An Association Rule Mining-Based Modeling Framework for Characterizing Urban Road Traffic Accidents
Abstract
:1. Introduction
2. Literature Review
2.1. Characteristics and Contributing Factors
Reference | Vehicle | Road | Environment | Human | Society |
---|---|---|---|---|---|
Ackaah et al. (2020) [16]; Zichu et al. (2021) [17] | √ | ||||
Yoshifumi et al. (2023) [18] | √ | ||||
Mohammadi et al. (2023) [1] | √ | √ | |||
Qinaat et al. (2019) [19] | √ | √ | |||
Hongliang et al. (2020) [20] | √ | √ | |||
Ramírez and Valencia. (2021) [9]; Li J and Zhao. (2022) [21] | √ | √ | |||
Paul et al. (2019) [15] | √ | √ | |||
Zhang et al. (2023) [14] | √ | √ | √ | ||
Hammad et al. (2019) [11] | √ | √ | √ | ||
Mahdi et al. (2019) [22]; Jiang et al. (2020) [23]; Samerei et al. (2021) [24]; Chen et al. (2022) [25]; Yanni et al. (2023) [26] | √ | √ | √ | ||
Kong et al. (2020) [13]; Hu et al. (2022); Khanh et al. (2023) [27] | √ | √ | √ | ||
Kashani and Besharati. (2017) [28]; Xu et al. (2018) [29]; Zhu (2020) [30]; Xiong et al. (2021) [12]; Olowosegun et al. (2022) [31] | √ | √ | √ | √ | |
Yingyu et al. (2018) [32] | √ | √ | √ | √ | √ |
2.2. Methodology
Method | Model | Reference |
---|---|---|
Non-parametric methods | Artificial Neural Network; random forest algorithm | Zhu (2020) [30] |
Parametric methods | Multiple logistic regression models; ordered logit model; logit model; the plume diffusion model; spatiotemporal model | Mahdi et al. (2019) [22]; Li J and Zhao (2022) [21]; Yang et al. (2023) [35]; Chaudhuri et al. (2023) [36]; Yoshifumi et al. (2023) [18] |
Association rule analysis | Association rule mining; classification-based association rule mining | Xu et al. (2018) [29]; Jiang et al. (2020) [23]; Kong et al. (2020) [13]; Zhu (2020) [30]; Khanh et al. (2023) [2] |
Clustering methods | Two-step clustering | Kashani and Besharati (2017) [28]; Khanh et al. (2023) [2] |
Meta-analysis | Full-text assessment and meta-analysis | Qinaat et al. (2019) [19] |
Survey | Survey and subject matter expert workshop; A fuzzy comprehensive evaluation model based on analytic hierarchy process | Paul et al. (2019) [15]; Yanni et al. (2023) [26] |
Visualization of findings | GIS technology; static image; cellular automata Markov chain models | Xu et al. (2018) [29]; Jiang et al. (2020) [23]; Mohammadi et al. (2023) [1] |
3. Methodology
3.1. Clustering Analysis
3.2. Association Rule Mining
3.3. Classification Based on Association Rule Mining
4. Data Description
4.1. Data Sources
4.2. Data Use
5. Results
5.1. Two-Step Clustering Analysis
5.2. Association Rule Analysis
5.3. Classification Based on Association Rule Analysis
5.4. Comparison of Two Clusters
6. Discussion
6.1. Contributory Factors to Road Traffic Accidents
6.2. Contributory Factors to Casualties
6.3. Suggestions for Reducing Road Traffic Accidents
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Data Description
Factor | Variable | Description | Characteristics | Count | Percentage |
---|---|---|---|---|---|
Details of traffic accidents | Collision Type | Specific types of collisions in traffic accidents | 1: crash | 2990 | 69.78% |
2: dodge | 55 | 1.28% | |||
3: shunt | 71 | 1.66% | |||
4: rollover | 36 | 0.84% | |||
5: scrape | 1015 | 23.69% | |||
6: other | 118 | 2.75% | |||
Casualties | Whether there were casualties in the traffic accident | 1: N | 2169 | 50.62% | |
2: Y | 2116 | 49.38% | |||
Subjects of the accident | The types of subjects involved in the traffic accident, such as a vehicle and an animal | 1: unilateral | 292 | 6.81% | |
2: non-pedestrian | 79 | 1.84% | |||
3: both-non | 259 | 6.04% | |||
4: vehicle-non | 1017 | 23.72% | |||
5: vehicle-animal | 18 | 0.42% | |||
6: vehicle-pedestrian | 194 | 4.52% | |||
7: vehicle | 2212 | 51.55% | |||
8: other | 214 | 4.99% | |||
Vehicle factors | Active Hit | The subject that hit others in the accident | 1: pedestrian | 1 | 0.02% |
2: bicycle | 36 | 0.84% | |||
3: motorcycle | 382 | 8.91% | |||
4: electric vehicle | 603 | 14.07% | |||
5: vehicle | 2106 | 49.15% | |||
6: taxi | 171 | 3.99% | |||
7: off road | 72 | 1.68% | |||
8: bus | 75 | 1.75% | |||
9: van | 114 | 2.66% | |||
10: small truck | 71 | 1.66% | |||
11: truck | 313 | 7.30% | |||
12: big truck | 89 | 2.08% | |||
13: other | 252 | 5.88% | |||
Positive Hit | The subject that was hit in the accident | 1: animal | 26 | 0.61% | |
2: pedestrian | 294 | 6.86% | |||
3: bicycle | 119 | 2.78% | |||
4: motorcycle | 504 | 11.76% | |||
5: electric vehicle | 1011 | 23.59% | |||
6: vehicle | 1517 | 35.40% | |||
7: taxi | 70 | 1.63% | |||
8: off road | 65 | 1.52% | |||
9: bus | 27 | 0.63% | |||
10: van | 87 | 2.03% | |||
11: small truck | 37 | 0.86% | |||
12: truck | 136 | 3.17% | |||
13: big truck | 35 | 0.82% | |||
14: other | 357 | 8.33% | |||
Road factors | Road section | Whether the road where the accident occurred is a road area | 1: Non prosperous | 1130 | 26.37% |
2: prosperous | 3155 | 73.63% | |||
Road type | Type of the road | 1: Crossroad | 1436 | 33.51% | |
2: Straight | 2849 | 66.49% | |||
Road conditions | Condition of the road | 1: dry | 3304 | 77.11% | |
2: wet | 981 | 22.89% | |||
Environment factors | Week | Describe the day of the week on which the traffic accident occurred | 1: Monday | 636 | 14.84% |
2: Tuesday | 622 | 14.52% | |||
3: Wednesday | 623 | 14.54% | |||
4: Thursday | 613 | 14.31% | |||
5: Friday | 656 | 15.31% | |||
6: Saturday | 566 | 13.21% | |||
7: Sunday | 569 | 13.28% | |||
Slot | Describe the slot of a day when a traffic accident occurs. | 1: late night | 103 | 2.40% | |
2: dawn | 117 | 2.73% | |||
3: morning | 863 | 20.14% | |||
4: forenoon | 799 | 18.65% | |||
5: noon | 372 | 8.68% | |||
6: afternoon | 507 | 11.83% | |||
7: evening | 744 | 17.36% | |||
8: night | 780 | 18.20% | |||
Weather | The weather conditions at the time of the traffic accident | 1: sunny | 694 | 16.20% | |
2: overcast | 488 | 11.39% | |||
3: cloudy | 2122 | 49.52% | |||
4: light rain | 510 | 11.90% | |||
5: moderate rain | 215 | 5.02% | |||
6: heavy rain | 111 | 2.59% | |||
7: rainstorm | 106 | 2.47% | |||
8: thunderstorm | 39 | 0.91% |
Appendix B. Data Description
Rules | Antecedent | Consequent | Support | Confidence | Lift |
---|---|---|---|---|---|
1 | {Active_Hit = vehicle, Road_section = Non_prosperous} | {Road_type = Straight} | 0.104116 | 0.796296 | 1.189943 |
2 | {Road_section = Non_prosperous} | {Road_type = Straight} | 0.21247 | 0.780868 | 1.166887 |
3 | {Weather = cloudy, Road_section = Non_prosperous} | {Road_type = Straight} | 0.133475 | 0.776408 | 1.160223 |
4 | {Collision_Type = crash, Road_section = Non_prosperous} | {Road_type = Straight} | 0.14437 | 0.77561 | 1.15903 |
5 | {Slot = night} | {Weather = cloudy} | 0.12954 | 0.741768 | 1.154948 |
6 | {Week = Sun} | {Weather = cloudy} | 0.100787 | 0.736726 | 1.147098 |
7 | {Weather = cloudy, Collision_Type = crash, Road_type = Crossroad} | {Road_section = Prosperous} | 0.125605 | 0.833333 | 1.144837 |
8 | {Active_Hit = vehicle, Road_type = Crossroad} | {Road_section = Prosperous} | 0.131659 | 0.83174 | 1.142648 |
9 | {Active_Hit = vehicle, Collision_Type = crash, Road_type = Crossroad} | {Road_section = Prosperous} | 0.101695 | 0.82963 | 1.139749 |
10 | {Weather = cloudy, Positive_Hit = electric_vehicle} | {Collision_Type = crash} | 0.121671 | 0.789784 | 1.139496 |
11 | {Positive_Hit = electric_vehicle} | {Collision_Type = crash} | 0.187954 | 0.786076 | 1.134146 |
12 | {Weather = cloudy, Road_type = Crossroad} | {Road_section = Prosperous} | 0.178571 | 0.822873 | 1.130467 |
13 | {Collision_Type = crash, Road_type = Crossroad} | {Road_section = Prosperous} | 0.191586 | 0.821012 | 1.12791 |
14 | {Positive_Hit = electric_vehicle, Road_section = Prosperous} | {Collision_Type = crash} | 0.136199 | 0.78125 | 1.127183 |
15 | {Road_type = Crossroad} | {Road_section = Prosperous} | 0.271186 | 0.819762 | 1.126193 |
16 | {Positive_Hit = electric_vehicle, Road_type = Straight} | {Collision_Type = crash} | 0.122579 | 0.780347 | 1.12588 |
17 | {Active_Hit = vehicle, Road_type = Crossroad} | {Collision_Type = crash} | 0.122579 | 0.774379 | 1.117269 |
18 | {Active_Hit = vehicle, Road_section = Prosperous, Road_type = Crossroad} | {Collision_Type = crash} | 0.101695 | 0.772414 | 1.114435 |
19 | {Active_Hit = vehicle, Road_section = Prosperous} | {Collision_Type = crash} | 0.258777 | 0.746725 | 1.077371 |
20 | {Active_Hit = vehicle} | {Collision_Type = crash} | 0.35563 | 0.745086 | 1.075006 |
21 | {Weather = cloudy, Active_Hit = vehicle} | {Collision_Type = crash} | 0.222458 | 0.743175 | 1.072249 |
22 | {Weather = cloudy, Active_Hit = vehicle, Road_section = Prosperous} | {Collision_Type = crash} | 0.162833 | 0.742069 | 1.070653 |
23 | {Week = Mon} | {Collision_Type = crash} | 0.124395 | 0.736559 | 1.062704 |
24 | {Weather = cloudy, Active_Hit = vehicle, Road_type = Straight} | {Collision_Type = crash} | 0.144068 | 0.731183 | 1.054947 |
25 | {Active_Hit = vehicle, Road_section = Prosperous, Road_type = Straight} | {Collision_Type = crash} | 0.157082 | 0.730986 | 1.054663 |
26 | {Active_Hit = vehicle, Road_type = Straight} | {Collision_Type = crash} | 0.233051 | 0.73055 | 1.054034 |
27 | {Slot = night} | {Road_section = Prosperous} | 0.132567 | 0.759099 | 1.042853 |
28 | {Weather = sunny, Road_section = Prosperous} | {Collision_Type = crash} | 0.110169 | 0.722222 | 1.042018 |
29 | {Active_Hit = electric_vehicle} | {Collision_Type = crash} | 0.102906 | 0.718816 | 1.037104 |
30 | {Slot = evening} | {Collision_Type = crash} | 0.127724 | 0.717687 | 1.035475 |
31 | {Positive_Hit = vehicle, Collision_Type = crash} | {Road_section = Prosperous} | 0.162833 | 0.749304 | 1.029397 |
32 | {Weather = sunny} | {Collision_Type = crash} | 0.149818 | 0.713256 | 1.029083 |
33 | {Weather = overcast} | {Collision_Type = crash} | 0.105327 | 0.713115 | 1.028878 |
34 | {Slot = forenoon} | {Collision_Type = crash} | 0.134685 | 0.710863 | 1.025629 |
35 | {Week = Mon} | {Road_section = Prosperous} | 0.125908 | 0.74552 | 1.024198 |
36 | {Week = Thurs} | {Collision_Type = crash} | 0.100182 | 0.708779 | 1.022623 |
37 | {Road_section = Prosperous, Road_type = Crossroad} | {Collision_Type = crash} | 0.191586 | 0.706473 | 1.019296 |
38 | {Road_type = Crossroad} | {Collision_Type = crash} | 0.233354 | 0.705398 | 1.017745 |
39 | {Weather = cloudy, Positive_Hit = electric_vehicle} | {Road_section = Prosperous} | 0.114104 | 0.740668 | 1.017533 |
40 | {Week = Tues} | {Road_section = Prosperous} | 0.109564 | 0.740286 | 1.017009 |
41 | {Weather = cloudy, Road_section = Prosperous, Road_type = Crossroad} | {Collision_Type = crash} | 0.125605 | 0.70339 | 1.014847 |
42 | {Active_Hit = vehicle, Positive_Hit = vehicle} | {Road_section = Prosperous} | 0.128027 | 0.736934 | 1.012403 |
43 | {Week = Thurs} | {Road_section = Prosperous} | 0.104116 | 0.736617 | 1.011967 |
44 | {Weather = sunny, Collision_Type = crash} | {Road_section = Prosperous} | 0.110169 | 0.735354 | 1.010232 |
45 | {Weather = cloudy, Collision_Type = crash} | {Road_section = Prosperous} | 0.321126 | 0.733241 | 1.00733 |
46 | {Weather = cloudy, Active_Hit = vehicle} | {Road_section = Prosperous} | 0.219431 | 0.733064 | 1.007086 |
47 | {Weather = cloudy} | {Road_section = Prosperous} | 0.470339 | 0.732328 | 1.006076 |
48 | {Weather = cloudy, Active_Hit = vehicle, Collision_Type = crash} | {Road_section = Prosperous} | 0.162833 | 0.731973 | 1.005588 |
49 | {Collision_Type = crash} | {Road_section = Prosperous} | 0.506961 | 0.731441 | 1.004857 |
50 | {Positive_Hit = electric_vehicle} | {Road_section = Prosperous} | 0.174334 | 0.729114 | 1.00166 |
51 | {Positive_Hit = vehicle} | {Road_section = Prosperous} | 0.260593 | 0.728426 | 1.000716 |
Appendix C. Data Description
Rules | Antecedent | Consequent | Support | Confidence | Lift |
---|---|---|---|---|---|
1 | {Slot = night, Road_section = Prosperous} | {Weather = light_rain} | 0.117227 | 0.705521 | 1.357091 |
2 | {Collision_Type = crash, Road_section = Non_prosperous} | {Road_type = Straight} | 0.14577 | 0.861446 | 1.324574 |
3 | {Road_section = Non_prosperous} | {Road_type = Straight} | 0.195719 | 0.831169 | 1.27802 |
4 | {Active_Hit = vehicle, Road_section = Non_prosperous} | {Road_type = Straight} | 0.103976 | 0.809524 | 1.244738 |
5 | {Positive_Hit = motorcycle} | {Collision_Type = crash} | 0.110092 | 0.864 | 1.210834 |
6 | {Weather = light_rain, Collision_Type = crash, Road_type = Crossroad} | {Road_section = Prosperous} | 0.121305 | 0.922481 | 1.206605 |
7 | {Weather = light_rain, Road_type = Crossroad} | {Road_section = Prosperous} | 0.169215 | 0.912088 | 1.193011 |
8 | {Active_Hit = vehicle, Positive_Hit = electric_vehicle} | {Collision_Type = crash} | 0.103976 | 0.85 | 1.191214 |
9 | {Collision_Type = crash, Road_type = Crossroad} | {Road_section = Prosperous} | 0.220183 | 0.903766 | 1.182126 |
10 | {Positive_Hit = vehicle, Road_type = Crossroad} | {Road_section = Prosperous} | 0.108053 | 0.898305 | 1.174983 |
11 | {Active_Hit = vehicle, Collision_Type = crash, Road_type = Crossroad} | {Road_section = Prosperous} | 0.120285 | 0.887218 | 1.160481 |
12 | {Road_type = Crossroad} | {Road_section = Prosperous} | 0.309888 | 0.886297 | 1.159277 |
13 | {Positive_Hit = electric_vehicle, Road_section = Prosperous} | {Collision_Type = crash} | 0.134557 | 0.809816 | 1.134899 |
14 | {Active_Hit = vehicle, Road_type = Crossroad} | {Road_section = Prosperous} | 0.160041 | 0.867403 | 1.134564 |
15 | {Weather = moderate_rain, Collision_Type = crash} | {Road_type = Straight} | 0.111111 | 0.726667 | 1.117335 |
16 | {Positive_Hit = electric_vehicle} | {Collision_Type = crash} | 0.178389 | 0.791855 | 1.109729 |
17 | {Positive_Hit = electric_vehicle, Road_type = Straight} | {Collision_Type = crash} | 0.109072 | 0.781022 | 1.094546 |
18 | {Active_Hit = vehicle, Road_type = Straight} | {Collision_Type = crash} | 0.276249 | 0.778736 | 1.091342 |
19 | {Weather = light_rain, Active_Hit = vehicle, Road_section = Prosperous, Road_type = Straight} | {Collision_Type = crash} | 0.101937 | 0.769231 | 1.078022 |
20 | {Active_Hit = vehicle, Road_section = Prosperous, Road_type = Straight} | {Collision_Type = crash} | 0.192661 | 0.768293 | 1.076707 |
21 | {Active_Hit = vehicle} | {Collision_Type = crash} | 0.411825 | 0.763705 | 1.070278 |
22 | {Slot = night, Collision_Type = crash} | {Road_section = Prosperous} | 0.123344 | 0.817568 | 1.069378 |
23 | {Active_Hit = vehicle, Road_section = Prosperous} | {Collision_Type = crash} | 0.312946 | 0.761787 | 1.06759 |
24 | {Week = wed} | {Collision_Type = crash} | 0.147808 | 0.759162 | 1.063912 |
25 | {Weather = light_rain, Active_Hit = vehicle, Road_section = Prosperous} | {Collision_Type = crash} | 0.168196 | 0.756881 | 1.060714 |
26 | {Slot = night, Weather = light_rain} | {Road_section = Prosperous} | 0.117227 | 0.809859 | 1.059296 |
27 | {Week = Fri, Collision_Type = crash} | {Road_section = Prosperous} | 0.11213 | 0.808824 | 1.057941 |
28 | {Weather = light_rain, Active_Hit = vehicle, Collision_Type = crash} | {Road_section = Prosperous} | 0.168196 | 0.808824 | 1.057941 |
29 | {Slot = evening} | {Road_section = Prosperous} | 0.12844 | 0.807692 | 1.056462 |
30 | {Active_Hit = vehicle, Road_section = Prosperous, Road_type = Crossroad} | {Collision_Type = crash} | 0.120285 | 0.751592 | 1.053303 |
31 | {Week = wed, Road_section = Prosperous} | {Collision_Type = crash} | 0.110092 | 0.75 | 1.051071 |
32 | {Weather = light_rain, Active_Hit = vehicle, Road_type = Straight} | {Collision_Type = crash} | 0.134557 | 0.75 | 1.051071 |
33 | {Slot = night} | {Road_section = Prosperous} | 0.166157 | 0.802956 | 1.050266 |
34 | {Slot = night, Active_Hit = vehicle} | {Road_section = Prosperous} | 0.101937 | 0.8 | 1.0464 |
35 | {Weather = light_rain, Positive_Hit = vehicle} | {Road_section = Prosperous} | 0.142712 | 0.8 | 1.0464 |
36 | {Week = Fri} | {Road_section = Prosperous} | 0.16208 | 0.798995 | 1.045085 |
37 | {Road_section = Non_prosperous, Road_type = Straight} | {Collision_Type = crash} | 0.14577 | 0.744792 | 1.043772 |
38 | {Weather = light_rain, Active_Hit = vehicle} | {Collision_Type = crash} | 0.207951 | 0.744526 | 1.043399 |
39 | {Weather = light_rain, Active_Hit = vehicle} | {Road_section = Prosperous} | 0.222222 | 0.79562 | 1.040672 |
40 | {Slot = night, Road_section = Prosperous} | {Collision_Type = crash} | 0.123344 | 0.742331 | 1.040324 |
41 | {Weather = moderate_rain, Road_type = Straight} | {Collision_Type = crash} | 0.111111 | 0.741497 | 1.039155 |
42 | {Active_Hit = vehicle, Positive_Hit = vehicle} | {Road_section = Prosperous} | 0.155963 | 0.792746 | 1.036912 |
43 | {Active_Hit = electric_vehicle} | {Road_section = Prosperous} | 0.104995 | 0.792308 | 1.036338 |
44 | {Slot = evening} | {Collision_Type = crash} | 0.117227 | 0.737179 | 1.033104 |
45 | {Weather = light_rain, Collision_Type = crash} | {Road_section = Prosperous} | 0.284404 | 0.788136 | 1.030881 |
46 | {Positive_Hit = vehicle} | {Road_section = Prosperous} | 0.269113 | 0.78806 | 1.030782 |
47 | {Active_Hit = vehicle, Road_type = Crossroad} | {Collision_Type = crash} | 0.135576 | 0.734807 | 1.029779 |
48 | {Weather = light_rain} | {Road_section = Prosperous} | 0.407747 | 0.784314 | 1.025882 |
49 | {Slot = night} | {Collision_Type = crash} | 0.150866 | 0.729064 | 1.021731 |
50 | {Road_type = Straight} | {Collision_Type = crash} | 0.469929 | 0.722571 | 1.012631 |
51 | {Collision_Type = scrape} | {Road_section = Prosperous} | 0.174312 | 0.773756 | 1.012072 |
52 | {Road_section = Non_prosperous} | {Collision_Type = crash} | 0.169215 | 0.718615 | 1.007087 |
53 | {Slot = night, Weather = light_rain} | {Collision_Type = crash} | 0.103976 | 0.71831 | 1.00666 |
54 | {Weather = light_rain, Road_section = Prosperous, Road_type = Crossroad} | {Collision_Type = crash} | 0.121305 | 0.716867 | 1.004639 |
55 | {Weather = moderate_rain} | {Road_section = Prosperous} | 0.168196 | 0.767442 | 1.003814 |
56 | {Week = Thurs} | {Road_section = Prosperous} | 0.114169 | 0.767123 | 1.003397 |
Appendix D. Data Description
Rules | Antecedent | Consequent | Support | Confidence | Lift |
---|---|---|---|---|---|
1 | {Positive_Hit = pedestrian, Collision_Type = crash} | {Casualties = Y} | 0.060443407 | 0.981060606 | 1.986694091 |
2 | {Road_Conditions = dry, Positive_Hit = pedestrian} | {Casualties = Y} | 0.052042007 | 0.973799127 | 1.971989252 |
3 | {Positive_Hit = pedestrian} | {Casualties = Y} | 0.066744457 | 0.972789116 | 1.969943932 |
4 | {Slot = forenoon, Positive_Hit = electric_vehicle} | {Casualties = Y} | 0.047607935 | 0.948837209 | 1.92144019 |
5 | {Active_Hit = electric_vehicle, Positive_Hit = electric_vehicle} | {Casualties = Y} | 0.049008168 | 0.917030568 | 1.857030237 |
6 | {Weather = cloudy, Positive_Hit = electric_vehicle, Road_section = Prosperous, Road_type = Straight} | {Casualties = Y} | 0.046441074 | 0.904545455 | 1.831747293 |
7 | {Positive_Hit = electric_vehicle, Collision_Type = crash, Road_type = Crossroad} | {Casualties = Y} | 0.059743291 | 0.901408451 | 1.825394712 |
8 | {Positive_Hit = electric_vehicle, Collision_Type = crash} | {Casualties = Y} | 0.165927655 | 0.89321608 | 1.808804775 |
9 | {Road_Conditions = wet, Positive_Hit = electric_vehicle} | {Casualties = Y} | 0.045974329 | 0.891402715 | 1.805132625 |
10 | {Road_Conditions = dry, Positive_Hit = electric_vehicle, Road_section = Prosperous, Road_type = Straight} | {Casualties = Y} | 0.072578763 | 0.891117479 | 1.804555007 |
11 | {Active_Hit = electric_vehicle, Road_type = Straight} | {Casualties = Y} | 0.084714119 | 0.883211679 | 1.788545389 |
12 | {Active_Hit = electric_vehicle, Collision_Type = crash} | {Casualties = Y} | 0.089381564 | 0.882488479 | 1.787080876 |
13 | {Positive_Hit = electric_vehicle, Road_type = Straight} | {Casualties = Y} | 0.134889148 | 0.881097561 | 1.784264201 |
14 | {Active_Hit = motorcycle, Collision_Type = crash} | {Casualties = Y} | 0.054142357 | 0.878787879 | 1.779586985 |
15 | {Positive_Hit = electric_vehicle, Road_section = Prosperous} | {Casualties = Y} | 0.151458576 | 0.878213802 | 1.778424453 |
16 | {Weather = cloudy, Positive_Hit = motorcycle} | {Casualties = Y} | 0.049941657 | 0.87704918 | 1.776066039 |
17 | {Weather = cloudy, Active_Hit = electric_vehicle} | {Casualties = Y} | 0.060443407 | 0.875 | 1.771916352 |
18 | {Positive_Hit = electric_vehicle} | {Casualties = Y} | 0.20630105 | 0.8743818 | 1.770664468 |
19 | {Active_Hit = electric_vehicle} | {Casualties = Y} | 0.122753792 | 0.872305141 | 1.766459135 |
20 | {Road_Conditions = dry, Positive_Hit = motorcycle, Collision_Type = crash} | {Casualties = Y} | 0.061143524 | 0.867549669 | 1.756829079 |
21 | {Road_Conditions = dry, Positive_Hit = motorcycle, Road_section = Prosperous} | {Casualties = Y} | 0.055309218 | 0.864963504 | 1.751591972 |
22 | {Road_Conditions = dry, Positive_Hit = motorcycle, Road_type = Straight} | {Casualties = Y} | 0.052275379 | 0.864864865 | 1.751392224 |
23 | {Road_Conditions = dry, Positive_Hit = motorcycle} | {Casualties = Y} | 0.076312719 | 0.862796834 | 1.747204363 |
24 | {Positive_Hit = motorcycle, Collision_Type = crash, Road_section = Prosperous} | {Casualties = Y} | 0.059976663 | 0.862416107 | 1.746433374 |
25 | {Positive_Hit = motorcycle, Collision_Type = crash, Road_type = Straight} | {Casualties = Y} | 0.056242707 | 0.860714286 | 1.742987105 |
26 | {Positive_Hit = motorcycle, Road_type = Straight} | {Casualties = Y} | 0.06907818 | 0.860465116 | 1.742482525 |
27 | {Positive_Hit = motorcycle, Collision_Type = crash} | {Casualties = Y} | 0.081913652 | 0.856097561 | 1.733638019 |
28 | {Positive_Hit = motorcycle, Road_section = Prosperous} | {Casualties = Y} | 0.072812135 | 0.854794521 | 1.730999301 |
29 | {Positive_Hit = motorcycle} | {Casualties = Y} | 0.099883314 | 0.849206349 | 1.71968299 |
30 | {Active_Hit = motorcycle, Road_type = Straight} | {Casualties = Y} | 0.049941657 | 0.8359375 | 1.692812943 |
31 | {Active_Hit = motorcycle} | {Casualties = Y} | 0.074445741 | 0.835078534 | 1.691073496 |
Rules | Antecedent | Consequent | Support | Confidence | Lift |
---|---|---|---|---|---|
1 | {Active_Hit = other, Positive_Hit = vehicle} | {Casualties = N} | 0.052508751 | 1 | 1.975564776 |
2 | {Active_Hit = other} | {Casualties = N} | 0.057876313 | 0.984126984 | 1.944206605 |
3 | {Active_Hit = vehicle, Positive_Hit = vehicle, Collision_Type = scrape} | {Casualties = N} | 0.051808635 | 0.969432314 | 1.915176333 |
4 | {Weather = cloudy, Active_Hit = vehicle, Positive_Hit = vehicle, Road_section = Prosperous} | {Casualties = N} | 0.056476079 | 0.968 | 1.912346704 |
5 | {Weather = cloudy, Active_Hit = vehicle, Positive_Hit = vehicle} | {Casualties = N} | 0.078879813 | 0.965714286 | 1.907831127 |
6 | {Active_Hit = vehicle, Positive_Hit = vehicle, Road_type = Straight} | {Casualties = N} | 0.114819137 | 0.959064327 | 1.894693704 |
7 | {Active_Hit = vehicle, Positive_Hit = vehicle} | {Casualties = N} | 0.171528588 | 0.958279009 | 1.893142256 |
8 | {Slot = night, Positive_Hit = vehicle, Road_section = Prosperous} | {Casualties = N} | 0.052508751 | 0.933609959 | 1.844406949 |
9 | {Positive_Hit = vehicle, Collision_Type = scrape, Road_section = Prosperous} | {Casualties = N} | 0.083547258 | 0.932291667 | 1.841802578 |
10 | {Slot = night, Positive_Hit = vehicle} | {Casualties = N} | 0.068844807 | 0.92476489 | 1.826932944 |
11 | {Slot = morning, Positive_Hit = vehicle, Road_section = Prosperous} | {Casualties = N} | 0.050641774 | 0.923404255 | 1.824244921 |
12 | {Weather = cloudy, Positive_Hit = vehicle, Collision_Type = scrape} | {Casualties = N} | 0.057876313 | 0.921933086 | 1.82133853 |
13 | {Positive_Hit = vehicle, Collision_Type = scrape} | {Casualties = N} | 0.112252042 | 0.917938931 | 1.81344782 |
14 | {Slot = evening, Road_Conditions = dry, Positive_Hit = vehicle} | {Casualties = N} | 0.049941657 | 0.914529915 | 1.806713086 |
15 | {Slot = morning, Road_Conditions = dry, Positive_Hit = vehicle} | {Casualties = N} | 0.05344224 | 0.912350598 | 1.802407704 |
16 | {Slot = evening, Positive_Hit = vehicle} | {Casualties = N} | 0.063010502 | 0.909090909 | 1.795967979 |
17 | {Slot = morning, Positive_Hit = vehicle} | {Casualties = N} | 0.066744457 | 0.907936508 | 1.793687384 |
18 | {Weather = cloudy, Positive_Hit = vehicle, Road_type = Crossroad} | {Casualties = N} | 0.054375729 | 0.8996139 | 1.777245532 |
19 | {Week = Fri, Positive_Hit = vehicle} | {Casualties = N} | 0.049941657 | 0.891666667 | 1.761545259 |
20 | {Road_Conditions = wet, Positive_Hit = vehicle, Road_type = Straight} | {Casualties = N} | 0.044807468 | 0.884792627 | 1.747965148 |
21 | {Road_Conditions = dry, Positive_Hit = vehicle, Road_type = Crossroad} | {Casualties = N} | 0.081913652 | 0.881909548 | 1.742269438 |
22 | {Positive_Hit = vehicle, Road_type = Crossroad} | {Casualties = N} | 0.10571762 | 0.877906977 | 1.7343621 |
23 | {Positive_Hit = vehicle, Road_section = Non_prosperous} | {Casualties = N} | 0.080280047 | 0.87755102 | 1.733658885 |
24 | {Weather = cloudy, Positive_Hit = vehicle, Road_section = Prosperous} | {Casualties = N} | 0.109218203 | 0.876404494 | 1.731393849 |
25 | {Week = wed, Positive_Hit = vehicle} | {Casualties = N} | 0.04504084 | 0.873303167 | 1.725266977 |
26 | {Positive_Hit = vehicle} | {Casualties = N} | 0.308284714 | 0.870797627 | 1.720317119 |
References
- Mohammadi, A.; Kiani, B.; Mahmoudzadeh, H.; Bergquist, R. Pedestrian Road Traffic Accidents in Metropolitan Areas: GIS-Based Prediction Modelling of Cases in Mashhad, Iran. Sustainability 2023, 15, 10576. [Google Scholar] [CrossRef]
- Le, K.G.; Tran, Q.H.; Do, V. Urban Traffic Accident Features Investigation to Improve Urban Transportation Infrastructure Sustainability by Integrating GIS and Data Mining Techniques. Sustainability 2024, 16, 107. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; National Bureau of Statistics of China: Beijing, China, 2023.
- Qu, Y.; Lin, Z.; Li, H.; Zhang, X. Feature recognition of urban road traffic accidents based on GA-XGBoost in the context of big data. IEEE Access 2019, 7, 170106–170115. [Google Scholar] [CrossRef]
- Macioszek, E.; Grana, A. The Analysis of the Factors Influencing the Severity of Bicyclist Injury in Bicyclist-Vehicle Crashes. Sustainability 2022, 14, 215. [Google Scholar] [CrossRef]
- Fountas, G.; Anastasopoulos, P.C.; Abdel-Aty, M. Analysis of accident injury-severities using correlated random parameters ordered probit approach with time-variant covariates. Anal. Methods Accid. Res. 2018, 18, 57–68. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, F.; Zhang, G.; Liu, X.C.; Wang, H.; Bogus, S.M. Mixed logit model-based driver injury severity investigations in single-and multi-vehicle crashes on rural two-lane highways. Accid. Anal. Prev. 2014, 72, 105–115. [Google Scholar] [CrossRef]
- Tamakloe, R.; Zhang, K.; Hossain, A.; Kim, I.; Park, S.H. Critical risk factors associated with fatal/severe crash outcomes in personal mobility device rider at-fault crashes: A two-step inter-cluster rule mining technique. Accid. Anal. Prev. 2024, 199, 107527. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, A.F.; Valencia, C. Spatiotemporal correlation study of traffic accidents with fatalities and injuries in Bogota (Colombia). Accid. Anal. Prev. 2021, 149, 105848. [Google Scholar] [CrossRef]
- Li, P.; Abdel-Aty, M.; Yuan, J. Real-time crash risk prediction on arterials based on LSTM-CNN. Accid. Anal. Prev. 2020, 135, 105371. [Google Scholar] [CrossRef]
- Hammad, H.M.; Ashraf, M.; Abbas, F.; Bakhat, H.F.; Qaisrani, S.A.; Mubeen, M.; Fahad, S.; Awais, M. Environmental factors affecting the frequency of road traffic accidents: A case study of a sub-urban area of Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 11674–11685. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, S.; Guo, L. Non-motorized vehicle traffic accidents in China: Analysing road users’ precrash behaviors and implications for road safety. Int. J. Saf. Secur. Eng. 2021, 11, 105–116. [Google Scholar] [CrossRef]
- Kong, X.; Das, S.; Jha, K.; Zhang, Y. Understanding speeding behavior from naturalistic driving data: Applying classification based association rule mining. Accid. Anal. Prev. 2020, 144, 105620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qi, S.; Zheng, A.; Luo, Y.; Hao, S. Data-Driven Analysis of Fatal Urban Traffic Accident Characteristics and Safety Enhancement Research. Sustainability 2023, 15, 3259. [Google Scholar] [CrossRef]
- Salmon, P.M.; Read, G.J.; Beanland, V.; Thompson, J.; Filtness, A.J.; Hulme, A.; McClure, R.; Johnston, I. Bad behaviour or societal failure? Perceptions of the factors contributing to drivers’ engagement in the fatal five driving behaviors. Appl. Ergon. 2019, 74, 162–171. [Google Scholar] [CrossRef]
- Ackaah, W.; Apuseyine, B.A.; Afukaar, F.K. Road traffic crashes at night-time: Characteristics and risk factors. Int. J. Inj. Control Saf. Promot. 2020, 27, 392–399. [Google Scholar] [CrossRef]
- Zhou, Z.; Meng, F.; Song, C.; Sze, N.; Guo, Z.; Ouyang, N. Investigating the uniqueness of crash injury severity in freeway tunnels: A comparative study in Guizhou, China. J. Saf. Res. 2021, 77, 105–113. [Google Scholar] [CrossRef]
- Wada, Y.; Asami, Y.; Hino, K.; Nishi, H.; Shiode, S.; Shiode, N. Road junction configurations and the severity of traffic accidents in Japan. Sustainability 2023, 15, 2722. [Google Scholar] [CrossRef]
- Hussain, Q.; Feng, H.; Grzebieta, R.; Brijs, T.; Olivier, J. The relationship between impact speed and the probability of pedestrian fatality during a vehicle-pedestrian crash: A systematic review and meta-analysis. Accid. Anal. Prev. 2019, 129, 241–249. [Google Scholar] [CrossRef]
- Ding, H.; Sze, N.; Li, H.; Guo, Y. Roles of infrastructure and land use in bicycle crash exposure and frequency: A case study using Greater London bike-sharing data. Accid. Anal. Prev. 2020, 144, 105652. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Z. Impact of COVID-19 travel-restriction policies on road traffic accident patterns with emphasis on cyclists: A case study of New York City. Accid. Anal. Prev. 2022, 167, 106586. [Google Scholar] [CrossRef]
- Rezapour, M.; Moomen, M.; Ksaibati, K. Ordered logistic models of influencing factors on crash injury severity of single and multiple-vehicle downgrade crashes: A case study in Wyoming. J. Saf. Res. 2019, 68, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Yuen, K.K.R.; Lee, E.W.M. Analysis of motorcycle accidents using association rule mining-based framework with parameter optimization and GIS technology. J. Saf. Res. 2020, 75, 292–309. [Google Scholar] [CrossRef]
- Samerei, S.A.; Aghabayk, K.; Mohammadi, A.; Shiwakoti, N. Data mining approach to model bus crash severity in Australia. J. Saf. Res. 2021, 76, 73–82. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, L.; Choo, S.; Lee, H. Analysis of risk factors affecting urban truck traffic accident severity in Korea. Sustainability 2022, 14, 2901. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, F.; Song, M.; Pan, X.; You, K. Effect evaluation of traffic guidance in urban underground road diverging and merging areas: A simulator study. Accid. Anal. Prev. 2023, 186, 107036. [Google Scholar] [CrossRef]
- Hu, L.; Li, H.; Huang, J.; Wang, F.; Lin, M.; Wu, X.; Wu, N. Investigating the severity of non-urban road traffic accidents in typical regions of Sichuan and Guizhou, China. Traffic Inj. Prev. 2022, 23, 290–295. [Google Scholar] [CrossRef]
- Kashani, A.T.; Besharati, M.M. Fatality rate of pedestrians and fatal crash involvement rate of drivers in pedestrian crashes: A case study of Iran. Int. J. Inj. Control. Saf. Promot. 2017, 24, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Bao, J.; Wang, C.; Liu, P. Association rule analysis of factors contributing to extraordinarily severe traffic crashes in China. J. Saf. Res. 2018, 67, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S. Investigation of vehicle-bicycle hit-and-run crashes. Traffic Inj. Prev. 2020, 21, 506–511. [Google Scholar] [CrossRef]
- Olowosegun, A.; Babajide, N.; Akintola, A.; Fountas, G.; Fonzone, A. Analysis of pedestrian accident injury-severities at road junctions and crossings using an advanced random parameter modeling framework: The case of Scotland. Accid. Anal. Prev. 2022, 169, 106610. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Bai, Q.; Shao, W.; Wang, Q. New systems-based method to analyze road traffic accidents. Transp. Res. Part F Traffic Psychol. Behav. 2018, 54, 96–109. [Google Scholar] [CrossRef]
- Owais, M.; Alshehri, A.; Gyani, J.; Aljarbou, M.H.; Alsulamy, S. Prioritizing rear-end crash explanatory factors for injury severity level using deep learning and global sensitivity analysis. Expert Syst. Appl. 2024, 245, 15. [Google Scholar] [CrossRef]
- Moussa, G.S.; Owais, M.; Dabbour, E. Variance-based global sensitivity analysis for rear-end crash investigation using deep learning. Accid. Anal. Prev. 2022, 165, 14. [Google Scholar] [CrossRef]
- Yang, L.; Luo, X.; Zuo, Z.; Zhou, S.; Huang, T.; Luo, S. A novel approach for fine-grained traffic risk characterization and evaluation of urban road intersections. Accid. Anal. Prev. 2023, 181, 106934. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, S.; Juan, P.; Mateu, J. Spatio-temporal modeling of traffic accident incidence on urban road networks based on an explicit network triangulation. J. Appl. Stat. 2023, 50, 3229–3250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: An efficient data clustering method for very large databases. ACM Sigmod Rec. 1996, 25, 103–114. [Google Scholar] [CrossRef]
- Nowak, S. Some problems of causal interpretation of statistical relationships. Philos. Sci. 1960, 27, 23–38. [Google Scholar] [CrossRef]
- Liu, B.; Hsu, W.; Ma, Y. Integrating classification and association rule mining. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 27–31 August 1998; pp. 80–86. [Google Scholar]
- Shimada, K.; Hirasawa, K.; Hu, J. Class association rule mining with a chi-squared test using genetic network programming. In Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics, Taipei, Taiwan, 8–11 October 2006; pp. 5338–5344. [Google Scholar]
- Intini, P.; Berloco, N.; Fonzone, A.; Fountas, G.; Ranieri, V. The influence of traffic, geometric and context variables on urban crash types: A grouped random parameter multinomial logit approach. Anal. Methods Accid. Res. 2020, 28, 100141. [Google Scholar] [CrossRef]
- Mao, X.; Yuan, C.; Gan, J.; Zhang, S. Risk factors affecting traffic accidents at urban weaving sections: Evidence from China. Int. J. Environ. Res. Public Health 2019, 16, 1542. [Google Scholar] [CrossRef]
- Black, A.W.; Villarini, G.; Mote, T.L. Effects of rainfall on vehicle crashes in six US states. Weather. Clim. Soc. 2017, 9, 53–70. [Google Scholar] [CrossRef]
- Rzeznikiewiz, D.; Tamim, H.; Macpherson, A.K. Risk of death in crashes on Ontario’s highways. BMC Public Health 2012, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Yang, J.; Powis, B.; Zheng, X.; Ozanne-Smith, J.; Bilston, L.; He, J.; Ma, T.; Wang, X.; Wu, M. Epidemiological profile of hospitalized injuries among electric bicycle riders admitted to a rural hospital in Suzhou: A cross-sectional study. Inj. Prev. 2014, 20, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Retallack, A.E.; Ostendorf, B. Relationship between traffic volume and accident frequency at intersections. Int. J. Environ. Res. Public Health 2020, 17, 1393. [Google Scholar] [CrossRef] [PubMed]
- Bagloee, S.A.; Asadi, M. Crash analysis at intersections in the CBD: A survival analysis model. Transp. Res. Part A Policy Pract. 2016, 94, 558–572. [Google Scholar] [CrossRef]
- Siman-Tov, M.; Radomislensky, I.; Group, I.T.; Peleg, K. The casualties from electric bike and motorized scooter road accidents. Traffic Inj. Prev. 2017, 18, 318–323. [Google Scholar] [CrossRef]
- Moradi, A.; Nazari, S.S.H.; Rahmani, K. Sleepiness and the risk of road traffic accidents: A systematic review and meta-analysis of previous studies. Transp. Res. Part F: Traffic Psychol. Behav. 2019, 65, 620–629. [Google Scholar] [CrossRef]
- Zhang, C.; He, J.; Yan, X.; Liu, Z.; Chen, Y.; Zhang, H. Exploring relationships between microscopic kinetic parameters of tires under normal driving conditions, road characteristics, and accident types. J. Saf. Res. 2021, 78, 80–95. [Google Scholar] [CrossRef]
- Lee, J.; Chae, J.; Yoon, T.; Yang, H. Traffic accident severity analysis with rain-related factors using structural equation modeling–A case study of Seoul City. Accid. Anal. Prev. 2018, 112, 1–10. [Google Scholar] [CrossRef]
- Seflers, M.; Kreicbergs, J.; Sauter, G. Equipment Condition for Zebra Crossing Night-Time Safety Performance in Latvia. Balt. J. Road Bridge Eng. 2021, 16, 108–125. [Google Scholar] [CrossRef]
Cluster | Description | Count/Percentage | Casualty | Non-Casualty |
---|---|---|---|---|
1 | accidents on dry roads in fine weather | 3304 (77.10%) | 1639 | 1665 |
2 | accidents on wet roads in rainy weather | 981 (22.90%) | 477 | 504 |
Total | 4285 | 2116 | 2169 |
Rules | Antecedent | Consequent | Support | Confidence | Lift |
---|---|---|---|---|---|
1 | {Active_Hit = vehicle, Road_section = Non_prosperous} | {Road_type = Straight} | 0.104116 | 0.796296 | 1.189943 |
2 | {Road_section = Non_prosperous} | {Road_type = Straight} | 0.21247 | 0.780868 | 1.166887 |
3 | {Weather = cloudy, Road_section = Non_prosperous} | {Road_type = Straight} | 0.133475 | 0.776408 | 1.160223 |
4 | {Collision_Type = crash, Road_section = Non_prosperous} | {Road_type = Straight} | 0.14437 | 0.77561 | 1.15903 |
5 | {Slot = night} | {Weather = cloudy} | 0.12954 | 0.741768 | 1.154948 |
Rules | Antecedent | Consequent | Support | Confidence | Lift |
---|---|---|---|---|---|
1 | {Slot = night, Road_section = Prosperous} | {Weather = light_rain} | 0.117227 | 0.705521 | 1.357091 |
2 | {Collision_Type = crash, Road_section = Non_prosperous} | {Road_type = Straight} | 0.14577 | 0.861446 | 1.324574 |
3 | {Road_section = Non_prosperous} | {Road_type = Straight} | 0.195719 | 0.831169 | 1.27802 |
4 | {Active_Hit = vehicle, Road_section = Non_prosperous} | {Road_type = Straight} | 0.103976 | 0.809524 | 1.244738 |
5 | {Positive_Hit = motorcycle} | {Collision_Type = crash} | 0.110092 | 0.864 | 1.210834 |
Rules | Antecedent | Consequent | Support | Confidence | Lift |
---|---|---|---|---|---|
1 | {Positive_Hit = pedestrian, Collision_Type = crash} | {Casualties = Y} | 0.060443407 | 0.981060606 | 1.986694091 |
2 | {Road_Conditions = dry, Positive_Hit = pedestrian} | {Casualties = Y} | 0.052042007 | 0.973799127 | 1.971989252 |
3 | {Positive_Hit = pedestrian} | {Casualties = Y} | 0.066744457 | 0.972789116 | 1.969943932 |
4 | {Slot = forenoon, Positive_Hit = electric_vehicle} | {Casualties = Y} | 0.047607935 | 0.948837209 | 1.92144019 |
5 | {Active_Hit = electric_vehicle, Positive_Hit = electric_vehicle} | {Casualties = Y} | 0.049008168 | 0.917030568 | 1.857030237 |
Rules | Antecedent | Consequent | Support | Confidence | Lift |
---|---|---|---|---|---|
1 | {Active_Hit = other, Positive_Hit = vehicle} | {Casualties = N} | 0.052508751 | 1 | 1.975564776 |
2 | {Active_Hit = other} | {Casualties = N} | 0.057876313 | 0.984126984 | 1.944206605 |
3 | {Active_Hit = vehicle, Positive_Hit = vehicle, Collision_Type = scrape} | {Casualties = N} | 0.051808635 | 0.969432314 | 1.915176333 |
4 | {Weather = cloudy, Active_Hit = vehicle, Positive_Hit = vehicle, Road_section = Prosperous} | {Casualties = N} | 0.056476079 | 0.968 | 1.912346704 |
5 | {Weather = cloudy, Active_Hit = vehicle, Positive_Hit = vehicle} | {Casualties = N} | 0.078879813 | 0.965714286 | 1.907831127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, L.; Huang, F.; Lu, H.; Chen, S.; Guo, Q. An Association Rule Mining-Based Modeling Framework for Characterizing Urban Road Traffic Accidents. Sustainability 2024, 16, 10597. https://doi.org/10.3390/su162310597
Du L, Huang F, Lu H, Chen S, Guo Q. An Association Rule Mining-Based Modeling Framework for Characterizing Urban Road Traffic Accidents. Sustainability. 2024; 16(23):10597. https://doi.org/10.3390/su162310597
Chicago/Turabian StyleDu, Lijing, Fasheng Huang, Hua Lu, Sijing Chen, and Qianwen Guo. 2024. "An Association Rule Mining-Based Modeling Framework for Characterizing Urban Road Traffic Accidents" Sustainability 16, no. 23: 10597. https://doi.org/10.3390/su162310597
APA StyleDu, L., Huang, F., Lu, H., Chen, S., & Guo, Q. (2024). An Association Rule Mining-Based Modeling Framework for Characterizing Urban Road Traffic Accidents. Sustainability, 16(23), 10597. https://doi.org/10.3390/su162310597