The Evolution of the Spatial–Temporal Pattern of Tourism Development and Its Influencing Factors: Evidence from China (2010–2022)
Abstract
:1. Introduction
2. Data and Method
2.1. Data Source
2.2. Index System Construction
2.3. Data Standardization
2.4. GWR Model
2.5. New Tourism Development Index
2.6. Grade Division Method
3. Result
3.1. Overall Situation of TNDI in China
3.2. Five Dimensions of Development Indicators and Their Annual Growth Rates
3.3. The Relationship Between Quality and Quantity
3.4. Characteristics and Influencing Factors of Tourism Spatial Evolution
3.4.1. Global Spatial Correlation Pattern
3.4.2. Local Spatial Correlation Pattern
3.4.3. Selection of Indicator Elements
3.4.4. OLSs Model and Results
3.4.5. The GWR Model and Results
4. Conclusions and Discussion
5. Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WTTC Global Economic Impact & Trends. 2021. Available online: https://wttc.org/ (accessed on 4 December 2024).
- UNWTO. UNWTO World Tourism Barometer and Statistical Annex. 2020. Available online: https://www.e-unwto.org/doi/abs/10.18111/wtobarometereng.2020.18.1.1 (accessed on 5 December 2022).
- Rasool, H.; Maqbool, S.; Tarique, M. The relationship between tourism and economic growth among BRICS countries: A panel cointegration analysis. Future Bus. J. 2021, 7, 1. [Google Scholar] [CrossRef]
- World Travel and Tourism Council (WTTC). EIR 2020 Data Tables Top 20 Final; World Travel and Tourism Council (WTTC): London, UK, 2020. [Google Scholar]
- World Travel and Tourism Council (WTTC). China 2020 Annual Research; World Travel and Tourism Council (WTTC): London, UK, 2020. [Google Scholar]
- Yan, X. Comprehensively implementing the new development concept is the only way for high-quality tourism development. Tour. Trib. 2023, 38, 3–5. [Google Scholar]
- Peng, H.; Zhang, J.; Lu, L.; Tang, G.; Yan, B.; Xiao, X.; Han, Y. Eco-efficiency and its determinants at a tourism destination: A case study of huangshan national park, China. Tour. Manag. 2017, 60, 201–211. [Google Scholar] [CrossRef]
- Khanra, S.; Dhir, A.; Kaur, P.; Mäntymäki, M. Bibliometric analysis and literature review of ecotourism: Toward sustainable development. Tour. Manag. Perspect. 2021, 37, 100777. [Google Scholar]
- Talwar, S.; Kaur, P.; Nunkoo, R.; Dhir, A. Digitalization and sustainability: Virtual reality tourism in a post pandemic world. J. Sustain. Tour. 2023, 31, 2564–2591. [Google Scholar] [CrossRef]
- Sharpley, R. Tourism, sustainable development and the theoretical divide: 20 years on. J. Sustain. Tour. 2020, 28, 1932–1946. [Google Scholar] [CrossRef]
- Erdoğan, S.; Gedikli, A.; Cevik, E.I.; Erdoğan, F. Eco-friendly technologies, international tourism and carbon emissions: Evidence from the most visited countries. Technol. Forecast. Soc. Chang. 2022, 180, 121705. [Google Scholar] [CrossRef]
- Wei, L.; Ullah, S. International tourism, digital infrastructure, and CO2 emissions: Fresh evidence from panel quantile regression approach. Environ. Sci. Pollut. Res. 2022, 29, 36273–36280. [Google Scholar] [CrossRef]
- Ruan, W.; Li, Y.; Zhang, S.; Liu, C.-H. Evaluation and drive mechanism of tourism ecological security based on the DPSIR-DEA model. Tour. Manag. 2019, 75, 609–625. [Google Scholar] [CrossRef]
- Gannon, M.; Rasoolimanesh, S.M.; Taheri, B. Assessing the mediating role of residents’ perceptions toward tourism development. J. Travel Res. 2021, 60, 149–171. [Google Scholar] [CrossRef]
- Eslami, S.; Khalifah, Z.; Mardani, A.; Streimikiene, D.; Han, H. Community attachment, tourism impacts, quality of life and residents’support for sustainable tourism development. J. Travel Tour. Mark. 2019, 36, 1061–1079. [Google Scholar] [CrossRef]
- Ramkissoon, H. Perceived social impacts of tourism and quality-of-life: A new conceptual model. J. Sustain. Tour. 2023, 31, 442–459. [Google Scholar] [CrossRef]
- Streimikiene, D.; Svagzdiene, B.; Jasinskas, E.; Simanavicius, A. Sustainable tourism development and competitiveness: The systematic literature review. Sustain. Dev. 2021, 29, 259–271. [Google Scholar] [CrossRef]
- El Archi, Y.; Benbba, B.; Nizamatdinova, Z.; Issakov, Y.; Vargáné, G.I.; Dávid, L.D. Systematic literature review analysing smart tourism destinations in context of sustainable development: Current applications and future directions. Sustainability 2023, 15, 5086. [Google Scholar] [CrossRef]
- Xu, C.; Li, X.; Wu, X. Evaluation of island tourism sustainable development in the context of smart tourism. J. Coast. Res. 2020, 103, 1098–1101. [Google Scholar] [CrossRef]
- Mousazadeh, H.; Ghorbani, A.; Azadi, H.; Almani, F.A.; Zangiabadi, A.; Zhu, K.; Dávid, L.D. Developing sustainable behaviors for underground heritage tourism management: The case of Persian Qanats, a UNESCO World Heritage property. Land 2023, 12, 808. [Google Scholar] [CrossRef]
- Wondirad, A.; Tolkach, D.; King, B. Stakeholder collaboration as a major factor for sustainable ecotourism development in developing countries. Tour. Manag. 2020, 78, 104024. [Google Scholar] [CrossRef]
- Wang, S.; Abbas, J.; Al-Sulati, K.I.; Shah, S.A.R. The impact of economic corridor and tourism on local community’s quality of life under One Belt One Road Context. Eval. Rev. 2023, 48, 312–345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zheng, T.; Huang, Y. Realize the transformation from economic function to comprehensive function and promote the high-quality development of tourism. Macroecon. Manag. 2022, 66–73. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H. Theoretical Issues on high-quality development of tourism economy in the new era. Tour. Trib. 2022, 37, 3–5. [Google Scholar]
- Zhu, K.; Zhou, Q.; Cheng, Y.; Zhang, Y.; Li, T.; Yan, X.; Alimov, A.; Farmanov, E.; Dávid, L.D. Regional sustainability: Pressures and responses of tourism economy and ecological environment in the Yangtze River basin, China. Front. Ecol. Evol. 2023, 11, 1148868. [Google Scholar] [CrossRef]
- Liu, Y.; Suk, S. Constructing an evaluation index system for China’s Low-Carbon tourism region—An example from the Daxinganling region. Sustainability 2021, 13, 12026. [Google Scholar] [CrossRef]
- Lin, V.S.; Yang, Y.; Li, G. Where can tourism-led growth and economy-driven tourism growth occur? J. Travel Res. 2019, 58, 760–773. [Google Scholar] [CrossRef]
- He, H.; Tuo, S.; Lei, K.; Gao, A. Assessing quality tourism development in China: An analysis based on the degree of mismatch and its influencing factors. Environ. Dev. Sustain. 2023, 26, 9525–9552. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, Y.; He, X.; Zhou, C. Analysis of high-quality tourism destinations based on spatiotemporal big data—A case study of Urumqi. Land 2023, 12, 1425. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Li, C. All-for-one tourism demonstration zones and high-quality development of tourism: Evidence from the quasi-natural experiment in China. Sustainability 2023, 15, 11626. [Google Scholar] [CrossRef]
- Dai, X.; Yang, M. Global tourism drives high-quality tourism development. Tour. Trib. 2022, 37, 6–8. [Google Scholar]
- Wei, L.; Zuqiang, J.; Jin, L. Coupling Effect and Driving Mechanisms in High-Quality Development of Rural Tourism and Rural Revitalization—Taking Hunan Province as a Case Study. J. Resour. Ecol. 2024, 15, 541–553. [Google Scholar] [CrossRef]
- Shen, W.; Huang, Z.; Yin, S.; Hsu, W.-L. Temporal and spatial coupling characteristics of tourism and urbanization with mechanism of high-quality development in the Yangtze River Delta urban agglomeration, China. Appl. Sci. 2022, 12, 3403. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Xu, J.; Fujiki, Y. Evolution characteristics of the spatial network structure of tourism efficiency in China: A province-level analysis. J. Destin. Mark. Manag. 2020, 18, 100509. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, J. Measurement and spatio-temporal evolution of high-quality tourism development in China. Stat. Decis. 2022, 38, 91–96. [Google Scholar]
- Hjalager, A.M. A review of innovation research in tourism. Tour. Manag. 2010, 31, 1–12. [Google Scholar] [CrossRef]
- Griliches, Z. Patent statistics as economic indicators: A survey. In R&D and Productivity: The Econometric Evidence; University of Chicago Press: Chicago, IL, USA, 1998; Volume I, pp. 287–343. [Google Scholar]
- Wang, R.; Gao, L.; Zhu, Y.; Liu, Y.; Li, Y.; He, J. Urban–rural integration empowers high-quality development of tourism economy: Mechanism and empirical evidence. Sustainability 2023, 15, 15893. [Google Scholar] [CrossRef]
- Geng, S.; Wang, R. Evaluation and spatio-temporal evolution of coupling coordination level between tourism industry and high-quality economic development. Stat. Decis. 2019, 39, 120–125. [Google Scholar]
- Zhang, M.; Zhang, G.; Liu, H. Analysis of the impact of tourism development on the urban-rural income gap: Evidence from 248 prefecture-level cities in China. Asia Pac. J. Tour. Res. 2021, 26, 614–625. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Z.; Zhang, B.; Yin, W.; Cheng, J.; Zhang, Y.; Huang, C.; Yuan, J. Spatiotemporal variation of air quality index in key cities of environmental protection in China. Chin. J. Public Health 2016, 32, 1027–1031. [Google Scholar]
- Jin, H.; Sun, G.; Zhang, X. Regional differences and convergence of high-quality tourism development in China. J. Zhejiang Univ. (Sci. Ed.) 2023, 50, 495–507. [Google Scholar]
- Shi, P.; Cao, Y.; Long, H.; Tian, Z.; Li, X.; Geng, B. Measurement, spatial differentiation and obstacle factor diagnosis of high-quality tourism development in China. Econ. Geogr. 2023, 43, 201–210. [Google Scholar]
- Li, Z.; Liu, H. How tourism industry agglomeration improves tourism economic efficiency? Tour. Econ. 2022, 28, 1724–1748. [Google Scholar] [CrossRef]
- Xue, M.; Wang, C.; Zhao, J.; Li, M. Spatial differentiation pattern and influencing factors of tourism economy in the Yellow River Basin. Econ. Geogr. 2020, 40, 19–27. [Google Scholar]
- Lv, Y.; Chen, J.; Qiu, K. Study on spatial disequilibrium and dynamic evolution of tourism development in China under the New Development Concept. J. Xinjiang Univ. (Philos. Soc. Sci.) 2021, 49, 1–9. [Google Scholar]
- Zhang, Z.; Hu, Z.; Zhong, F.; Cheng, Q.; Wu, M. Spatio-temporal evolution and influencing factors of high quality development in the Yunnan–Guizhou, region based on the perspective of a Beautiful China and SDGs. Land 2022, 11, 821. [Google Scholar] [CrossRef]
- Zhao, Q.; Wan, C.; Zhang, Q. The impact of comparative Advantage on inclusive sustainable development: A new structural economics perspective. South China J. Econ. 2023, 47–65. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, Y. Analysis of regional differences and convergence characteristics of high-quality tourism development level. Stat. Decis. 2022, 38, 107–112. [Google Scholar]
- Lv, C.; Cui, Y. Study on regional disparity and spatiotemporal convergence of high-quality development in China. J. Quant. Technol. Econ. 2020, 37, 62–79. [Google Scholar]
- Zhu, H.; Sun, G.; Li, J. A spatial econometric study on the influencing factors of domestic tourism economic disparity in 31 provinces and cities in China. J. Arid Land Resour. Environ. 2019, 33, 197–202. [Google Scholar]
- Liu, Z.; Lu, C.; Mao, J.; Sun, D.; Li, H.; Lu, C. Spatial–temporal heterogeneity and the related influencing factors of tourism efficiency in China. Sustainability 2021, 13, 5825. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, K. A study on the evaluation of green innovation efficiency and influencing factors of the Chinese tourism industry. Sustainability 2022, 14, 16458. [Google Scholar] [CrossRef]
- Wei, M.; Li, S.; Xu, J. Re-measurement of China’s inter-provincial tourism competitiveness in the context of high-quality development: Based on PROMETHEE method. Bus. Res. 2020, 35, 91–100. [Google Scholar]
System Layer | W1/% | Index Level | W2/% | Sub Layer | Stats | W3/% | W/% | Reference |
---|---|---|---|---|---|---|---|---|
Innovative Development | 21.2 | A1. Innovation input | 54.7 | A11. Number of students enrolled in higher tourism education institutions. | + | 25.4 | 2.9 | [13] |
A12. General public budget expenditure on culture, tourism, sports, and media. | + | 33.4 | 3.9 | |||||
A13. R&D expenditure of cultural manufacturing enterprises above the designated size. | + | 41.2 | 4.8 | [38] | ||||
A2. Innovation output | 45.3 | A21. Number of annual tourism patents published by the region. | + | 50 | 4.8 | [11] | ||
A22. Number of authorized patent applications for cultural and related industries. | + | 50 | 4.8 | |||||
Coordinated development | 10.2 | B1. Economic development | 68.1 | B11. Domestic tourism revenue/GDP. | + | 27.2 | 1.9 | [13] |
B12. Number of tourists received by scenic spots. | + | 29.8 | 2.1 | [25] | ||||
B13. Per capita disposable income. | + | 32.2 | 2.2 | [30] | ||||
B14. Travel e-commerce sales. | + | 10.8 | 0.8 | [23] | ||||
B2. Urban–rural structure | 31.9 | B21. Urbanization rate of permanent resident population. | + | 31.1 | 1.0 | [11] | ||
B22. Ratio of per capita disposable income of urban and rural residents. | - | 68.9 | 2.2 | [30] | ||||
Green development | 34.2 | C1. Ecological construction | 54.7 | C11. Forest coverage rate. | + | 48.2 | 9.0 | [13] |
C12. Per capita urban green park area. | + | 51.8 | 9.7 | |||||
C2. Environmental governance | 45.3 | C21. Harmless treatment rate of municipal solid waste. | + | 29.6 | 4.6 | |||
C22. Number of days with air quality reaching or better than Grade II in the provincial capital accounting for the proportion of the whole year. | + | 70.4 | 10.9 | [26] | ||||
Open development | 22 | D1. Domestic tourism | 46.8 | D11. Domestic tourism revenue. | + | 30.1 | 3.1 | [13] |
D12. Number of domestic tourists. | + | 25.9 | 2.7 | [11] | ||||
D13. Passenger turnover. | + | 15.6 | 1.6 | [28] | ||||
D14. Number of travel agencies. | + | 8.2 | 0.8 | [25] | ||||
D15. Star hotel room rental rate. | + | 20.2 | 2.1 | [26] | ||||
D2. International tourism | 53.2 | D21. Foreign exchange earnings from tourism. | + | 67.2 | 7.9 | [12] | ||
D22. Accommodation of inbound overnight visitors. | + | 32.8 | 3.8 | |||||
E. Shared development | 12.4 | E1. Infrastructure | 43.8 | E11. Number of mobile phone penetrations per 100 visitors. | + | 27.1 | 1.5 | [35] |
E12. Number of broadband Internet ports per 10,000 visitors. | + | 33.2 | 1.8 | [12] | ||||
E13. Urban per capita road area. | + | 31.4 | 1.7 | [26] | ||||
E14. Number of public transport vehicles per urban unit population. | + | 8.3 | 0.5 | [30] | ||||
E2. Cultural welfare | 56.2 | E21. Circulation data of public libraries per 10,000 visitors. | + | 32 | 2.2 | |||
E22. Actual use of the building area of mass cultural institutions per 10,000 visitors. | + | 13.2 | 0.9 | |||||
E23. Number of people participating in literary and artistic activities in the mass cultural service industry per 10,000 visitors. | + | 22.8 | 1.6 | [35] | ||||
E24. Number of museum visitors per 10,000 visitors. | + | 32 | 2.2 |
TNDI | Grade Level | AAGR–TNDI/% | Grade Level |
---|---|---|---|
(70,80] | Highest | (7.21,10.60] | Fastest |
(60,70] | Higher | (5.32,7.20] | Faster |
(50,60] | High | (4.10,5.31] | Fast |
(40,50] | Moderate | (3.26,4.09] | Medium |
(30,40] | Low | (2.35,3.25] | Slow |
(20,30] | Lower | (0.94,2.34] | Slower |
(10,20] | Lowest | (−0.09,0.93] | Slowest |
Region | Province | TNDI (2010) | TNDI (2015) in 2015 | TNDI (2019) in 2019 | TNDI (2020) | TNDI (2022) | AAGR–TNDI (2010–2019)/% | AAGR–TNDI (2010–2015)/% | AAGR–TNDI (2015–2019)/% |
---|---|---|---|---|---|---|---|---|---|
Eastern region | Beijing | 33.56 | 37.52 | 46.84 | 39.99 | 40.14 | 3.77 | 2.26 | 5.70 |
Tianjin | 25.02 | 26.82 | 28.57 | 26.33 | 27.23 | 1.49 | 1.40 | 1.60 | |
Hebei | 26.65 | 27.84 | 33.32 | 30.80 | 32.40 | 2.51 | 0.88 | 4.60 | |
Shanghai | 30.10 | 33.04 | 40.59 | 34.94 | 35.53 | 3.38 | 1.88 | 5.28 | |
Jiangsu | 37.37 | 42.41 | 48.88 | 45.30 | 50.94 | 3.03 | 2.56 | 3.61 | |
Zhejiang | 41.26 | 48.20 | 54.98 | 51.33 | 53.68 | 3.24 | 3.16 | 3.35 | |
Fujian | 35.77 | 43.20 | 50.02 | 44.98 | 45.74 | 3.79 | 3.85 | 3.73 | |
Shandong | 34.67 | 35.88 | 42.56 | 38.90 | 42.95 | 2.31 | 0.69 | 4.36 | |
Guangdong | 46.23 | 57.80 | 68.65 | 54.74 | 57.84 | 4.49 | 4.57 | 4.40 | |
Hainan | 29.69 | 35.24 | 36.57 | 36.24 | 37.92 | 2.34 | 3.49 | 0.93 | |
Central region | Shanxi | 23.85 | 26.27 | 31.18 | 28.46 | 28.81 | 3.02 | 1.95 | 4.37 |
Anhui | 27.00 | 32.84 | 39.21 | 35.77 | 38.59 | 4.23 | 3.99 | 4.53 | |
Jiangxi | 33.21 | 37.67 | 44.31 | 42.37 | 45.35 | 3.25 | 2.55 | 4.14 | |
Henan | 25.82 | 25.94 | 33.65 | 31.72 | 31.55 | 2.98 | 0.09 | 6.72 | |
Hubei | 25.80 | 30.73 | 37.22 | 36.40 | 39.38 | 4.16 | 3.56 | 4.91 | |
Hunan | 30.19 | 34.05 | 41.46 | 39.70 | 41.55 | 3.59 | 2.43 | 5.04 | |
Western region | Inner Mongolia | 26.22 | 32.45 | 36.15 | 33.81 | 34.90 | 3.63 | 4.36 | 2.73 |
Guangxi | 31.21 | 37.24 | 45.36 | 41.44 | 41.71 | 4.24 | 3.60 | 5.05 | |
Chongqing | 29.64 | 36.45 | 40.83 | 36.37 | 38.67 | 3.62 | 4.22 | 2.87 | |
Sichuan | 28.80 | 34.04 | 43.73 | 39.48 | 39.92 | 4.75 | 3.40 | 6.47 | |
Guizhou | 24.32 | 33.21 | 42.88 | 39.01 | 39.47 | 6.50 | 6.43 | 6.60 | |
Yunnan | 29.49 | 35.02 | 43.06 | 37.97 | 40.87 | 4.30 | 3.49 | 5.31 | |
Tibet | 17.30 | 23.78 | 26.93 | 28.19 | 31.78 | 5.04 | 6.57 | 3.16 | |
Shaanxi | 27.12 | 33.60 | 37.54 | 32.44 | 31.08 | 3.68 | 4.38 | 2.81 | |
Gansu | 12.84 | 21.25 | 30.69 | 29.15 | 29.32 | 10.17 | 10.60 | 9.62 | |
Qinghai | 16.49 | 20.98 | 26.95 | 26.04 | 26.51 | 5.61 | 4.94 | 6.46 | |
Ningxia | 26.02 | 26.20 | 34.61 | 32.09 | 34.24 | 3.22 | 0.14 | 7.20 | |
Xinjiang | 17.23 | 21.06 | 29.25 | 26.36 | 29.42 | 6.05 | 4.09 | 8.56 | |
Northeast region | Liaoning | 31.12 | 30.98 | 37.01 | 33.80 | 35.21 | 1.94 | −0.09 | 4.55 |
Jilin | 24.82 | 28.75 | 34.38 | 32.49 | 34.60 | 3.69 | 2.98 | 4.58 | |
Heilongjiang | 25.85 | 27.64 | 34.31 | 33.04 | 33.36 | 3.19 | 1.35 | 5.55 | |
Eastern mean | 34.03 | 38.79 | 45.10 | 40.35 | 42.44 | 3.18 | 2.65 | 3.84 | |
Central mean | 27.65 | 31.25 | 37.84 | 35.74 | 37.54 | 3.55 | 2.48 | 4.90 | |
Western mean | 23.89 | 29.61 | 36.50 | 33.53 | 34.82 | 4.82 | 4.38 | 5.37 | |
Northeast mean | 27.26 | 29.12 | 35.23 | 33.45 | 34.74 | 2.89 | 1.33 | 4.88 | |
Mean | 28.21 | 32.84 | 39.41 | 36.12 | 37.76 | 3.78 | 3.08 | 4.66 |
Five Dimensions | Index in 2010 | Index in 2013 | Index in 2015 | Index in 2019 | Index in 2020 | Index in 2022 | Average Annual Growth Rate (2010–2019)/% | Average Annual Growth Rate (2010–2015)/% | Average Annual Growth Rate (2015–2019)/% |
---|---|---|---|---|---|---|---|---|---|
TIDI | 1.59 | 1.91 | 2.35 | 2.64 | 2.91 | 3.38 | 5.81 | 8.09 | 3.03 |
THDI | 2.17 | 2.80 | 3.21 | 4.22 | 3.69 | 3.86 | 7.68 | 8.18 | 7.06 |
TGDI | 19.18 | 17.10 | 19.55 | 21.55 | 22.54 | 23.07 | 1.30 | 0.38 | 2.47 |
TODI | 3.37 | 3.87 | 4.21 | 6.01 | 2.75 | 2.59 | 6.65 | 4.60 | 9.28 |
TSDI | 1.90 | 2.89 | 3.52 | 4.98 | 4.22 | 4.86 | 11.28 | 13.08 | 9.07 |
Year | B-B | B-W | B-W | W-W |
---|---|---|---|---|
2010 | Zhejiang, Jiangsu, Beijing, Liaoning, Shanghai | Guangdong, Shandong, Fujian, Jiangxi, Guangxi, Hunan, Chongqing, Hainan, Yunnan, Sichuan, | Tianjin | Shaanxi, Anhui, Hebei, Ningxia, Inner Mongolia, Hubei, Henan, Heilongjiang, Jilin, Guizhou, Shanxi, Xinjiang, Tibet, Qinghai, Gansu |
2015 | Zhejiang, Jiangsu, Beijing, Shanghai, Guizhou | Guangdong, Fujian, Shandong, Jiangxi, Guangxi, Chongqing, Hainan, Sichuan, Yunnan, Hunan, Shaanxi | Inner Mongolia, Liaoning, Jilin, Tianjin, Shanxi, Tibet | Anhui, Hubei, Hebei, Heilongjiang, Ningxia, Henan, Xinjiang, Qinghai, Gansu |
2019 | Zhejiang, Jiangsu, Fujian, Beijing, Guangxi, Jiangxi, Guizhou, Yunnan, Shanghai, Chongqing, | Guangdong, Shandong, Sichuan, Hunan | Shaanxi, Inner Mongolia, Jilin, Shanxi, Tianjin | Hubei, Liaoning, Hainan, Anhui, Henan, Heilongjiang, Hebei, Gansu, Xinjiang, Tibet, Qinghai |
2020 | Zhejiang, Jiangsu, Fujian, Jiangxi, Guangxi, Beijing, Hunan, Guizhou, Yunnan | Guangdong, Sichuan, Shandong, Hubei, Chongqing, Hainan | Shanghai, Inner Mongolia, Jilin, Tibet, Tianjin | Shaanxi, Shanxi, Liaoning, Anhui, Ningxia, Henan, Heilongjiang, Hebei, Gansu, Xinjiang, Qinghai |
Year | 2010 | 2015 | 2019 | 2020 |
---|---|---|---|---|
Moran’s I | 0.4681 | 0.4159 | 0.3710 | 0.4485 |
P | 0.0000 | 0.0001 | 0.0003 | 0.0000 |
Z | 4.3237 | 3.9461 | 3.5915 | 4.1369 |
Model Parameter | Coefficient | T | p | VIF |
---|---|---|---|---|
Tourism innovation | 4.0060 | 2.207 | 0.017 * | 2.116 |
Tourism policy | 5.704 | 1.895 | 0.073 | 1.463 |
Economic development | 4.277 | 1.397 | 0.252 | 1.240 |
Internationalization | 7.680 | 4.140 | 0.000 * | 1.823 |
Integration of culture and tourism | 3.798 | 2.070 | 0.084 | 1.211 |
Intercept | 18.291 | 2.829 | 0.000 * | |
R2 | 0.731 | |||
Adjusted R2 | 0.677 | |||
Join F(P) | 0.000 * | |||
Koenker (BP) Test | 0.030 * | |||
Jarque–Bera Test | 0.933 | |||
AICc | 200.066 |
Model Parameters | Number |
---|---|
Neighbors | 13.418 |
Residual squares | 470.135 |
Effective number | 7.904 |
Sigma | 4.512 |
AICc | 191.693 |
R2 | 0.798 |
R2 Adjusted | 0.738 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Wu, M.; Shi, J.; Yang, H.; Wang, J.; Zhang, X.; Zhang, X. The Evolution of the Spatial–Temporal Pattern of Tourism Development and Its Influencing Factors: Evidence from China (2010–2022). Sustainability 2024, 16, 10758. https://doi.org/10.3390/su162310758
Zheng Y, Wu M, Shi J, Yang H, Wang J, Zhang X, Zhang X. The Evolution of the Spatial–Temporal Pattern of Tourism Development and Its Influencing Factors: Evidence from China (2010–2022). Sustainability. 2024; 16(23):10758. https://doi.org/10.3390/su162310758
Chicago/Turabian StyleZheng, Yaomin, Minghan Wu, Jinlian Shi, Huize Yang, Jiaxin Wang, Xiaoyuan Zhang, and Xin Zhang. 2024. "The Evolution of the Spatial–Temporal Pattern of Tourism Development and Its Influencing Factors: Evidence from China (2010–2022)" Sustainability 16, no. 23: 10758. https://doi.org/10.3390/su162310758
APA StyleZheng, Y., Wu, M., Shi, J., Yang, H., Wang, J., Zhang, X., & Zhang, X. (2024). The Evolution of the Spatial–Temporal Pattern of Tourism Development and Its Influencing Factors: Evidence from China (2010–2022). Sustainability, 16(23), 10758. https://doi.org/10.3390/su162310758