Yang, F.; Hao, Y. Towards a win-win situation for innovation and sustainable development: The role of environmental regulation. Sustain. Dev. 2022, 30, 1703–1717. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- Ananda, J. Explaining the environmental efficiency of drinking water and waste water utilities. Sustain. Prod. Consum. 2019, 17, 188–195. [Google Scholar] [CrossRef]
- Barnhart, S.; Miller, E. Problems in the estimation of equations containing perpetual inventory measured capital. J. Macroecon. 1990, 12, 637–651. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Li, P. Can regional integration reduce urban carbon emission? An empirical study based on the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2023, 20, 1395. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Lorente, D.; Driha, O.M.; Halkos, G.; Mishra, S. Influence of growth and urbanization on CO2 emissions: The moderating effect of foreign direct investment on energy use in BRICS. Sustain. Dev. 2022, 30, 227–240. [Google Scholar] [CrossRef]
- Bertone, E.; Sahin, O.; Stewart, R.A.; Zou, P.X.; Alam, M.; Hampson, K.; Blair, E. Role of financial mechanisms for accelerating the rate of water and energy efficiency retrofits in Australian public buildings: Hybrid Bayesian network and system dynamics modelling approach. Appl. Energy 2017, 210, 409–419. [Google Scholar] [CrossRef]
- Pei, Y.; Zhu, Y.; Liu, S.; Wang, X.; Cao, J. Environmental regulation and carbon emission: The mediation effect of technical efficiency. J. Clean. Prod. 2019, 236, 117599. [Google Scholar] [CrossRef]
- Hao, F.; Wu, H.; Liu, J.; Zhu, M.; Xu, W. Environmental regulation, trade openness and polluting emissions: City-level empirical evidence from China. J. Int. Trade Econ. Dev. 2023, 32, 494–507. [Google Scholar] [CrossRef]
- Liu, C.; Ni, T. Further exploring the driving mechanism of ecological carrying capacity changes at the urban agglomeration level. Ecol. Indic. 2023, 150, 110231. [Google Scholar] [CrossRef]
- Shao, S.; Yang, L.L.; Yu, M.B.; Yu, M.L. Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994–2009. Energy Policy 2011, 39, 6476–6494. [Google Scholar] [CrossRef]
- Chen, H.X.; Zhang, X.L.; Wu, R.W.; Cai, T.Y. Revisiting the environmental Kuznets curve for city-level CO2 emissions: Based on corrected NPP-VIIRS nighttime light data in China. J. Clean. Prod. 2020, 268, 121575. [Google Scholar] [CrossRef]
- Su, W.J.; Xie, C.X. High-speed rail, technological improvement, and PM2.5: Evidence from China. Econ. Anal. Policy 2023, 80, 1349–1362. [Google Scholar] [CrossRef]
- Chetty, R.; Looney, A.; Kroft, K. Salience and taxation: Theory and evidence. Am. Econ. Rev. 2009, 99, 1145–1177. [Google Scholar] [CrossRef]
- Ferrara, E.; Chong, A.; Duryea, S. Soap operas and fertility: Evidence from Brazil. Am. Econ. J. Appl. Econ. 2012, 4, 1–31. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Yu, T.; Zhang, X.; Liu, L.; Zhang, P. Resource extraction, environmental pollution and economic development: Evidence from prefecture-level cities in China. Resour. Policy 2021, 74, 102330. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z. The effects of climate policy on corporate technological upgrading in energy intensive industries: Evidence from China. J. Clean. Prod. 2016, 142, 3748–3758. [Google Scholar] [CrossRef]
- Yang, S.; Jahanger, A.; Mohammad, R.H. Enhancing export product quality through innovative cities: A firm-level quasi-natural experiment in China? Econ. Anal. Policy 2022, 79, 462–478. [Google Scholar] [CrossRef]
Variables | Obs | Mean | Std. Dev. | Min | Max | |
---|---|---|---|---|---|---|
INT | 4275 | 0.0681 | 0.2519 | 0.0000 | 1.0000 | |
GTFP | 4275 | 1.2195 | 0.1438 | 0.1652 | 3.7476 | |
POL | CO2 | 4275 | 0.8723 | 1.3984 | 0.0001 | 14.8640 |
SO2 | 4275 | 2.0402 | 3.3353 | 0.0001 | 62.2074 | |
PM2.5 | 4275 | 0.1298 | 0.0822 | 0.0001 | 9.3229 | |
GRE | 4275 | 0.3672 | 1.1123 | 0.0000 | 14.3184 | |
OPE | 4275 | 1.8602 | 1.9779 | 0.0011 | 19.8940 | |
FIN | 4275 | 0.8722 | 0.5502 | 0.0753 | 9.6221 | |
REG | 4275 | 0.0114 | 0.0170 | 0.0045 | 0.2445 | |
POP | 4275 | 0.0456 | 0.0501 | 0.0005 | 0.6626 | |
GOV | 4275 | 0.1761 | 0.1000 | 0.0426 | 1.4852 |
Variables | GTFP (1) | GTFP (2) | GTFP (3) | GTFP (4) | GTFP (5) |
---|---|---|---|---|---|
INT | 0.0025 *** (3.45) | 0.0028 *** (3.23) | 0.0022 *** (3.56) | 0.0019 *** (3.24) | 0.0015 *** (3.16) |
OPE | 0.0016 ** (2.12) | 0.0015 ** (2.09) | 0.0016 ** (2.02) | 0.0014 ** (2.03) | 0.0016 ** (1.97) |
FIN | 0.0093 ** (2.18) | 0.0087 ** (2.11) | 0.0089 ** (2.03) | 0.0083 ** (2.06) | |
REG | 0.1458 ** (1.98) | 0.1659 ** (2.08) | 0.0986 *** (3.11) | ||
POP | −0.1337 ** (−2.23) | −0.1543 ** (−2.11) | |||
GOV | 0.09l6 ** (2.16) | ||||
City Fixed | Yes | Yes | Yes | Yes | Yes |
Year Fixed | Yes | Yes | Yes | Yes | Yes |
R2 | 0.2976 | 0.2934 | 0.2982 | 0.2916 | 0.2933 |
Obs. | 4275 | 4275 | 4275 | 4275 | 4275 |
Variables | GTFP (1) | POL (2) | POL (3) | POL (4) |
---|---|---|---|---|
Panel 1: POL = CO2 | ||||
POL | −0.0035 *** (−3.21) | |||
INT | −0.0254 *** (−2.98) | −0.0568 ** (−2.14) | −0.0643 *** (−2.83) | |
Control Variables | Yes | Yes | Yes | Yes |
City Fixed | Yes | Yes | Yes | Yes |
Year Fixed | Yes | Yes | Yes | Yes |
R2 | 0.2439 | 0.5478 | 0.6436 | 0.5898 |
Obs. | 4275 | 4275 | 3900 | 4035 |
Panel 2: POL = SO2 | ||||
POL | −0.0158 ** (−2.16) | |||
INT | −0.0069 * (−1.86) | −0.0051 (−0.37) | −0.0081 ** (−2.03) | |
Control Variables | Yes | Yes | Yes | Yes |
City Fixed | Yes | Yes | Yes | Yes |
Year Fixed | Yes | Yes | Yes | Yes |
R2 | 0.2176 | 0.1021 | 0.1732 | 0.3364 |
Obs. | 4275 | 4275 | 3900 | 4035 |
Panel 3: POL = PM2.5 | ||||
POL | −0.0028 ** (−2.11) | |||
INT | −0.0677 *** (−2.96) | −0.0551 ** (−1.98) | −0.0781 (−0.62) | |
Control Variables | Yes | Yes | Yes | Yes |
City Fixed | Yes | Yes | Yes | Yes |
Year Fixed | Yes | Yes | Yes | Yes |
R2 | 0.2094 | 0.2966 | 0.2498 | 0.1298 |
Obs. | 4275 | 4275 | 3900 | 4035 |
Variables | GRE (1) | GTFP (2) |
---|---|---|
INT | 0.0365 *** (3.32) | 0.0126 *** (3.53) |
GRE | 0.0043 ** (2.12) | |
Control Variables | Yes | Yes |
City Fixed | Yes | Yes |
Year Fixed | Yes | Yes |
R2 | 0.2870 | 0.2943 |
Obs. | 4275 | 4275 |
GDP Growth Rate | CO2 Growth Rates | SO2 Growth Rates | PM2.5 Growth Rates | |
---|---|---|---|---|
Variables | EG (1) | PR (2) | PR (3) | PR (4) |
INT | 0.0478 *** (3.89) | −0.0240 ** (−2.03) | −0.0740 *** (−3.63) | −0.0157 ** (−1.98) |
Control Variables | Yes | Yes | Yes | Yes |
City Fixed | Yes | Yes | Yes | Yes |
Year Fixed | Yes | Yes | Yes | Yes |
R2 | 0.4701 | 0.2251 | 0.3417 | 0.2642 |
Obs. | 4275 | 4275 | 4275 | 4275 |
Variables | Excluding Municipalities Directly under the Central Government GTFP (1) | Adding Urban Characteristic Variables GTFP (2) | Using the PSM-DID Method GTFP (3) |
---|---|---|---|
INT | 0.0032 *** (3.43) | 0.0021 ** (2.02) | 0.0029 *** (3.24) |
Control Variables | Yes | Yes | Yes |
City Fixed | Yes | Yes | Yes |
Year Fixed | Yes | Yes | Yes |
R2 | 0.2439 | 0.3023 | 0.2430 |
Obs. | 4215 | 4275 | 3983 |
Variables | GTFP (1) | POL | GTFP (5) | ||
---|---|---|---|---|---|
CO2 (2) | SO2 (3) | PM2.5 (4) | |||
INT | 0.0023 *** (3.42) | −0.0145 ** (−1.89) | −0.0068 *** (−3.36) | −0.0219 ** (−1.89) | 0.0018 *** (3.21) |
TRA | 0.0216 *** (3.08) | ||||
TRA × INT | 0.0032 ** (2.12) | ||||
RES | 0.0216 ** (2.13) | 0.0674 ** (2.08) | 0.0096 (0.78) | ||
RES×INT | 0.0021 ** (1.87) | 0.0009 ** (2.04) | 0.0083 ** (1.97) | ||
GRE | 0.0039 ** (1.98) | ||||
INN | 0.0072 *** (2.86) | ||||
INN × GRE | 0.0009 ** (2.03) | ||||
Control Variables | Yes | Yes | Yes | Yes | Yes |
City Fixed | Yes | Yes | Yes | Yes | Yes |
Year Fixed | Yes | Yes | Yes | Yes | Yes |
R2 | 0.2879 | 0.4573 | 0.2374 | 0.3257 | 0.2587 |
Obs. | 4215 | 4035 | 4035 | 4035 | 4275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, X.; Zhu, Y.; Du, J. Can Regional Integration Policies Enhance the Win–Win Situation of Economic Growth and Environmental Protection? New Evidence for Achieving Carbon Neutrality Goals. Sustainability 2024, 16, 1647. https://doi.org/10.3390/su16041647
Lv X, Zhu Y, Du J. Can Regional Integration Policies Enhance the Win–Win Situation of Economic Growth and Environmental Protection? New Evidence for Achieving Carbon Neutrality Goals. Sustainability. 2024; 16(4):1647. https://doi.org/10.3390/su16041647
Chicago/Turabian StyleLv, Xianwang, Yingming Zhu, and Jiazhen Du. 2024. "Can Regional Integration Policies Enhance the Win–Win Situation of Economic Growth and Environmental Protection? New Evidence for Achieving Carbon Neutrality Goals" Sustainability 16, no. 4: 1647. https://doi.org/10.3390/su16041647