Sustainable Water Management of Drip-Irrigated Asparagus under Conditions of Central Poland: Evapotranspiration, Water Needs and Rainfall Deficits
Abstract
:1. Introduction
2. Materials and Methods
- n—number of days in the month;
- p—evaporation coefficients for respective months and geographic latitude [42];
- t—average monthly air temperature (°C).
- Np%—the precipitation deficit, for which the probability of occurrence is p% (mm per period);
- Ap% and Bp%—the numerical coefficients aimed at characterizing the variability of precipitation and evapotranspiration for a given meteorological station;
- ETp—the multi-year average evapotranspiration during the analysed period (mm per period);
- P—the average value determining the amount of precipitation, calculated based on the multi-year period for the analysed timeframe (mm per period).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muhie, S.H. Novel Approaches and Practices to Sustainable Agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Robertson, G.P. A Sustainable Agriculture? Daedalus 2015, 144, 76–89. [Google Scholar] [CrossRef]
- Umesha, S.; Manukumar, H.M.G.; Chandrasekhar, B. Sustainable Agriculture and Food Security. In Biotechnology for Sustainable Agriculture; Singh, R.L., Mondal, S., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 67–92. [Google Scholar]
- Nadykto, V.; Kyurchev, V.; Findura, P.; Hutsol, T.; Kurpaska, S.; Krakowiak-Bal, A.; Vasyuk, V. European Green Deal: Study of the Combined Agricultural Aggregate. Sustainability 2023, 15, 12656. [Google Scholar] [CrossRef]
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water Scarcity in Agriculture: An Overview of Causes, Impacts and Approaches for Reducing the Risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Santiago-Arenas, R.; Ferdous, Z.; Attia, A.; Datta, A. Improving Water Use Efficiency, Nitrogen Use Efficiency, and Radiation Use Efficiency in Field Crops under Drought Stress: A Review. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2019; Volume 156, pp. 109–157. [Google Scholar]
- Mancosu, N.; Snyder, R.; Kyriakakis, G.; Spano, D. Water Scarcity and Future Challenges for Food Production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Batlles-delaFuente, A.; Fidelibus, M.D. Sustainable Irrigation in Agriculture: An Analysis of Global Research. Water 2019, 11, 1758. [Google Scholar] [CrossRef]
- Pedro-Monzonís, M.; Solera, A.; Ferrer, J.; Estrela, T.; Paredes-Arquiola, J. A Review of Water Scarcity and Drought Indexes in Water Resources Planning and Management. J. Hydrol. 2015, 527, 482–493. [Google Scholar] [CrossRef]
- Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation. Sustainability 2017, 9, 353. [Google Scholar] [CrossRef]
- Gago, J.; Douthe, C.; Coopman, R.E.; Gallego, P.P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs Challenge to Assess Water Stress for Sustainable Agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Stachowski, P.; Rolbiecki, S.; Jagosz, B.; Krakowiak-Bal, A.; Rolbiecki, R.; Figas, A.; Gumus, M.; Atilgan, A. Changes in Water Quality for Sprinkler Irrigation in Selected Lakes of the Poznan Lake District. J. Ecol. Eng. 2023, 24, 69–81. [Google Scholar] [CrossRef]
- Nouri, M.; Homaee, M.; Pereira, L.S.; Bybordi, M. Water Management Dilemma in the Agricultural Sector of Iran: A Review Focusing on Water Governance. Agric. Water Manag. 2023, 288, 108480. [Google Scholar] [CrossRef]
- Gómez-Limón, J.A.; Gutiérrez-Martín, C.; Montilla-López, N.M. Agricultural Water Allocation under Cyclical Scarcity: The Role of Priority Water Rights. Water 2020, 12, 1835. [Google Scholar] [CrossRef]
- Descheemaeker, K.; Bunting, S.; Bindraban, P.S.; Muthuri, C.; Molden, D.; Beveridge, M.; van Brakel, M.; Herrero, M.; Clement, F.; Boelee, E.; et al. Increasing the Efficiency of Water Use in Crop Production. In Managing Water and Agroecosystems for Food Security; CABI: Wallingford, UK, 2013; pp. 117–140. [Google Scholar]
- Liu, Y.; Snider, J.L.; Bhattarai, A.; Collins, G. Economic Penalties Associated with Irrigation during High Rainfall Years in the Southeastern United States. Agric. Water Manag. 2022, 272, 107825. [Google Scholar] [CrossRef]
- Atay, E.; Hucbourg, B.; Drevet, A.; Lauri, P.-E. Investigating Effects of Over-Irrigation and Deficit Irrigation on Yield and Fruit Quality in Pink Lady ‘Rosy Glow’ Apple. Acta Sci. Pol. Hortorum Cultus 2017, 16, 45–51. [Google Scholar] [CrossRef]
- Kucher, A.; Krupin, V.; Rudenko, D.; Kucher, L.; Serbov, M.; Gradziuk, P. Sustainable and Efficient Water Management for Resilient Regional Development: The Case of Ukraine. Agriculture 2023, 13, 1367. [Google Scholar] [CrossRef]
- Knaflewski, M. Uprawa Szparagów [Asparagus Cultivation]; Hortpress: Warszawa, Poland, 2015; pp. 6–120. [Google Scholar]
- FAOSTAT Database. Food and Agricultural Organization, UN, Rome. 2021. Available online: http://faostat.fao.org/ (accessed on 15 February 2022).
- Knaflewski, M. Trendy w światowej produkcji szparaga [Trends in global asparagus production]. In Proceedings of the XXI Konferencja Szparagowa, Nowy Tomyśl, Poland, 10 March 2020; pp. 37–46. [Google Scholar]
- Knaflewski, M. Szparag [Asparagus]; Ha-Ka: Komorniki, Poland, 1995; pp. 3–92. [Google Scholar]
- Peterson, R.S.; Drost, D. Harvest Pressure, Irrigation Methods, and Amounts Reduce Asparagus Growth and Yield. HortScience 2004, 39, 851E–852. [Google Scholar] [CrossRef]
- Rolbiecki, R. Ocena Potrzeb i Fektów Mikronawodnień Szparaga (Asparagus officinalis L.) na Obszarze Szczególnie Deficytowym w Wodę [Assessment of the Needs and Effects of Micro-Irrigation of Asparagus (Asparagus officinalis L.) in an Area Particularly Water-Deficient]; UTP: Bydgoszcz, Poland, 2013; pp. 1–103. [Google Scholar]
- Wichrowska, D.; Rolbiecki, R.; Rolbiecki, S.; Jagosz, B.; Ptach, W.; Kazula, M.; Figas, A. Concentrations of some chemical components in white asparagus spears depending on the cultivar and post-harvest irrigation treatments. Folia Hortic. 2018, 30, 147–154. [Google Scholar] [CrossRef]
- SAGPyA. Secretaría de Agricultura, Ganadería Pesca y Alimentos. Protocolo de Calidad para Espárrago Fresco. Available online: http://www.alimentosargentinos.gob.ar/contenido/valorAr/sello/SAA010_Esparrago_v08.pdf (accessed on 28 March 2022).
- Mounika, P.; Suganthi, G.; Preethi, K.; Abinaya, D. Certain Impacts on Organic Vegetables Versus Conventional Vegetables by Using Uncertain Technique. Think India. 2019, pp. 7214–7218. Available online: https://thinkindiaquarterly.org/index.php/think-india/article/view/10173/5896 (accessed on 10 September 2023).
- Shilpa, V. Role of Organic Fertilizers in Sustainable Production of Solanaceous Vegetables. Master’s Thesis, CSK Himachal Pradesh Agricultural University, Palampur, India, 2014. [Google Scholar]
- Ustaahmetoglu, E.; Toklu, I. Organik Gıda Satın Alma Niyetinde Tutum, Sağlık Bilinci ve Gıda Güvenliğinin Etkisi Üzerine Bir Araştırma [A Survey on the Effect of Attitude, Health Consciousness and Food Safety on Organic Food Purchase]. Ekon. Ve Sos. Araştırmalar Derg. 2015, 11, 197–211. [Google Scholar]
- Silva, W.G.; Carvalho, J.A.; Oliveira, E.C.; Lima Júnior, J.A.; Silva, B.M. Technical and economic analysis of irrigation of asparagus bean in protected environment. Eng. Agríc. 2013, 33, 658–668. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Rolbiecki, S.; Figas, A.; Jagosz, B.; Prus, P.; Stachowski, P.; Kazula, M.J.; Szczepanek, M.; Ptach, W.; Pal-Fam, F.; et al. Response of Chosen American Asparagus officinalis L. Cultivars to Drip Irrigation on the Sandy Soil in Central Europe: Growth, Yield, and Water Productivity. Agronomy 2021, 11, 864. [Google Scholar] [CrossRef]
- Ruth, R.L.; Gardner, B.R. Asparagus spear size distribution and earliness as affected by water and nitrogen applications. Trans. Am. Soc. Agric. Eng. 1991, 33, 480–486. [Google Scholar] [CrossRef]
- Martínez, J.; Reca, J. Water use efficiency of surface drip irrigation versus an alternative subsurface drip irrigation method. J. Irrig. Drain. Eng. 2014, 140, 04014030. [Google Scholar] [CrossRef]
- Campi, P.; Mastrorilli, M.; Stellacci, A.M.; Modugno, F.; Palumbo, A.D. Increasing the effective use of water in green asparagus through deficit irrigation strategies. Agric. Water Manag. 2019, 217, 119–130. [Google Scholar] [CrossRef]
- Xekarfotakis, N.; Chatzistathis, T.; Mola, M.; Demirtzoglou, T.; Monokrousos, N. The effects of different fertilization practices in combination with the use of PGPR on the sugar and amino acid content of Asparagus officinalis. Horticulturae 2021, 7, 507. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Sadan, H.; Rolbiecki, S.; Jagosz, B.; Szczepanek, M.; Figas, A.; Atilgan, A.; Pal-Fam, F.; Pańka, D. Effect of Subsurface Drip Fertigation with Nitrogen on the Yield of Asparagus Grown for the Green Spears on a Light Soil in Central Poland. Agronomy 2022, 12, 241. [Google Scholar] [CrossRef]
- Brainard, D.C.; Byl, B.; Hayden, Z.D.; Noyes, D.C.; Bakker, J.; Werling, B. Managing drought risk in a changing climate: Irrigation and cultivar impacts on Michigan asparagus. Agric. Water Manag. 2019, 213, 773–781. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- Łabędzki, L.; Szajda, J.; Szuniewicz, J. Ewapotranspiracja upraw rolniczych—Terminologia, definicje, metody obliczania—Przegląd stanu wiedzy [Evapotranspiration of agricultural crops—Terminology, definitions, calculation methods. Review]. Mat. Inf. IMUZ Falenty 1996, 33, 1–15. [Google Scholar]
- Łabędzki, L. Susze rolnicze. Zarys problematyki oraz metody monitorowania i klasyfikacji [Agricultural droughts. Outline of the issues and methods of monitoring and classification]. Woda. Śr. Obsz. Wiejskie. Rozpr. Nauk. Monogr. [Water Environ. Rural Areas. Sci. Diss. Monogr.] 2006, 17, 1–107. [Google Scholar]
- Żakowicz, S. Podstawy Technologii Nawadniania Rekultywowanych Składowisk Odpadów Komunalnych [Fundamentals of Irrigation Technology for Reclaimed Municipal Waste Landfills]; SGGW: Warszawa, Poland, 2010. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; FAO Irrigation and Drainage Paper 24; Food and Agriculture Organization: Rome, Italy, 1977. [Google Scholar]
- Tabaszewski, J. Elementy Inżynierii Wodnej; ART: Olsztyn, Poland, 1980; p. 189. [Google Scholar]
- Żakowicz, S.; Hewelke, P.; Gnatowski, T. Podstawy Infrastruktury Technicznej w Przestrzeni Produkcyjnej [Basics of Technical Infrastructure in Production Space]; SGGW: Warszawa, Poland, 2009; p. 192. [Google Scholar]
- Platt, C. Problemy Rachunku Prawdopodobieństwa i Statystyki Matematycznej [Probability Theory and Mathematical Statistics]; PWN: Warszawa, Poland, 1978. [Google Scholar]
- Rolbiecki, S.; Rolbiecki, R.; Jagosz, B.; Ptach, W.; Stachowski, P.; Kazula, M. Water needs of asparagus plants in the different regions of Poland. Annu. Set Environ. Prot. 2019, 21, 1227–1237. [Google Scholar]
- Paschold, P.J.; Artelt, B.; Hermann, G. The water need of asparagus (Asparagus officinalis L.) determined in a lysimeter station. Acta Hortic. 2004, 664, 529–536. [Google Scholar] [CrossRef]
- Pardo, A.; Arbizou, J.; Suso, M.L. Evapotranspiration and crop coefficients in white asparagus. Acta Hortic. 1997, 449, 187–192. [Google Scholar] [CrossRef]
- Grabarczyk, S.; Żarski, J.; Dudek, S. Zależność klimatycznych wskaźników niedoborów wodnych od opadów atmosferycznych [Dependence of climatic indicators of water shortages on atmospheric precipitation]. Rocz. Akad. Rol. Pozn. 1994, 13, 15–19. [Google Scholar]
- Łabędzki, L. Foreseen climate changes and irrigation development in Poland. Infrastruct. Ecol. Rural Areas 2009, 3, 7–18. [Google Scholar]
- Radzka, E.; Kapela, K.; Rusinek, R.; Findura, P. Assessment of maize water requirements and precipitation deficits and excesses in central-eastern Poland. Int. Agrophys. 2023, 37, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Kuchar, L.; Iwański, S. Rainfall simulation for the prediction of crop irrigation in future climate. Infrastruct. Ecol. Rural Areas 2011, 5, 7–18. [Google Scholar]
- Kuchar, L.; Iwański, S. Rainfall evaluation for crop production until 2050–2060 and selected climate change scenarios for North Central Poland. Infrastruct. Ecol. Rural Areas 2013, 2, 187–200. [Google Scholar]
- Kuchar, L.; Iwański, S.; Diakowska, E.; Gąsiorek, E. Simulation of hydrothermal conditions for crop production purpose until 2050-2060 and selected climate change scenarios for North Central Poland. Infrastruct. Ecol. Rural Areas 2015, II(1), 319–334. [Google Scholar]
- Kuchar, L.; Iwański, S.; Diakowska, E.; Gąsiorek, E. Assessment of meteorological drought in 2015 for North Central part of Poland using hydrothermal coefficient (HTC) in the context of climate change. Infrastruct. Ecol. Rural Areas 2017, I(2), 257–273. [Google Scholar]
- Lisek, J. Climatic factors affecting development and yielding of grapevine in central Poland. J. Fruit Ornam. Plant Res. 2008, 16, 285–293. [Google Scholar]
- Jagosz, B.; Rolbiecki, S.; Rolbiecki, R.; Łangowski, A.; Sadan, H.A.; Ptach, W.; Stachowski, P.; Kasperska-Wołowicz, W.; Pal-Fam, F.; Liberacki, D. The water needs of grapevines in Central Poland. Agronomy 2021, 11, 416. [Google Scholar] [CrossRef]
- Jagosz, B.; Rolbiecki, S.; Rolbiecki, R.; Ptach, W.; Sadan, H.; Kasperska-Wołowicz, W.; Pal-Fam, F.; Atilgan, A. Effect of the forecast air temperature change on the water needs of vines in the region of Bydgoszcz, Northern Poland. Agronomy 2022, 12, 1561. [Google Scholar] [CrossRef]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality–A review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Kaufmann, F. Intensivierung der Spargelproduktion durch Bewasserrung. Gartenbau 1977, 24, 73–74. [Google Scholar]
- Paschold, P.J.; Eckes, U.; Löbmeier, F.J.; Hoppmann, D. Untersuchungen zur Ermittlung des Langjährigen Wasser und Berednungsbedarfs bei Ausgewählten Gemüsearten, Unveröff; Arbeitsbericht; Forschungsanstalt Geisenheim: Geisenheim, Germany, 2001. [Google Scholar]
- Jararweh, Y.; Fatima, S.; Jarrah, M.; AlZu’bi, S. Smart and Sustainable Agriculture: Fundamentals, Enabling Technologies, and Future Directions. Comput. Electr. Eng. 2023, 110, 108799. [Google Scholar] [CrossRef]
- Drost, D. Asparagus breeding: Future research needs for sustainable production. Front. Plant Sci. 2023, 14, 1148312. [Google Scholar] [CrossRef] [PubMed]
- Kaniszewski, S. Nawadnianie Warzyw Polowych [Irrigation of Field Vegetables]; PlantPress: Kraków, Poland, 2005; pp. 3–115. [Google Scholar]
- Kaniszewski, S. Nawadnianie warzyw. In Nawadnianie Roślin; Nowak, L., Karczmarczyk, S., Eds.; PWRiL: Poznań, Poland, 2006; pp. 295–332. [Google Scholar]
- Drost, D. Asparagus. In The Physiology of Vegetable Crops; CABI: Wallingford, UK, 2020; pp. 457–479. [Google Scholar]
- Drost, D. Asparagus (Asparagus officinalis L.) Root Distribution: Cultivar Differences in Mature Plantings. Horticulturae 2023, 9, 979. [Google Scholar] [CrossRef]
- Drost, D. Asparagus (Asparagus officinalis L.) root distribution varies with cultivar during early establishment years. Horticulturae 2023, 9, 125. [Google Scholar] [CrossRef]
- Brainard, D.C.; Byl, B.; Hayden, Z.; Noyes, D.C.; Werling, B.; Bakker, J. Irrigation effects on asparagus yield and spear quality vary with cultivar and season in Michigan. In Proceedings of the XIV International Asparagus Symposium, Potsdam, Germany, 3–6 September 2017; Volume 1223, pp. 101–116. [Google Scholar]
- Battilani, A. Response of asparagus (Asparagus officinalis L.) to post-harvesting irrigation. In Proceedings of the II International Symposium on Irrigation of Horticultural Crops, Chania, Greece, 9–13 September 1996; Volume 449, pp. 181–186. [Google Scholar]
- Cermeño-Sacristán, P.; Andreu-Cáceres, L.; Durán-Zuazo, V.H.; Romero-Solís, M.J. Assessment of the water needs for asparagus in Mediterranean area. In Proceedings of the XV International Asparagus Symposium, Cordoba, Spain, 12–15 June 2022; Volume 1376, pp. 149–156. [Google Scholar]
- Cruz-Bautista, F.; López-Cruz, I.L.; Rodríguez, J.C.; Ochoa-Meza, A.; Ruíz-García, A.; Er-Raki, S. Irrigation optimization in green asparagus (Asparagus officinalis L.) using the AquaCrop model and evolutionary strategy algorithms. Irrig. Drain. 2023. early view. [Google Scholar] [CrossRef]
- Cruz-Bautista, F.; López-Cruz, I.L.; Rodríguez, J.C.; Ortega-Farías, S.; Viveros-Herrera, G. Estimation of canopy cover, biomass, asparagus (Asparagus officinalis L.) spear yield, and the need for irrigation using AquaCrop model. In Proceedings of the XV International Asparagus Symposium, Cordoba, Spain, 12–15 June 2022; Volume 1376, pp. 177–184. [Google Scholar]
- Drost, D.; Wilcox-Lee, D. Soil water deficits and asparagus: I. Shoot, root, and bud growth during two seasons. Sci. Hortic. 1997, 70, 131–143. [Google Scholar] [CrossRef]
- Drost, D. Soil water deficits reduce growth and yield of asparagus. In Proceedings of the IX International Asparagus Symposium, Pasco, WA, USA, 15–17 July 1997; Volume 479, pp. 383–390. [Google Scholar]
- Er-Raki, S.; Bouras, E.H.; Rodríguez, J.C.; Amazirh, A.; Lizárraga-Celaya, C.; Cruz-Bautista, F. Estimation of evapotranspiration and crop coefficient of asparagus in semi-arid region of Mexico using NDVI remote sensing data. In Proceedings of the XV International Asparagus Symposium, Cordoba, Spain, 12–15 June 2022; Volume 1376, pp. 185–192. [Google Scholar]
- Rios Flores, J.L.; Rios Arredondo, B.E.; CantúBrito, J.E.; Rios Arredondo, H.E.; Erives, S.A.; Rivero, J.A.C.; Navarrete Molina, C.; Castro Franco, R. Analysis of physical, economic and social water efficiency in asparagus (Asparagus officinalis L.) and grape (Vitis vinifera) fruit from DR-037 of Altar-Pitiquito-Caborca, Sonora, Mexico 2014. Rev. Fac. Cienc. Agrar. Univ. Nac. Cuyo 2018, 50, 101–122. [Google Scholar]
- Fontes, A.F.; Contreras, R.L.G. 297 Study of the Regular and High Application of Water with Drip Irrigation in Asparagus. HortScience 2000, 35, 442F–443. [Google Scholar] [CrossRef]
- Graefe, J.; Sradnick, A. Monitoring and modelling of water and heat fluxes from asparagus fields. In Proceedings of the XIV International Asparagus Symposium, Potsdam, Germany, 3–6 September 2017; Volume 1223, pp. 117–126. [Google Scholar]
- Rodríguez, J.C.; Lizárraga-Celaya, C.; Er-Raki, S.; Cruz-Bautista, F.; Ortega-Farías, S.; Ochoa-Meza, A.; Viveros-Herrera, G. Water needs and production of asparagus in the arid zone of northwestern Mexico. In Proceedings of the XV International Asparagus Symposium, Cordoba, Spain, 12–15 June 2022; Volume 1376, pp. 161–168. [Google Scholar]
- Roth, R.L.; Gardner, B.R. Asparagus yield response to water and nitrogen. Trans. ASAE 1989, 32, 105–0112. [Google Scholar] [CrossRef]
- Wei, Q.I.; Yuefeng, G.U.O.; Fanjing, B.U. Effects of Irrigation Conditions and Environmental Factors on Asparagus Growth. J. Agric. 2023, 13, 71. [Google Scholar]
- Zinkernagel, J.; Kahlen, K. Water relations of asparagus crop under different water supply and implications for plant-based irrigation scheduling. In Proceedings of the VIII International Symposium on Irrigation of Horticultural Crops, Lleida, Spain, 8–11 June 2015; Volume 1150, pp. 385–390. [Google Scholar]
- Zinkernagel, J.; Artelt, B.; Mayer, N. Cultivar-specific yield response of white asparagus towards different irrigation levels based on climate water balance. In Proceedings of the XIV International Asparagus Symposium, Potsdam, Germany, 3–6 September 2017; Volume 1223, pp. 111–116. [Google Scholar]
- Feng, T.; Xiong, R.; Huan, P. Productive use of natural resources in agriculture: The main policy lessons. Resour. Policy 2023, 85, 103793. [Google Scholar] [CrossRef]
- Hussain, F.; Shahid, M.A.; Majeed, M.D.; Ali, S.; Zamir, M.S.I. Estimation of the Crop Water Requirements and Crop Coefficients of Multiple Crops in a Semi-Arid Region by Using Lysimeters. Environ. Sci. Proc. 2023, 25, 101. [Google Scholar]
- Ju, H.; Liu, Y.; Zhang, S. Interprovincial agricultural water footprint in China: Spatial pattern, driving forces and implications for water resource management. Sustain. Prod. Consum. 2023, 43, 264–277. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Sheng, Z.; Manevski, K.; Andersen, M.N.; Han, S.; Li, H.; Yang, Y. Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework. Agric. Water Manag. 2021, 249, 106793. [Google Scholar] [CrossRef]
- Nhamo, L.; Mabhaudhi, T.; Magombeyi, M. Improving water sustainability and food security through increased crop water productivity in Malawi. Water 2016, 8, 411. [Google Scholar] [CrossRef]
Year of Study According to Rolbiecki [24] | Irrigation Period | ||
---|---|---|---|
21–30 June | 1–31 July | 1–31 August | |
Total water used by asparagus plants during the irrigation period (S; mm) | |||
2002 | 13.8 | 112.0 | 146.3 |
2003 | 19.3 | 98.6 | 131.5 |
2004 | 13.6 | 91.3 | 100.3 |
2005 | 8.8 | 102.2 | 113.6 |
2006 | 16.6 | 132.8 | 111.5 |
2007 | 37.7 | 121.3 | 104.7 |
Reference evapotranspiration according to the Blaney–Criddle method (ETo; mm) | |||
2002 | 42.9 | 139.5 | 127.4 |
2003 | 44.8 | 137.2 | 118.6 |
2004 | 40.0 | 126.8 | 117.7 |
2005 | 40.2 | 141.0 | 109.3 |
2006 | 43.6 | 156.0 | 111.3 |
2007 | 45.1 | 131.1 | 115.3 |
The crop coefficient values (kc = S/ETo) | |||
2002 | 0.321766 | 0.802632 | 1.148677 |
2003 | 0.430802 | 0.718484 | 1.109031 |
2004 | 0.339595 | 0.719750 | 0.852327 |
2005 | 0.218842 | 0.724698 | 1.039028 |
2006 | 0.380748 | 0.851156 | 1.002066 |
2007 | 0.836416 | 0.925001 | 0.908116 |
kc used in the present study | 0.4 | 0.8 | 1.0 |
Provinces of Central Poland | Meteorological Station | Altitude (m.a.m.s.l.) | Latitude | Longitude |
---|---|---|---|---|
Kuyavian–Pomeranian | Bydgoszcz | 46 | 53°08′ | 18°01′ |
Greater Poland | Poznań | 86 | 52°25′ | 16°50′ |
Masovian | Warszawa | 106 | 52°09′ | 20°59′ |
Lodz | Łódź | 184 | 51°44′ | 19°24′ |
Statistical Characteristics | Provinces of Central Poland | Irrigation Period = Fern Growth Period | ||
---|---|---|---|---|
21–30 June | 1–31 July | 1–31 August | ||
Minimum (mm) | K–P | 15 | 97 | 101 |
GP | 14 | 93 | 100 | |
M | 15 | 95 | 102 | |
L | 14 | 90 | 98 | |
Maximum (mm) | K–P | 21 | 125 | 132 |
GP | 20 | 125 | 134 | |
M | 20 | 124 | 134 | |
L | 20 | 120 | 131 | |
Median (mm) | K–P | 17 | 109 | 116 |
GP | 16 | 107 | 115 | |
M | 17 | 108 | 116 | |
L | 16 | 104 | 114 | |
Standard Deviation (mm) | K–P | 1.010 | 6.506 | 6.231 |
GP | 1.108 | 7.037 | 6.884 | |
M | 0.992 | 6.025 | 6.015 | |
L | 0.987 | 6.562 | 6.035 | |
Variability Coefficient (%) | K–P | 6.0 | 6.0 | 5.4 |
GP | 6.8 | 6.7 | 6.0 | |
M | 5.9 | 5.6 | 5.1 | |
L | 6.2 | 6.3 | 5.3 |
Irrigation Period (Fern Growth Period) | Provinces of Central Poland | |||
---|---|---|---|---|
Kuyavian–Pomeranian | Greater Poland | Masovian | Lodz | |
Linear Correlation Coefficient (r) | ||||
21–30 June | 0.434 *** | 0.597 *** | 0.509 *** | 0.563 *** |
1–31 July | 0.184 ns | 0.389 ** | 0.357 ** | 0.335 ** |
1–31 August | 0.314 ** | 0.544 *** | 0.496 *** | 0.408 *** |
21 June–1 August | 0.346 ** | 0.596 *** | 0.560 *** | 0.504 *** |
Tendency of Water Needs (mm decade−1) | ||||
21–30 June | 0.4 | 0.6 | 0.4 | 0.5 |
1–31 July | 1.0 | 2.4 | 1.9 | 1.9 |
1–31 August | 1.7 | 3.2 | 2.6 | 2.1 |
21 June–1 August | 3.1 | 6.2 | 4.9 | 4.5 |
Years | Irrigation Period = Fern Growth Period | |||
---|---|---|---|---|
21–30 June | 1–31 July | 1–31 August | 21 June–31 August | |
Kuyavian–Pomeranian province | ||||
Normal | – | 31 | 59 | 90 |
Medium Dry | 3 | 57 | 82 | 143 |
Very Dry | 7 | 76 | 100 | 183 |
Greater Poland province | ||||
Normal | – | 24 | 59 | 84 |
Medium Dry | 2 | 51 | 82 | 136 |
Very Dry | 6 | 70 | 99 | 175 |
Masovian province | ||||
Normal | – | 28 | 53 | 81 |
Medium Dry | – | 55 | 77 | 132 |
Very Dry | 3 | 74 | 96 | 173 |
Lodz province | ||||
Normal | – | 24 | 56 | 79 |
Medium Dry | 1 | 50 | 78 | 129 |
Very Dry | 4 | 69 | 95 | 168 |
Provinces of Central Poland | Net Volume of the Water Reservoir (m3) in the Years: | |
---|---|---|
Medium Dry (N25%) | Very Dry (N10%) | |
Kuyavian–Pomeranian | 35,750 | 45,750 |
Greater Poland | 34,000 | 43,750 |
Masovian | 33,000 | 43,250 |
Lodz | 32,250 | 42,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolbiecki, S.; Rolbiecki, R.; Sadan, H.A.; Jagosz, B.; Kasperska-Wołowicz, W.; Kanecka-Geszke, E.; Pal-Fam, F.; Atilgan, A.; Krakowiak-Bal, A.; Kuśmierek-Tomaszewska, R.; et al. Sustainable Water Management of Drip-Irrigated Asparagus under Conditions of Central Poland: Evapotranspiration, Water Needs and Rainfall Deficits. Sustainability 2024, 16, 966. https://doi.org/10.3390/su16030966
Rolbiecki S, Rolbiecki R, Sadan HA, Jagosz B, Kasperska-Wołowicz W, Kanecka-Geszke E, Pal-Fam F, Atilgan A, Krakowiak-Bal A, Kuśmierek-Tomaszewska R, et al. Sustainable Water Management of Drip-Irrigated Asparagus under Conditions of Central Poland: Evapotranspiration, Water Needs and Rainfall Deficits. Sustainability. 2024; 16(3):966. https://doi.org/10.3390/su16030966
Chicago/Turabian StyleRolbiecki, Stanisław, Roman Rolbiecki, Hicran A. Sadan, Barbara Jagosz, Wiesława Kasperska-Wołowicz, Ewa Kanecka-Geszke, Ferenc Pal-Fam, Atilgan Atilgan, Anna Krakowiak-Bal, Renata Kuśmierek-Tomaszewska, and et al. 2024. "Sustainable Water Management of Drip-Irrigated Asparagus under Conditions of Central Poland: Evapotranspiration, Water Needs and Rainfall Deficits" Sustainability 16, no. 3: 966. https://doi.org/10.3390/su16030966
APA StyleRolbiecki, S., Rolbiecki, R., Sadan, H. A., Jagosz, B., Kasperska-Wołowicz, W., Kanecka-Geszke, E., Pal-Fam, F., Atilgan, A., Krakowiak-Bal, A., Kuśmierek-Tomaszewska, R., & Łangowski, A. (2024). Sustainable Water Management of Drip-Irrigated Asparagus under Conditions of Central Poland: Evapotranspiration, Water Needs and Rainfall Deficits. Sustainability, 16(3), 966. https://doi.org/10.3390/su16030966