Silicon as a Predicator of Sustainable Nutrient Management in Maize Cultivation (Zea mays L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Field Characteristics
2.1.1. Experiment I
2.1.2. Experiment II
2.1.3. Estimation of Decomposition Rates and Litter Stabilization Using Tea Bag Index [19]
2.2. Soil Analyses
2.3. Thermal and Moisture Conditions During the Field Trials
2.4. Observations and Measurements
- Number of grain rows per ear—the total number of grain rows was recorded for each of the 6 measured ears from the plot;
- Number of grains per row—the number of developed grains in one appropriately representative row was determined in the assessed ears;
- Number of grains per ear—this trait was determined based on data on the number of grain rows and the number of grains per row; the estimated value was calculated from their product;
- Thousand-grain weight (g)—to determine this trait, 2–3 samples of 500 grains were randomly collected from the threshed mass of each plot and weighed, and the average mass of 500 grains was calculated. This result was then multiplied by 2; to establish a thousand-grain weight for each combination, the results from 4 plots were summed, and the average thousand-grain weight was calculated;
- Grain water content (%)—it was determined using a moisture meter in randomly collected samples of 250 g from each plot;
- Grain yield (t.ha−1)—the following formula was used to determine the yield harvested per hectare:
2.5. Statistical Analyses
3. Results
3.1. Experiment I
3.2. Experiment II
3.3. Tea Bag Index [19]—Decomposition Rate (k) and Litter Stabilization Factor (S)
4. Discussion
4.1. Experiment I and Experiment II
4.2. Herbicide and Mineral Nitrogen Application vs. Litter Decomposition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farooq, A.; Farooq, N.; Akbar, H.; Hassan, Z.U.; Gheewala, S.H. A Critical Review of Climate Change Impact at a Global Scale on Cereal Crop Production. Agronomy 2023, 13, 162. [Google Scholar] [CrossRef]
- Albahri, G.; Alyamani, A.A.; Badran, A.; Hijazi, A.; Nasser, M.; Maresca, M.; Baydoun, E. Enhancing Essential Grains Yield for Sustainable Food Security and Bio-Safe Agriculture through Latest Innovative Approaches. Agronomy 2023, 13, 1709. [Google Scholar] [CrossRef]
- Ngoune Tandzi, L.; Mutengwa, C.S. Estimation of Maize (Zea mays L.) Yield Per Harvest Area: Appropriate Methods. Agronomy 2020, 10, 29. [Google Scholar] [CrossRef]
- Szulc, P.; Ambroży-Deręgowska, K.; Mejza, I.; Grześ, S.; Zielewicz, W.; Stachowiak, B.; Kardasz, P. Evaluation of Nitrogen Yield-Forming Efficiency in the Cultivation of Maize (Zea mays L.) under Different Nutrient Management Systems. Sustainability 2021, 13, 10917. [Google Scholar] [CrossRef]
- Musiał, K.; Szumiec, A. Istota Zielonego Ładu we Wspólnej Polityce Rolnej 2021–2027—Wyzwania dla rolnictwa w aspekcie ochrony środowiska i przyrody. Wiadomości Zootech. 2021, 3, 3–14. [Google Scholar]
- Żarski, J.; Kuśmierek-Tomaszewska, R.; Dudek, S. Zmienność czasowa i przestrzenna susz w regionie Pomorza i Kujaw w okresie wzmożonych potrzeb wodnych kukurydzy. Pol. Acad. Sci. 2018, No II/1, 407–419. [Google Scholar]
- Wrzaszcz, W.; Prandecki, K. Rolnictwo a Europejski Zielony Ład. Probl. Agric. Econ. 2020, 4, 156–179. [Google Scholar]
- Podleśna, A. Czynniki kształtujące pobieranie i wykorzystanie fosforu przez rośliny oraz jego straty z gleb uprawnych. Inst. Uprawy Nawożenia I Glebozn. Państwowy Inst. Badaw. W Puławach 2019, 59, 59–76. [Google Scholar]
- Ning, D.; Qin, A.; Liu, Z.; Duan, A.; Xiao, J.; Zhang, J.; Liu, Z.; Zhao, B.; Liu, Z. Silicon-Mediated Physiological and Agronomic Responses of Maize to Drought Stress Imposed at the Vegetative and Reproductive Stages. Agronomy 2020, 10, 1136. [Google Scholar] [CrossRef]
- Djalovic, I.; Prasad, P.V.V.; Akhtar, K.; Paunović, A.; Riaz, M.; Dugalic, M.; Katanski, S.; Zaheer, S. Nitrogen Fertilization and Cultivar Interactions Determine Maize Yield and Grain Mineral Composition in Calcareous Soil under Semiarid Conditions. Plants 2024, 13, 844. [Google Scholar] [CrossRef]
- Galindo-Gutiérrez, N.F.; Garcés-Gómez, Y.A. Effects of Silicon Application on Yield, Spectral Index, and Fall Armyworm (Spodoptera frugiperda) Infestation on Maize (Zea mays) Crop. AgriEngineering 2023, 5, 2112–2122. [Google Scholar] [CrossRef]
- Zamojska, J.; Danielewicz, J.; Jajor, E.; Wilk, R.; Horoszkiewicz-Janka, J.; Dworzańska, D.; Węgorek, P.; Korbas, M.; Bubniewicz, P.; Ciecierski, W.; et al. The influence of foliar application of silicon on insect damage and disease occurrence in field trials. Fresenius Environ. Bull. 2018, 27, 3300–3305. [Google Scholar]
- Artyszak, A. Krzem w Nawożeniu Roślin Rolniczych; APRA: Sydney, Australia, 2019; ISBN 978-83-948962-6-3. [Google Scholar]
- El-Naggar, M.E.; Abdelsalam, N.R.; Fouda, M.M.G.; Mackled, M.I.; Al-Jaddadi, M.A.M.; Ali, H.M.; Siddiqui, M.H.; Kandil, E.E. Soil Application of Nano Silica on Maize Yield and Its Insecticidal Activity Against Some Stored Insects After the Post-Harvest. Nanomaterials 2020, 10, 739. [Google Scholar] [CrossRef] [PubMed]
- Djalovic, I.; Riaz, M.; Akhtar, K.; Bekavac, G.; Paunovic, A.; Pejanovic, V.; Zaheer, S.; Prasad, P.V.V. Yield and Grain Quality of Divergent Maize Cultivars under Inorganic N Fertilizer Regimes and Zn Application Depend on Climatic Conditions in Calcareous Soil. Agronomy 2022, 12, 2705. [Google Scholar] [CrossRef]
- Idziak, R.; Woźnica, Z.; Sobczak, A.; Naskrent, B. Wpływ adiuwantów doglebowych i RSM na skuteczność działania mieszaniny tienkarbazonu metylu z izoksaflutolem stosowanej w kukurydzy. Fragm. Agron. 2019, 36, 35–44. [Google Scholar]
- Jagła, M.; Sobiech, Ł.; Szulc, P.; Nowosad, K.; Bocianowski, J.; Grzanka, M. Sensitivity Assessment of Varieties, Effectiveness of Weed Control by Selected Herbicides, and Infection of the Fusarium in Maize (Zea mays L.) Cultivation. Agronomy 2020, 10, 1115. [Google Scholar] [CrossRef]
- Zhang, W.; Niu, S.; Yao, J.; Zhang, Y.; Li, X.; Dong, H.; Si, S.; Li, H.; Li, X.; Ren, J.; et al. Responses of Physiological Traits and Grain Yield to Short Heat Stress during Different Grain-Filling Stages in Summer Maize. Agronomy 2023, 13, 2126. [Google Scholar] [CrossRef]
- Tea Bag Index. Available online: http://www.teatime4science.org/calculation_tbi_v2w/ (accessed on 9 August 2024).
- Keuskamp, J.A.; Dingemans, B.J.; Lehtinen, T.; Sarneel, J.M.; Hefting, M.M. Tea Bag index: A novel approach to collect uniform decomposition data across ecosystems. Methods Ecol. Evol. 2013, 4, 1070–1075. [Google Scholar] [CrossRef]
- Szulc, P.; Ambroży-Deręgowska, K.; Kobus-Cisowska, J.; Kardasz, P.; Nowaczyk, R. The role of maize variety (Zea mays L.) in shaping the grain vitamin content. Biom. Lett. 2022, 59, 171–177. [Google Scholar] [CrossRef]
- IUNG-PIB Puławy. Sprawozdanie dla Ciech Sarzyna S.A; IUNG-PIB Puławy: Puławy, Poland, 2017. [Google Scholar]
- Amin, M. Effect of different nitrogen sources on growth, yield and quality of fodder maize (Zea mays L.). J. Saudi Soc. Agric. Sci. 2010, 10, 17–23. [Google Scholar] [CrossRef]
- Sacała, E.; Durbajło, W. Oddziaływanie krzemianu sodu na kukurydzę rosnącą w warunkach stresowych. Wrocław Univ. Environ. Life Sci. 2012, 91, 949–951. [Google Scholar]
- Sienkiewicz-Cholewa, U. Reakcja pszenicy jarej rosnącej w stresie suszy na dolistne i doglebowe stosowanie krzemu. Prog. Plant Prot. 2021, 61, 207–213. [Google Scholar]
- Franco, J.; Damian, E. Evaluación de Dosis y Fuentes de Silicio Líquido Aplicado Foliarmente en el Cultivo de Maíz (Zea mays L.). Trabajo de Titulación Para Optar el Título de Ingeniero Agrónomo; Repositorio Istitucional de la Universidad de Guayaquil: Guayaquil, Ecuador, 2016; p. 48. [Google Scholar]
- Kowalska, J.; Jakubowska, M.; Nowaczyk, R. Wpływ stosowania krzemu na wzrost pszenicy jarej w systemie rolnictwa ekologicznego. Institute of Plant Protection—NRI. J. Res. Appl. Agric. Eng. 2018, 63. [Google Scholar]
- Krzymińska, J. Ocena przydatności mikroorganizmów i krzemu do zaprawiania ziarna pszenicy z przeznaczeniem dla rolnictwa ekologicznego. Prog. Plant Prot. 2021, 61, 62–67. [Google Scholar]
- Zimba, K.J.; Read, Q.D.; Haseeb, M.; Meagher, R.L.; Legaspi, J.C. Potential of Silicon to Improve Biological Control of Fall Armyworm, Spodoptera frugiperda on Maize. Agriculture 2022, 12, 1432. [Google Scholar] [CrossRef]
- Sienkiewicz-Cholewa, U.; Zajączkowska, A. Rola i plonotwórcze efekty stosowania krzemu na przykładzie światowych badań. Prog. Plant Prot. 2020, 60, 313–319. [Google Scholar]
- Ciecierski, W.; Korbas, M.; Horoszkiewicz-Janka, J. Effectiveness of silicon application on mycotoxins reduction in maize. In Proceedings of the 7th International Conference on Silicon in Agriculture, Bengaluru, India, 24–28 October 2017; p. 96. [Google Scholar]
- Artyszak, A. Możliwości Wykorzystania Krzemu do Dokarmiania Dolistnego Buraka Cukrowego; Wieś Jutra Sp. z o.o.: Warszawa, Poland, 2017; ISBN 978-83-62815-39-5. [Google Scholar]
- Gaj, R.; Szulc, P.; Siatkowski, I.; Waligóra, H. Assessment of the Effect of the Mineral Fertilization System on the Nutritional Status of Maize Plants and Grain Yield Prediction. Agriculture 2020, 10, 404. [Google Scholar] [CrossRef]
- Szulc, P.; Krauklis, D.; Ambroży-Deręgowska, K.; Wróbel, B.; Zielewicz, W.; Niedbała, G.; Kardasz, P.; Niazian, M. Evaluation of the Effect of Conventional and Stabilized Nitrogen Fertilizers on the Nutritional Status of Several Maize Cultivars (Zea mays L.) in Critical Growth Stages Using Plant Analysis. Agronomy 2023, 13, 480. [Google Scholar] [CrossRef]
- Księżak, J.; Bojarszczuk, J.; Staniak, M. Produkcyjność kukurydzy i sorga w zależności od poziomu nawożenia azotem. Zakład Uprawy Roślin Pastewnych, Instytut Uprawy Nawożenia i Gleboznawstwa—Państwowy Instytut Badawczy w Puławach. Pol. J. Agron. 2012, 8, 20–28. [Google Scholar]
- Grzelak, B.; Żarski, J. Wpływ nawadniania kroplowego i nawożenia azotem na plonowanie dwóch odmian kukurydzy na glebie bardzo lekkiej. Pol. Akad. Nauk. Oddział W Krakowie 2009, 6, 141–149. [Google Scholar]
- Błaszczyk, K. Wymagania Siedliskowe i Pokarmowe Pszenicy Ozimej; Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy: Bydgoszcz, Poland, 2019; DSS UPWR; ISBN 978-83-948516-2-0. [Google Scholar]
- Lepiarczyk, A.; Filipek-Mazur, B.; Tabak, M.; Joniec, A. Wpływ nawożenia azotem i siarką na plonowanie i skład chemiczny ziarna kukurydzy cz. I. Wielkość i komponenty plonu ziarba kukurydzy. Katedra Agrotechniki i Ekologii Rolniczej, Katedra Chemii Rolnej i Środowiskowej, Uniwersytet Rolniczy w Krakowie. Fragm. Agron. 2013, 30, 115–122. [Google Scholar]
- Idziak, R.; Waligóra, H.; Majchrzak, L.; Szulc, P. Multifunctional adjuvants affect sulfonylureas with synthetic auxin mixture in weed and maize grain yield. Plants 2024, 13, 1480. [Google Scholar] [CrossRef]
- Kieloch, R.; Domaradzki, K. Wpływ współdziałania wilgotności gleby i fazy rozwojowej chwastów na skuteczność herbicydów stosowanych w zróżnicowanych dawkach. Prog. Plant Prot. 2015, 55, 58–63. [Google Scholar]
- Gołębiowska, H. Wpływ herbicydów na plonowanie i wybrane wskaźniki architektury łanu kukurydzy w zależności od systemu uprawy roli. Zakład Herbologii i Technik Uprawy Roli, Instytut Uprawy Nawożenia i Gleboznawstwa w Puławach. Fragm. Agron. 2013, 30, 64–69. [Google Scholar]
- Sekutowski, T.; Rola, H. Wpływ monokultury i systemu uprawy roli oraz ochrony herbicydowej na agrofitocenozę kukurydzy. Instytut Uprawy Nawożenia i Gleboznawstwa—Państwowy Instytut Badawczy w Puławach. Fragm. Agron. 2010, 27, 128–140. [Google Scholar]
- Artyszak, A. Effect of Silicon Fertilization on Crop Yield Quantity and Quality—A Literature Review in Europe. Plants 2018, 7, 54. [Google Scholar] [CrossRef]
- Brüh, C.A.; Zaller, J.G. Indirect herbicide effects on biodiversity, ecosystem functions, and interactions with global changes. In Herbicides. Chemistry, Efficacy, Toxicology, and Environmental Impacts; Mesnage, R., Zaller, J.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Reinecke, A.J.; Helling, B.; Louw, K.; Fourie, J.; Reinecke, S.A. The impact of different herbicides and cover crops on soil biological activity in vineyards in the Western Cape, South Africa. Pedobiologia 2002, 46, 5. [Google Scholar] [CrossRef]
- Gaupp-Berghausen, M.; Hofer, M.; Rewald, B.; Zaller, J.G. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci. Rep. 2015, 5, 12886. [Google Scholar] [CrossRef]
- Janssens, A.; Dieleman, W.; Luyssaert, S.; Subke, J.-A.; Reichstein, M.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G.; et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 2010, 3, 315e322. [Google Scholar] [CrossRef]
- Rousk, J.; Brookes, P.C.; Bååth, E. Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ Uk grassland experiment. FEMS Microbiol. Ecol. 2011, 76, 89–99. [Google Scholar] [CrossRef]
- Riggs, C.E.; Hobbie, S.E.; Bach, E.M.; Hofmockel, K.S.; Kazanski, C.E. Nitrogen additin changes grassland soil organic matter decomposition. Biogeochemistry 2015, 125, 203–219. [Google Scholar] [CrossRef]
- Spohn, M.; Pötsch, E.M.; Eichorst, S.A.; Woebken, D.; Wanek, W.; Richter, A. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol. Biochem. 2016, 97, 168–175. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C: N: P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Xu, X.; Thornton, P.E.; Post, W.M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeogr. 2013, 22, 737–749. [Google Scholar] [CrossRef]
- Manzoni, S.; Trofymow, J.A.; Jackson, R.B.; Porporato, A. Stoichiometric controls dynamics on carbon, nitrogen, and phosphorus in decomposing litter. Ecol. Monogr. 2010, 80, 89–106. [Google Scholar] [CrossRef]
Experiment I | Experiment II | Type of Cultivation Procedure | |
---|---|---|---|
25.11.2020 | 17.11.2021 | 10.11.2022 | Pre-winter ploughing |
16.03.2021 | 15.03.2022 | 17.03.2023 | Leavers + toothed harrow |
18.03.2021 | 18.03.2022 | 06.04.2023 | Fertilization (Polifoska 6) |
24.04.2021 | 19.04.2022 | 20.04.2023 | Fertilization (Urea 46%) |
27.04.2021 | 22.04.2022 | 02.05.2023 | Pre-sowing cultivation |
06.05.2021 | 06.05.2022 | - | Application of silicon to the soil |
06.05.2021 | 06.05.2022 | - | Seed dressing |
06.05.2021 | 06.05.2022 | 04.05.2023 | Maize sowing |
06.05.2021 | 06.05.2022 | 04.05.2023 | Herbicide application |
16.06.2021 | 16.06.2022 | - | Application of silicon in phase BBCH 15/16 |
07.10.2021 | 4.10.2022 | 10.10.2023 | Maize harvest |
Date | Type | Trade Name | Dose (L; kg.ha−1) |
---|---|---|---|
06.05.2021 | Herbicide | Wing P 462.5 EC | 4.0 L/ha |
06.05.2022 | |||
04.05.2023 | |||
01.06.2021 | Herbicide | Mocarz 75 WG + Nitya 040 OD + Atpolan Bio | 0.2 kg.ha−1 + 1.0 L.ha−1 + 1.0 L.ha−1 |
01.06.2022 |
Temperature (°C)—2021 | ||||||
---|---|---|---|---|---|---|
V | VI | VII | VIII | IX | X | Average |
12.84 | 20.62 | 21.26 | 17.62 | 15.50 | 10.42 | 16.37 |
Precipitation (mm)—2021 | ||||||
V | VI | VII | VIII | IX | X | Total |
60.90 | 16.60 | 19.60 | 30.40 | 9.40 | 24.40 | 161.30 |
Temperature (°C)—2022 | ||||||
V | VI | VII | VIII | IX | X | Average |
14.84 | 19.81 | 19.82 | 21.75 | 13.18 | 11.95 | 16.89 |
Precipitation (mm)—2022 | ||||||
V | VI | VII | VIII | IX | X | Total |
23.10 | 51.20 | 60.60 | 29.80 | 51.40 | 49.70 | 265.5 |
Temperature (°C)—2023 | ||||||
V | VI | VII | VIII | IX | X | Average |
13.35 | 19.06 | 20.38 | 20.12 | 18.66 | 11.33 | 17.15 |
Precipitation (mm)—2023 | ||||||
V | VI | VII | VIII | IX | X | Total |
28.40 | 43.10 | 38.80 | 65.00 | 11.90 | 36.60 | 223.8 |
Factor | Factor Level | TGW (g) | Number of Grains per Ear (pcs.) | Number of Ears (pcs.) |
---|---|---|---|---|
Y | 2021 | 349.04 a | 517.66 b | 6.85 ns |
2022 | 289.96 b | 559.22 a | 6.92 ns | |
A | A1 | 319.51 ns | 552.63 a | 6.81 ns |
A2 | 319.49 ns | 524.26 b | 6.96 ns | |
B | B1 | 314.85 b | 533.37 ab | 6.88 ab |
B2 | 322.52 a | 529.52 b | 6.95 a | |
B3 | 321.12 ab | 552.44 a | 6.82 b | |
C | C1 | 323.45 ns | 537.09 ns | 6.87 ns |
C2 | 320.14 ns | 534.40 ns | 6.93 ns | |
C3 | 316.16 ns | 541.57 ns | 6.82 ns | |
C4 | 318.24 ns | 540.71 ns | 6.93 ns |
Y | A | B | Number of Grains per Ear (pcs.) |
---|---|---|---|
2021 | A1 | B1 | 535.21 abc |
B2 | 538.24 ab | ||
B3 | 551.32 ab | ||
A2 | B1 | 481.34 cd | |
B2 | 479.92 d | ||
B3 | 519.94 bcd | ||
2022 | A1 | B1 | 540.27 ab |
B2 | 561.65 ab | ||
B3 | 589.07 a | ||
A2 | B1 | 576.65 a | |
B2 | 538.28 ab | ||
B3 | 549.42 ab |
Silicon Application Date (C) | Herbicide Application Date (A) | Number of Grains per Ear (pcs.) |
---|---|---|
C1 | A1 | 546.17 abc |
A2 | 528.01 bc | |
C2 | A1 | 551.87 ab |
A2 | 516.93 c | |
C3 | A1 | 566.28 a |
A2 | 516.85 c | |
C4 | A1 | 546.18 abc |
A2 | 535.24 bc |
Factor | Factor Level | Grain Yield (t.ha−1) | Grain Moisture (%) |
---|---|---|---|
Y | 2021 | 11.00 a | 27.87 b |
2022 | 9.01 b | 30.66 a | |
A | A1 | 10.87 a | 29.34 ns |
A2 | 9.14 b | 29.20 ns | |
B | B1 | 9.35 b | 29.33 ns |
B2 | 10.10 ab | 29.49 ns | |
B3 | 10.57 a | 28.98 ns | |
C | C1 | 9.44 b | 29.55 ns |
C2 | 10.18 ab | 29.29 ns | |
C3 | 9.99 ab | 29.15 ns | |
C4 | 10.41 a | 29.08 ns |
Year (Y) | Herbicide Application Date (A) | Grain Yield (t.ha−1) | Grain Moisture (%) |
---|---|---|---|
2021 | A1 | 12.58 a | 28.55 b |
A2 | 9.41 b | 27.20 c | |
2022 | A1 | 9.17 b | 30.13 a |
A2 | 8.86 b | 31.20 a | |
Year (Y) | Silicon Application Date (C) | Grain Yield (t.ha−1) | Grain Moisture (%) |
2021 | C1 | 10.98 a | 28.20 ns |
C2 | 11.54 a | 27.78 ns | |
C3 | 11.14 a | 27.60 ns | |
C4 | 10.33 ab | 27.90 ns | |
2022 | C1 | 7.90 c | 30.89 ns |
C2 | 8.82 c | 30.79 ns | |
C3 | 8.85 bc | 30.70 ns | |
C4 | 10.49 a | 30.26 ns |
Factor | Factor Level | Grain Yield (t.ha−1) | TGW (g) | Grain Moisture (%) |
---|---|---|---|---|
A | A1 | 9.24 ns | 334.17 ns | 23.88 ns |
A2 | 8.65 ns | 340.61 ns | 23.93 ns | |
B | B1 | 8.24 b | 314.66 c | 24.69 a |
B2 | 8.79 b | 325.24 bc | 24.36 ab | |
B3 | 8.60 b | 347.88 ab | 23.18 c | |
B4 | 10.14 a | 361.80 a | 23.40 bc |
Factor | Factor Level | Number Of Grains per Ear | Number of Rows (pcs.) | Number of Grains per Row (pcs.) |
---|---|---|---|---|
A | A1 | 474.05 ns | 17.31 ns | 27.34 ns |
A2 | 461.39 ns | 16.65 ns | 27.69 ns | |
B | B1 | 448.35 ns | 17.08 ns | 26.24 b |
B2 | 463.60 ns | 17.20 ns | 26.95 ab | |
B3 | 457.57 ns | 16.50 ns | 27.71 ab | |
B4 | 501.35 ns | 17.15 ns | 29.18 a |
Fertilization Level (N kg × ha−1) | 0 (B1) | 40 (B2) | 80 (B3) | 120 (B4) | ||||
---|---|---|---|---|---|---|---|---|
Plot | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Mass loss (%) | ||||||||
Type of tea | ||||||||
Green tea | 56.0 ± 3.1 | 54.9 ± 2.8 | 54.9 ± 3.3 | 56.1 ± 4.0 | 57.9 ± 2.6 | 70.5 ± 1.9 | 71.9 ± 1.0 | 71.9 ± 1.0 |
Rooibos tea | 22.5 ± 4.7 | 18.6 ± 3.2 | 18.9 ± 5.7 | 23.2 ± 5.0 | 23.3 ± 5.5 | 32.1 ± 3.7 | 34.1 ± 2.4 | 34.1 ± 2.4 |
Stabilization factor (S) (×10−3) | ||||||||
240 ± 41 | 254 ± 38 | 252 ± 43 | 242 ± 48 | 216 ± 35 | 214 ± 26 | 193 ± 14 | 219 ± 41 | |
Decomposition constant (k) (×10−3 day−1) | ||||||||
10.6 ± 3.8 | 7.8 ± 1.7 | 8.3 ± 3.9 | 10.9 ± 3.3 | 11.1 ± 5.7 | 8.6 ± 2.5 | 9.3 ± 1.8 | 11.5 ± 1.9 |
Fertilization Level (N kg × ha−1) | 0 (B1) | 40 (B2) | 80 (B3) | 120 (B4) | ||||
---|---|---|---|---|---|---|---|---|
Plot | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
Mass loss (%) | ||||||||
Type of tea | ||||||||
Green tea | 71.6 ± 1.9 | 72.4 ± 2.1 | 70.9 ± 1.6 | 70.3 ± 2.6 | 70.5 ± 3.9 | 70.6 ± 3.8 | 69.4 ± 1.8 | 69.4 ± 1.8 |
Rooibos tea | 36.2 ± 4.0 | 35.6 ± 5.7 | 30.8 ± 2.7 | 31.9 ± 4.6 | 35.3 ± 5.8 | 33.5 ± 4.7 | 38.6 ± 5.2 | 38.6 ± 5.2 |
Stabilization factor (S) (×10−3) | ||||||||
199 ± 0 | 188 ± 30 | 206 ± 21 | 216 ± 36 | 213 ± 52 | 211 ± 51 | 226 ± 24 | 224 ± 28 | |
Decomposition constant (k) (×10−3 day−1) | ||||||||
11.2 ± 3.5 | 11.7 ± 7.2 | 7.5 ± 1.4 | 8.5 ± 2.9 | 11.3 ± 6.0 | 9.6 ± 3.4 | 13.4 ± 7.8 | 10.4 ± 5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kardasz, P.; Szulc, P.; Górecki, K.; Ambroży-Deręgowska, K.; Wąsala, R. Silicon as a Predicator of Sustainable Nutrient Management in Maize Cultivation (Zea mays L.). Sustainability 2024, 16, 10677. https://doi.org/10.3390/su162310677
Kardasz P, Szulc P, Górecki K, Ambroży-Deręgowska K, Wąsala R. Silicon as a Predicator of Sustainable Nutrient Management in Maize Cultivation (Zea mays L.). Sustainability. 2024; 16(23):10677. https://doi.org/10.3390/su162310677
Chicago/Turabian StyleKardasz, Przemysław, Piotr Szulc, Krzysztof Górecki, Katarzyna Ambroży-Deręgowska, and Roman Wąsala. 2024. "Silicon as a Predicator of Sustainable Nutrient Management in Maize Cultivation (Zea mays L.)" Sustainability 16, no. 23: 10677. https://doi.org/10.3390/su162310677
APA StyleKardasz, P., Szulc, P., Górecki, K., Ambroży-Deręgowska, K., & Wąsala, R. (2024). Silicon as a Predicator of Sustainable Nutrient Management in Maize Cultivation (Zea mays L.). Sustainability, 16(23), 10677. https://doi.org/10.3390/su162310677