Cooperative Innovation Under the “Belt and Road Initiative” for Reducing Carbon Emissions: An Estimation Based on the Spatial Difference-in-Differences Model
Abstract
:1. Introduction
2. Literature Review and Hypotheses Development
2.1. Policy Measures of the Belt and Road Initiative
2.2. Mechanisms of Carbon Emission Reduction
2.3. Environmental Effects of the Belt and Road Initiative on Partner Countries
2.4. Comprehensive Effects of Innovation in the BRI
3. Method and Research Design
3.1. Research Design
3.1.1. Baseline Model: Traditional DID Model
3.1.2. Mechanism Testing: Setting up the SDID Model and Decomposing Policy Effects
3.2. Selection of Indicators and Data Sources
3.2.1. Explained Variable
3.2.2. Explanatory Variables
3.2.3. Data Sources
3.2.4. Variable Descriptive Statistics
3.3. Design and Optimization of the Spatio-Temporal Weight Matrix
3.3.1. Adjacency Spatial Weight Matrix
3.3.2. Geographical Distance Spatial Weight Matrix
3.3.3. Economic Distance Spatial Weight Matrix
3.3.4. Language Distance Spatial Weight Matrix
3.3.5. Institutional Distance Spatial Weight Matrix
4. Empirical Result Analysis
4.1. Baseline Regression and Traditional DID Model Results
4.2. Empirical Results of the SDID Model
4.2.1. Optimization of the Endogenous Spatio-Temporal Weight Matrix and Setting of Dummy Variables
4.2.2. Estimation and Decomposition of the Global Policy Impact
4.2.3. Estimation and Decomposition of Local Policy Impact Effects
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Local DID Item in the Effect of Regional Policy Shocks
Appendix B. Lists of Treatment Group Countries and Control Group Countries
Treatment Group | Control Group |
---|---|
Egypt; United Arab Emirates; Oman; Azerbaijan; Pakistan; Bahrain; Belarus; Bulgaria; Poland; Russian Federation; Philippines; Georgia; Kazakstan; Kyrgyzstan; Cambodia; Czech Republic; Croatia; Lao People’s Democratic Republic; Romania; Malaysia; Mongolia; Bangladesh; Burma; Nepal; Serbia and Montenegro; Saudi Arabia; Sri Lanka; Slovakia; Tajikistan; Thailand; Turkey; Turkmenistan; Brunei Darussalam; Ukraine; Uzbekistan; Singapore; Hungary; Iraq; Iran; Israel; Indonesia; Jordan; Viet Nam | Algeria; Ethiopia; Angola; Austria; Barbados; Papua New Guinea; Panama; Benin; Bolivia; Botswana; Burundi; Equatorial Guinea; Korea; Togo; Ecuador; Fiji; Cape Verde; Congo; Congo (Democratic Republic of the); Guyana; Guinea; Ghana; Gabon; Zimbabwe; Cameroon; Comoros; Côte d’Ivoire; Kenya; Lesotho; Liberia; Libyan Arab Jamahiriya; Luxembourg; Rwanda; Madagascar; Malta; Mali; Mauritania; Peru; Morocco; Mozambique; Namibia; South Africa; Niger; Nigeria; Portugal; Sierra Leone; Senegal; Cyprus; Seychelles; Sudan; Suriname; Tanzania, United Rep. of; Tunisia; Vanuatu; Uganda; Uruguay; Greece; New Zealand; Jamaica; Italy; Zambia; Chad; Chile |
Appendix C. Parameter Estimation for All Local Regions Using the Optimal Model
Variable | Region 1 | Region 2 | Region 3 | Region 4 | Region 5 | Region 6 | Region 7 | Region 8 |
---|---|---|---|---|---|---|---|---|
Cons. | 35.473 (0.21) | 66.612 (0.387) | −39.919 (−0.216) | 68.56 (0.404) | −88.38 (−0.458) | −172.327 (−0.976) | 79.385 (0.47) | 77.956 (0.414) |
LNINNO | −0.176 *** (−4.494) | −0.172 *** (−4.381) | −0.182 *** (−4.65) | −0.169 *** (−4.306) | −0.178 *** (−4.537) | −0.194 *** (−4.928) | −0.17 *** (−4.34) | −0.171 *** (−4.347) |
LNOFDI | −0.191 ** (−2.197) | −0.185 ** (−2.108) | −0.186 ** (−2.13) | −0.197 ** (−2.254) | −0.203 ** (−2.316) | −0.183 ** (−2.121) | −0.179 ** (−2.058) | −0.182 ** (−2.093) |
LNPOP | 0.194 (1.482) | 0.199 (1.507) | 0.199 (1.518) | 0.188 (1.428) | 0.171 (1.294) | 0.189 (1.458) | 0.209 (1.593) | 0.202 (1.544) |
TRA | −0.003 (−1.201) | −0.002 (−0.976) | −0.002 (−0.952) | −0.002 (−1.077) | −0.002 (−1.066) | −0.003 (−1.263) | −0.002 (−0.975) | −0.002 (−0.974) |
IND | 2.9 *** (15.4) | 2.867 *** (15.159) | 2.915 *** (15.415) | 2.894 *** (15.315) | 2.919 *** (15.314) | 2.937 *** (15.668) | 2.857 *** (15.15) | 2.865 *** (15.153) |
URB | 0.062 *** (7.788) | 0.061 *** (7.577) | 0.06 *** (7.555) | 0.062 *** (7.759) | 0.06 *** (7.544) | 0.056 *** (6.988) | 0.062 *** (7.704) | 0.061 *** (7.647) |
CAP | −0.006 (−0.993) | −0.005 (−0.842) | −0.006 (−1.103) | −0.005 (−0.916) | −0.005 (−0.916) | −0.006 (−1.079) | −0.006 (−0.978) | −0.005 (−0.897) |
SDID_r | −1.246 ** (−2.279) | −2.91 (−0.95) | 9.302 *** (3.807) | −3.448 (−1.487) | −0.672 (−0.291) | −6.685 ** (−2.197) | 1.492 (0.633) | −0.049 (−0.018) |
SDID_Non_r | 0.214 (0.47) | 0.317 (0.691) | 0.138 (0.301) | 0.367 (0.799) | 0.382 (0.823) | 0.649 (1.421) | 0.183 (0.395) | 0.253 (0.549) |
TW∗LNINNO | −0.005 (−0.015) | −0.048 (−0.145) | −0.02 (−0.062) | −0.025 (−0.077) | 0.089 (0.27) | −0.58 * (−1.74) | −0.065 (−0.203) | −0.068 (−0.213) |
TW∗LNOFDI | −3.858 (−0.782) | −0.412 (−0.086) | −2.294 (−0.461) | −1.205 (−0.249) | −5.083 (−0.925) | −0.021 (−0.005) | 0.012 (0.002) | −0.144 (−0.029) |
TW∗LNPOP | −7.782 (−1.101) | −10.058 (−1.425) | −8.185 (−1.135) | −9.648 (−1.364) | −3.908 (−0.496) | −5.585 (−0.794) | −10.992 (−1.552) | −10.338 (−1.434) |
TW∗TRA | −0.24 (−1.616) | −0.146 (−1.0) | −0.215 (−1.44) | −0.189 (−1.287) | −0.19 (−1.295) | −0.208 (−1.442) | −0.154 (−1.063) | −0.149 (−1.025) |
TW∗IND | 27.969 ** (2.413) | 17.587 (1.612) | 25.998 ** (2.137) | 21.434 * (1.881) | 32.055 ** (2.354) | 28.014 ** (2.531) | 17.15 (1.569) | 17.543 (1.41) |
TW∗URB | 0.069 (0.16) | −0.005 (−0.012) | 0.011 (0.026) | 0.092 (0.211) | −0.155 (−0.351) | −0.039 (−0.091) | −0.01 (−0.022) | 0.007 (0.016) |
TW∗CAP | −1.504 *** (−4.201) | −1.352 *** (−3.629) | −1.583 *** (−4.352) | −1.47 *** (−4.126) | −1.619 *** (−4.335) | −1.751 *** (−4.95) | −1.416 *** (−4.025) | −1.397 *** (−3.521) |
TW∗SDID_r | −996.574 *** (−2.693) | 93.911 (0.376) | 512.808 ** (2.059) | −433.853 (−1.501) | −350.147 * (−1.787) | 1712.538 *** (4.392) | 219.428 (0.531) | 2.162 (0.006) |
TW∗SDID_Non_r | 16.327 * (1.901) | −1.011 (−0.133) | −14.33 (−1.474) | 10.355 (1.129) | 9.735 (1.192) | −18.215 ** (−2.354) | −4.82 (−0.406) | 0.424 (0.053) |
rho | 0.999 ** (2.182) | 0.999 ** (2.178) | 0.999 ** (2.183) | 0.999 ** (2.183) | 0.999 ** (2.176) | 0.999 ** (2.176) | 0.999 ** (2.177) | 0.999 ** (2.174) |
Variable | Region 9 | Region 10 | Region 11 | Region 12 | Region 13 | Region 14 | Region 15 |
---|---|---|---|---|---|---|---|
Cons. | 40.741 (0.224) | 48.445 (0.283) | 162.82 (0.91) | 50.598 (0.29) | −55.735 (−0.294) | 33.587 (0.187) | 7.408 (0.041) |
LNINNO | −0.173 *** (−4.415) | −0.17 *** (−4.347) | −0.17 *** (−4.351) | −0.177 *** (−4.505) | −0.168 *** (−4.307) | −0.174 *** (−4.422) | −0.176 *** (−4.472) |
LNOFDI | −0.189 ** (−2.149) | −0.193 ** (−2.209) | −0.196 ** (−2.245) | −0.181 ** (−2.082) | −0.171 ** (−1.970) | −0.192 ** (−2.183) | −0.196 ** (−2.230) |
LNPOP | 0.195 (1.479) | 0.192 (1.454) | 0.191 (1.461) | 0.21 (1.604) | 0.207 (1.590) | 0.187 (1.410) | 0.179 (1.354) |
TRA | −0.002 (−1.003) | −0.002 (−0.918) | −0.002 (−1.049) | −0.002 (−0.97) | −0.002 (−0.808) | −0.002 (−1.007) | −0.002 (−0.976) |
IND | 2.876 *** (15.165) | 2.868 *** (15.113) | 2.869 *** (15.246) | 2.864 *** (15.154) | 2.851 *** (15.179) | 2.887 *** (15.140) | 2.899 *** (15.189) |
URB | 0.061 *** (7.672) | 0.062 *** (7.748) | 0.062 *** (7.751) | 0.061 *** (7.536) | 0.061 *** (7.731) | 0.061 *** (7.631) | 0.061 *** (7.610) |
CAP | −0.005 (−0.866) | −0.005 (−0.96) | −0.005 (−0.878) | −0.005 (−0.861) | −0.005 (−0.915) | −0.005 (−0.879) | −0.005 (−0.905) |
SDID_r | −1.185 (−0.483) | 5.984 ** (2.583) | −1.375 (−0.526) | 6.884 ** (1.999) | 7.281 *** (3.124) | −0.104 (−0.045) | −1.203 (−0.519) |
SDID_Non_r | 0.256 (0.556) | 0.094 (0.206) | 0.208 (0.453) | 0.2 (0.437) | 0.077 (0.169) | 0.303 (0.653) | 0.366 (0.789) |
TW∗LNINNO | −0.041 (−0.128) | −0.038 (−0.12) | −0.005 (−0.016) | −0.088 (−0.271) | −0.068 (−0.213) | −0.050 (−0.157) | −0.054 (−0.170) |
TW∗LNOFDI | −0.95 (−0.191) | −0.952 (−0.195) | 0.076 (0.016) | −0.299 (−0.063) | −2.808 (−0.554) | −1.446 (−0.286) | −2.141 (−0.418) |
TW∗LNPOP | −9.445 (−1.31) | −9.371 (−1.311) | −12.829 * (−1.777) | −9.753 (−1.378) | −6.447 (−0.866) | −8.431 (−1.129) | −7.212 (−0.949) |
TW∗TRA | −0.167 (−1.127) | −0.165 (−1.123) | −0.19 (−1.288) | −0.136 (−0.941) | −0.157 (−1.089) | −0.172 (−1.165) | −0.178 (−1.213) |
TW∗IND | 19.959 * (1.69) | 20.547 * (1.771) | 16.082 (1.469) | 17.446 (1.6) | 24.930 ** (2.111) | 21.697 * (1.771) | 23.669 * (1.911) |
TW∗URB | 0.011 (0.025) | 0.027 (0.063) | 0.133 (0.301) | −0.043 (−0.1) | −0.196 (−0.429) | 0.010 (0.023) | −0.027 (−0.063) |
TW∗CAP | −1.421 *** (−4.005) | −1.471 *** (−4.136) | −1.357 *** (−3.84) | −1.337 *** (−3.681) | −1.513 *** (−4.252) | −1.446 *** (−4.040) | −1.458 *** (−4.071) |
TW∗SDID_r | 123.561 (0.615) | −74.151 (−0.254) | −581.719 (−1.387) | 277.128 (0.722) | 513.285 (1.419) | −200.005 (−0.789) | −282.887 (−1.176) |
TW∗SDID_Non_r | −3.718 (−0.4) | 2.604 (0.287) | 10.653 (1.102) | −2.067 (−0.287) | −12.491 (−1.105) | 4.576 (0.559) | 6.365 (0.787) |
rho | 0.999 ** (2.178) | 0.999 ** (2.179) | 0.999 ** (2.18) | 0.999 ** (2.177) | 0.999 ** (2.172) | 0.999 ** (2.179) | 0.999 ** (2.178) |
Variable | Region 16 | Region 17 | Region 18 | Region 19 | Region 20 | Region 21 | Region 22 |
---|---|---|---|---|---|---|---|
Cons. | 74.366 (0.425) | −29.767 (−0.153) | 14.558 (0.084) | 88.560 (0.485) | −45.353 (−0.242) | 149.097 (0.781) | −52.224 (−0.272) |
LNINNO | −0.171 *** (−4.366) | −0.172 *** (−4.387) | −0.175 *** (−4.465) | −0.170 *** (−4.311) | −0.176 *** (−4.471) | −0.172 *** (−4.395) | −0.175 *** (−4.474) |
LNOFDI | −0.183 ** (−2.083) | −0.197 ** (−2.237) | −0.184 ** (−2.113) | −0.182 ** (−2.080) | −0.198 ** (−2.267) | −0.176 ** (−2.023) | −0.200 ** (−2.279) |
LNPOP | 0.201 (1.518) | 0.180 (1.356) | 0.184 (1.399) | 0.201 (1.527) | 0.180 (1.368) | 0.210 (1.605) | 0.173 (1.304) |
TRA | −0.002 (−0.965) | −0.002 (−1.054) | −0.002 (−1.026) | −0.002 (−0.962) | −0.002 (−1.067) | −0.002 (−0.982) | −0.002 (−1.063) |
IND | 2.866 *** (15.115) | 2.894 *** (15.235) | 2.903 *** (15.313) | 2.866 *** (15.133) | 2.904 *** (15.291) | 2.855 *** (15.123) | 2.910 *** (15.243) |
URB | 0.061 *** (7.665) | 0.062 *** (7.713) | 0.060 *** (7.573) | 0.061 *** (7.649) | 0.061 *** (7.633) | 0.061 *** (7.653) | 0.061 *** (7.620) |
CAP | −0.005 (−0.895) | −0.005 (−0.917) | −0.005 (−0.898) | −0.005 (−0.902) | −0.005 (−0.897) | −0.005 (−0.921) | −0.005 (−0.893) |
SDID_r | −0.232 (−0.089) | −2.103 (−0.910) | 0.458 (0.176) | −1.511 (−0.578) | 0.976 (0.398) | 2.523 (1.081) | −1.359 (−0.591) |
SDID_Non_r | 0.261 (0.568) | 0.338 (0.738) | 0.283 (0.618) | 0.265 (0.574) | 0.318 (0.691) | 0.177 (0.385) | 0.387 (0.834) |
TW∗LNINNO | −0.063 (−0.193) | −0.035 (−0.109) | −0.360 (−0.977) | −0.079 (−0.242) | −0.003 (−0.010) | −0.101 (−0.316) | 0.027 (0.083) |
TW∗LNOFDI | −0.220 (−0.045) | −2.681 (−0.511) | −1.530 (−0.318) | −0.035 (−0.007) | −2.709 (−0.537) | 1.496 (0.292) | −3.896 (−0.716) |
TW∗LNPOP | −10.244 (−1.439) | −7.297 (−0.974) | −6.423 (−0.870) | −10.393 (−1.458) | −7.072 (−0.964) | −12.248 * (−1.663) | −5.253 (−0.668) |
TW∗TRA | −0.149 (−1.031) | −0.205 (−1.332) | −0.196 (−1.330) | −0.145 (−0.998) | −0.194 (−1.312) | −0.129 (−0.882) | −0.189 (−1.281) |
TW∗IND | 17.726 (1.597) | 25.314 * (1.951) | 22.959 ** (2.018) | 16.711 (1.393) | 25.290 ** (2.095) | 13.205 (1.077) | 28.783 ** (2.133) |
TW∗URB | 0.009 (0.021) | −0.006 (−0.013) | −0.021 (−0.049) | 0.009 (0.021) | −0.023 (−0.054) | 0.100 (0.223) | −0.078 (−0.179) |
TW∗CAP | −1.397 *** (−3.947) | −1.507 *** (−4.091) | −1.383 *** (−3.908) | −1.360 *** (−3.573) | −1.486 *** (−4.156) | −1.339 *** (−3.673) | −1.555 *** (−4.209) |
TW∗SDID_r | 14.164 (0.077) | 202.391 (1.012) | −573.185 * (−1.653) | −77.807 (−0.231) | 369.085 (1.537) | −277.632 (−0.764) | −302.416 (−1.459) |
TW∗SDID_Non_r | 0.053 (0.006) | −6.752 (−0.721) | 8.114 (1.038) | 1.929 (0.210) | −11.261 (−1.133) | 8.206 (0.705) | 6.761 (0.885) |
rho | 0.999 ** (2.178) | 0.999 ** (2.176) | 0.999 ** (2.176) | 0.999 ** (2.175) | 0.999 ** (2.178) | 0.999 ** (2.185) | 0.999 ** (2.178) |
Variable | Region 23 | Region 24 | Region 25 | Region 26 | Region 27 | Region 28 | Region 29 |
---|---|---|---|---|---|---|---|
Cons. | −64.093 (−0.327) | 76.562 (0.453) | 111.882 (0.534) | −69.233 (−0.367) | 99.787 (0.547) | −25.334 (−0.133) | −8.145 (−0.042) |
LNINNO | −0.175 *** (−4.454) | −0.172 *** (−4.402) | −0.170 *** (4.336) | −0.172 *** (−4.422) | −0.171 *** (−4.372) | −0.171 *** (−4.362) | −0.175 *** (−4.456) |
LNOFDI | −0.217 ** (−2.446) | −0.180 ** (−2.072) | −0.185 ** (−2.117) | −0.177 ** (−2.043) | −0.187 ** (−2.153) | −0.199 ** (−2.262) | −0.195 ** (−2.212) |
LNPOP | 0.155 (1.161) | −0.207 (−1.582) | 0.199 (1.513) | 0.199 (1.530) | 0.197 (1.509) | 0.176 (1.328) | 0.184 (1.382) |
TRA | −0.002 (−1.046) | −0.002 (−0.929) | −0.002 (−0.992) | −0.002 (−0.902) | −0.002 (−1.073) | −0.002 (−0.965) | −0.002 (−1.024) |
IND | 2.927 *** (15.308) | 2.860 *** (15.183) | 2.862 *** (15.130) | 2.876 *** (15.305) | 2.888 *** (15.315) | 2.895 *** (15.251) | 2.894 *** (15.144) |
URB | 0.061 *** (7.585) | 0.061 *** (7.608) | 0.061 *** (7.649) | 0.061 *** (7.720) | 0.061 *** (7.705) | 0.062 *** (7.722) | 0.061 *** (7.637) |
CAP | −0.006 (−0.966) | −0.005 (−0.893) | −0.005 (−0.869) | −0.006 (−1.052) | −0.006 (−1.094) | −0.005 (−0.924) | −0.005 (−0.915) |
SDID_r | −3.836 (−1.660) | −0.408 (−0.146) | 0.852 (0.326) | 11.560 *** (4.998) | −4.367 * (−1.866) | −1.262 (−0.540) | −1.386 (−0.600) |
SDID_Non_r | 0.488 (1.047) | 0.264 (0.578) | 0.219 (0.474) | 0.017 (0.037) | 0.367 (0.802) | 0.308 (0.673) | 0.382 (0.819) |
TW∗LNINNO | 0.053 (0.162) | 0.007 (0.019) | −0.086 (−0.266) | −0.269 (−0.832) | −0.046 (−0.145) | −0.037 (−0.114) | −0.032 (−0.100) |
TW∗LNOFDI | −4.144 (−0.749) | −0.024 (−0.005) | 0.475 (0.091) | −2.059 (−0.413) | 0.124 (0.025) | −2.568 (−0.497) | −2.514 (−0.466) |
TW∗LNPOP | −5.048 (−0.633) | −10.528 (−1.502) | −11.314 (−1.448) | −7.316 (−0.996) | −10.773 (−1.485) | −7.478 (−1.008) | −6.870 (−0.868) |
TW∗TRA | −0.190 (−1.296) | −0.113 (−0.733) | −0.154 (−1.055) | −0.255 * (−1.728) | −0.146 (−1.008) | −0.206 (−1.349) | −0.174 (−1.188) |
TW∗IND | 30.249 ** (2.189) | 16.063 (1.448) | 15.467 (1.162) | 25.980 ** (2.180) | 16.292 (1.417) | 25.043 ** (1.986) | 24.758 * (1.870) |
TW∗URB | −0.087 (−0.197) | −0.070 (−0.155) | 0.065 (0.137) | 0.011 (0.027) | 0.035 (0.076) | 0.019 (0.044) | −0.084 (−0.190) |
TW∗CAP | −1.627 *** (−4.342) | −1.383 *** (−3.949) | −1.343 ** (−3.278) | −1.554 *** (−4.369) | −1.354 *** (−3.814) | −1.502 *** (−4.131) | −1.497 *** (−4.104) |
TW∗SDID_r | −292.976 (−1.534) | 257.392 (0.655) | −114.293 (−0.262) | 786.071 ** (2.491) | −132.711 (−0.388) | 189.402 (1.115) | −189.311 (−1.079) |
TW∗SDID_Non_r | 7.647 (0.995) | −2.161 (−0.288) | 2.447 (0.249) | −21.730 * (−1.954) | 3.422 (0.320) | −6.792 (−0.751) | 4.646 (0.629) |
rho | 0.999 ** (2.179) | 0.999 ** (2.180) | 0.999 ** (2.175) | 0.999 ** (2.174) | 0.999 ** (2.179) | 0.999 ** (2.177) | 0.999 ** (2.176) |
Variable | Region 30 | Region 31 | Region 32 | Region 33 | Region 34 | Region 35 | Region 36 |
---|---|---|---|---|---|---|---|
Cons. | 26.509 (0.136) | 116.163 (0.655) | 84.272 (0.495) | 23.357 (0.131) | −6.392 (−0.037) | −3.914 (−0.021) | 34.971 (0.199) |
LNINNO | −0.173 *** (−4.420) | −0.171 *** (−4.372) | −0.172 *** (4.381) | −0.172 *** (−4.404) | −0.176 *** (−4.493) | −0.174 *** (−4.440) | −0.175 *** (−4.458) |
LNOFDI | −0.181 ** (−2.081) | −0.184 ** (−2.111) | −0.181 ** (−2.082) | −0.200 ** (−2.274) | −0.200 ** (−2.294) | −0.197 ** (−2.239) | −0.196 ** (−2.235) |
LNPOP | −0.202 (−1.546) | 0.205 (1.565) | 0.207 (1.583) | 0.170 (1.281) | −0.180 (−1.374) | 0.177 (1.333) | −0.182 (−1.379) |
TRA | −0.002 (−0.963) | −0.002 (−1.017) | −0.002 (−1.027) | −0.002 (−0.924) | −0.002 (−1.070) | −0.002 (−1.025) | −0.002 (−0.960) |
IND | 2.871 *** (15.233) | 2.854 *** (15.119) | 2.857 *** (15.160) | 2.900 *** (15.266) | 2.908 *** (15.359) | 2.902 *** (15.134) | 2.884 *** (15.289) |
URB | 0.061 *** (7.602) | 0.062 *** (7.706) | 0.061 *** (7.555) | 0.060 *** (7.482) | 0.060 *** (7.576) | 0.061 *** (7.581) | 0.061 *** (7.662) |
CAP | −0.005 (−0.907) | −0.005 (−0.910) | −0.005 (−0.852) | −0.005 (−0.836) | −0.005 (−0.901) | −0.005 (−0.855) | −0.005 (−0.840) |
SDID_r | −1.373 (−0.556) | 0.159 (0.057) | −9.252 *** (−2.691) | 3.498 (1.419) | −1.169 (−0.477) | −0.029 (−0.013) | −3.591 (−1.531) |
SDID_Non_r | 0.328 (0.707) | 0.214 (0.467) | 0.380 (0.834) | 0.198 (0.431) | 0.288 (0.630) | 0.325 (0.700) | 0.328 (0.714) |
TW∗LNINNO | −0.064 (−0.201) | 0.004 (0.011) | −0.085 (−0.189) | −0.010 (−0.030) | 0.044 (0.137) | −0.036 (−0.112) | −0.082 (−0.255) |
TW∗LNOFDI | −0.964 (−0.195) | −0.288 (−0.061) | 0.104 (0.021) | −1.443 (−0.293) | −3.993 (−0.781) | −2.415 (−0.461) | −0.999 (−0.204) |
TW∗LNPOP | −8.876 (−1.188) | −11.419 (−1.592) | −10.756 (−1.538) | −8.771 (−1.222) | −6.702 (−0.925) | −6.951 (−0.897) | −9.377 (−1.310) |
TW∗TRA | −0.147 (−1.017) | −0.159 (−1.095) | −0.150 (−1.027) | −0.163 (−1.110) | −0.204 (−1.387) | −0.175 (−1.191) | −0.185 (−1.265) |
TW∗IND | 20.131 (1.680) | 17.030 (1.558) | 17.741 (1.623) | 20.348 * (1.778) | 28.831 ** (2.346) | 24.348 (1.902) | 20.891 (1.844) |
TW∗URB | −0.066 (−0.148) | 0.044 (0.101) | 0.067 (0.153) | −0.013 (−0.030) | −0.058 (−0.135) | −0.047 (−0.109) | 0.108 (0.247) |
TW∗CAP | −1.446 *** (−3.938) | −1.379 *** (−3.915) | −1.443 *** (−3.848) | −1.374 *** (−3.893) | −1.579 *** (−4.314) | −1.475 *** (−4.088) | −1.457 *** (−4.119) |
TW∗SDID_r | 224.145 (0.508) | −273.090 (−0.682) | −17.822 (−0.042) | 168.204 (1.020) | −633.989 ** (−2.024) | −224.932 (−1.036) | 75.426 (0.930) |
TW∗SDID_Non_r | −4.810 (−0.400) | 4.287 (0.509) | 1.667 (0.261) | −6.481 (−0.710) | 13.873 (1.520) | 5.065 (0.656) | −4.969 (−0.559) |
rho | 0.999 ** (2.177) | 0.999 ** (2.179) | 0.999 ** (2.182) | 0.999 ** (2.178) | 0.999 ** (2.174) | 0.999 ** (2.178) | 0.999 ** (2.182) |
Variable | Region 37 | Region 38 | Region 39 | Region 40 | Region 41 | Region 42 | Region 43 |
---|---|---|---|---|---|---|---|
Cons. | 3.928 (0.021) | −86.307 (−0.445) | −84.123 (−0.433) | −15.034 (−0.083) | −14.534 (−0.068) | −177.001 (−0.923) | 208.947 (1.053) |
LNINNO | −0.174 *** (−4.426) | −0.176 *** (−4.493) | −0.175 *** (−4.455) | −0.175 *** (−4.472) | −0.172 *** (−4.386) | −0.182 *** (−4.643) | −0.168 *** (−4.299) |
LNOFDI | −0.196 ** (−2.232) | −0.202 ** (−2.300) | −0.215 ** (−2.443) | −0.200 ** (−2.280) | −0.182 ** (−2.079) | −0.181 ** (−2.084) | −0.183 ** (−2.101) |
LNPOP | −0.183 (−1.385) | −0.173 (−1.311) | −0.157 (−1.186) | −0.178 (−1.342) | −0.198 (−1.507) | −0.200 (−1.529) | −0.197 (−1.502) |
TRA | −0.002 (−0.966) | −0.002 (−0.996) | −0.002 (−1.006) | −0.003 (−1.136) | −0.002 (−0.926) | −0.002 (−0.976) | −0.002 (−0.996) |
IND | 2.887 *** (15.234) | 2.909 *** (15.302) | 2.933 *** (15.374) | 2.890 *** (15.265) | 2.881 *** (15.255) | 2.932 *** (15.469) | 2.848 *** (15.098) |
URB | 0.061 *** (7.649) | 0.060 *** (7.569) | 0.061 *** (7.586) | 0.062 *** (7.727) | 0.060 *** (7.439) | 0.059 *** (7.323) | 0.063 *** (7.780) |
CAP | −0.005 (−0.881) | −0.005 (−0.893) | −0.005 (−0.959) | −0.005 (−0.812) | −0.006 (−0.966) | −0.006 (−1.133) | −0.005 (−0.819) |
SDID_r | −1.850 (−0.753) | −0.669 (−0.289) | 3.931 * (1.692) | −2.430 (−1.043) | 3.016 (0.982) | 0.790 (0.303) | 0.449 (0.160) |
SDID_Non_r | 0.345 (0.750) | 0.414 (0.886) | 0.243 (0.525) | 0.323 (0.704) | 0.239 (0.522) | 0.428 (0.929) | 0.180 (0.393) |
TW∗LNINNO | −0.021 (−0.065) | 0.060 (0.184) | 0.068 (0.207) | −0.077 (−0.241) | −0.097 (−0.302) | −0.064 (−0.202) | −0.154 (−0.471) |
TW∗LNOFDI | −1.760 (−0.352) | −4.817 (−0.881) | −4.885 (−0.885) | −2.122 (−0.431) | −1.228 (−0.245) | −3.721 (−0.758) | 1.919 (0.383) |
TW∗LNPOP | −8.424 (−1.165) | −3.891 (−0.490) | −4.110 (−0.516) | −7.711 (−1.063) | −7.717 (−0.967) | −4.066 (−0.554) | −13.550 * (−1.819) |
TW∗TRA | −0.181 (−1.211) | −0.173 (−1.191) | −0.197 (−1.351) | −0.196 (−1.327) | −0.131 (−0.893) | −0.163 (−1.129) | −0.180 (−1.227) |
TW∗IND | 22.691 (1.873) | 30.913 ** (2.310) | 31.179 ** (2.299) | 23.317 ** (2.032) | 22.597 (1.737) | 33.350 *** (2.715) | 9.053 (0.705) |
TW∗URB | −0.005 (−0.012) | −0.262 (−0.571) | −0.163 (−0.363) | 0.070 (0.162) | −0.119 (−0.251) | −0.264 (−0.598) | 0.242 (0.516) |
TW∗CAP | −1.477 *** (−4.075) | −1.597 *** (−4.311) | −1.584 *** (−4.280) | −1.440 *** (−4.055) | −1.566 *** (−3.803) | −1.866 *** (−4.850) | −1.079 ** (−2.488) |
TW∗SDID_r | 195.942 (0.842) | −227.639 (−1.737) | −282.433 (−1.575) | 209.092 (1.418) | 362.106 (0.739) | 1047.096 *** (2.786) | −573.635 (−1.236) |
TW∗SDID_Non_r | −5.594 (−0.586) | 8.187 (1.060) | 7.501 (0.966) | −9.136 (−0.978) | −2.791 (−0.359) | −18.864 ** (−1.985) | 6.998 (0.852) |
rho | 0.999 ** (2.177) | 0.999 ** (2.172) | 0.999 ** (2.174) | 0.999 ** (2.180) | 0.999 ** (2.176) | 0.999 ** (2.176) | 0.999 ** (2.181) |
Appendix D. Decomposition of Policy Shock Effects on All Local Regions in the Treatment Group: Direct, Indirect, and Total Effects
Region Code | Country Name | Country Code | Direct Effects | Mean Indirect Effects | Sum Indirect Effects | Total Effects |
---|---|---|---|---|---|---|
1 | Egypt | EGY | −0.311 | −0.314 | −32.959 | −33.270 |
2 | United Arab Emirates | ARE | −3.001 | 0.057 | 6.035 | 3.034 |
3 | Oman | OMN | 8.829 | 0.082 | 8.580 | 17.409 |
4 | Azerbaijan | AZE | −3.044 | −0.110 | −11.537 | −14.581 |
5 | Pakistan | PAK | −0.343 | −0.108 | −11.354 | −11.697 |
6 | Bahrain | BHR | −8.300 | 0.621 | 65.177 | 56.878 |
7 | Belarus | BLR | 1.287 | 0.058 | 6.079 | 7.366 |
8 | Bulgaria | BGR | −0.052 | 0.001 | 0.122 | 0.070 |
9 | Poland | POL | 1.070 | 0.029 | 3.089 | 4.159 |
10 | Russia | RUS | 6.059 | −0.079 | −8.332 | −2.273 |
11 | Philippines | PHL | −0.830 | −0.177 | −18.612 | −19.442 |
12 | Georgia | GEO | 6.630 | 0.027 | 2.840 | 9.470 |
13 | Kazakhstan | KAZ | 6.805 | 0.100 | 10.552 | 17.357 |
14 | Kyrgyzstan | KGZ | 0.083 | −0.064 | −6.755 | −6.672 |
15 | Cambodia | KHM | −0.938 | −0.081 | −8.534 | −9.472 |
16 | Czech Republic | CZE | −0.246 | 0.007 | 0.710 | 0.465 |
17 | Croatia | HRV | −2.295 | 0.085 | 8.973 | 6.678 |
18 | Laos | LAO | 0.997 | −0.191 | −20.094 | −19.096 |
19 | Romania | ROU | −1.439 | −0.011 | −1.205 | −2.645 |
20 | Malaysia | MYS | 0.630 | 0.112 | 11.709 | 12.339 |
21 | Mongolia | MNG | 2.787 | −0.114 | −11.959 | −9.173 |
22 | Bangladesh | BGD | −1.076 | −0.086 | −9.053 | −10.129 |
23 | Myanmar | MMR | −3.564 | −0.060 | −6.333 | −9.896 |
24 | Nepal | NPL | −0.650 | 0.088 | 9.218 | 8.569 |
25 | Serbia | SRB | 0.961 | −0.045 | −4.743 | −3.782 |
26 | Saudi Arabia | SAU | 10.832 | 0.150 | 15.763 | 26.595 |
27 | Sri Lanka | LKA | −4.246 | −0.003 | −0.324 | −4.571 |
28 | Slovakia | SVK | −1.441 | 0.073 | 7.714 | 6.273 |
29 | Tajikistan | TJK | −1.210 | −0.049 | −5.149 | −6.358 |
30 | Thailand | THA | −1.585 | 0.086 | 9.012 | 7.428 |
31 | Turkey | TUR | 0.416 | −0.091 | −9.516 | −9.100 |
32 | Turkmenistan | TKM | −9.244 | 0.079 | 8.342 | −0.903 |
33 | Brunei Darussalam | BRN | 3.343 | 0.023 | 2.382 | 5.725 |
34 | Ukraine | UKR | −0.574 | −0.196 | −20.604 | −21.178 |
35 | Uzbekistan | UZB | 0.182 | −0.073 | −7.683 | −7.501 |
36 | Singapore | SGP | −3.666 | 0.058 | 6.061 | 2.395 |
37 | Hungary | HUN | −2.036 | 0.081 | 8.508 | 6.472 |
38 | Iraq | IRQ | −0.456 | −0.068 | −7.157 | −7.612 |
39 | Iran | IRN | 4.200 | −0.128 | −13.486 | −9.286 |
40 | Israel | ISR | −2.629 | 0.091 | 9.519 | 6.891 |
41 | Indonesia | IDN | 2.679 | 0.090 | 9.496 | 12.174 |
42 | Jordan | JOR | −0.193 | 0.335 | 35.132 | 34.939 |
43 | Vietnam | VNM | 0.988 | −0.191 | −20.100 | −19.112 |
References
- Wang, X.; Cheng, Y.; Ding, L.; Wang, J. Research on the impact mechanism of technological innovation on carbon emission efficiency in countries along the “Belt and Road”. Soft Sci. 2019, 33, 72–78. [Google Scholar]
- Xie, T.; Xue, F.; Ge, P. Impact of China’s OFDI on Green Total Factor Productivity of Countries along the “Belt and Road”. J. Shanghai Univ. Financ. Econ. 2019, 21, 96–110. [Google Scholar]
- Zhu, C.; Gao, D. A research on the factors influencing Carbon emission of transportation industry in “the Belt and Road Initiative” countries based on panel data. Energies 2019, 12, 2405. [Google Scholar] [CrossRef]
- Saud, S.; Chen, S.; Haseeb, A. Impact of financial development and economic growth on environmental quality: An empirical analysis from Belt and Road Initiative (BRI) countries. Environ. Sci. Pollut. Res. 2019, 26, 2253–2269. [Google Scholar] [CrossRef]
- Yu, J.; Yu, D.; Zhang, H. Impact of the Belt and Road Initiative on Carbon Emissions of Countries along the Route. China Popul. Resour. Environ. 2023, 33, 75–84. [Google Scholar]
- Xiao, W.; Xue, Q.; Yi, X. Does the Belt and Road Initiative promote international innovation cooperation? Humanit. Soc. Sci. Commun. 2023, 10, 880. [Google Scholar] [CrossRef]
- Qiu, J.; Wen, F. Correlation Analysis on the Relationship between the Scientific Collaboration Degree among Authors and the Output of Scientific Research. Sci. Technol. Prog. Policy 2011, 28, 1–5. [Google Scholar]
- De Faria, P.; Lima, F.; Santos, R. Cooperation in innovation activities: The importance of partners. Res. Policy 2010, 39, 1082–1092. [Google Scholar] [CrossRef]
- Arvanitis, S.; Bolli, T. A Comparison of National and International Innovation Cooperation in Five European Countries. Rev. Ind. Organ. 2013, 43, 163–191. [Google Scholar] [CrossRef]
- Xie, X.; Fang, L. Review and Prospect of Foreign Collaborative Innovation. R&D Manag. 2015, 27, 16–24. [Google Scholar]
- Si, Y. Research progress of glocal innovation networks. Prog. Geogr. 2016, 35, 600–609. [Google Scholar]
- Ding, L.; Yang, Y.; Wang, W.; Wang, Z. Does the Cooperation Innovation Promote Firms’ Emission Reduction? Oper. Res. Manag. Sci. 2020, 29, 230–239. [Google Scholar]
- Cust, J.; Grant, K.; Iliev, I.; Neuhoff, K. International Cooperation for Innovation and Use of Low-Carbon Energy Technology; Climate Strategies: London, UK, 2008. [Google Scholar]
- Song, Y.; Zhang, J.; Song, Y.; Fan, X.; Zhu, Y.; Zhang, C. Can industry-university-research collaborative innovation efficiency reduce carbon emissions? Technol. Forecast. Soc. Chang. 2020, 157, 120094. [Google Scholar] [CrossRef]
- Du, D.; Duan, D. Technological Collaboration Reshapes the Global Urban System: Shanghai in the Global Knowledge and Technology Cooperation Network. World Sci. 2020, S1, 37–40. [Google Scholar]
- Zhang, K.; Cai, Z. Research on Policy Support Perspectives of the Belt and Road Initiative Strategy. J. South China Norm. Univ. (Soc. Sci. Ed.) 2015, 2015, 78–84+191. [Google Scholar]
- Liu, W. The Scientific Connotation and Scientific Issues of the Belt and Road Initiative Strategy. Prog. Geogr. 2015, 34, 538–544. [Google Scholar]
- d’Hooghe, I. China’s BRI and International Cooperation in Higher Education and Research: A Symbiotic Relationship. In Global Perspectives on China’s Belt and Road Initiative: Asserting Agency through Regional Connectivity; Schneider, F., Ed.; Amsterdam University Press: Amsterdam, The Netherlands, 2021; pp. 35–58. [Google Scholar]
- Cheng, L.K. Three questions on China’s “Belt and Road Initiative”. China Econ. Rev. 2016, 40, 309–313. [Google Scholar] [CrossRef]
- Huang, K.; Zhao, P. Quantitative Research on the Policy Text of the Belt and Road Initiative: From the Perspective of Policy Tools. J. Intell. 2018, 37, 53–58+46. [Google Scholar]
- Liu, W.; Dunford, M. Inclusive globalization: Unpacking China’s belt and road initiative. Area Dev. Policy 2016, 1, 323–340. [Google Scholar] [CrossRef]
- Chen, S.; Lin, B. Current Status and Prospects of Research on Energy, Environment, and Climate Change Economics in China: A Review of the First Forum of Chinese Scholars in Energy, Environment, and Climate Change Economics. Econ. Res. J. 2019, 54, 203–208. [Google Scholar]
- Dunford, M.; Liu, W.D. Chinese perspectives on the Belt and Road Initiative. Camb. J. Reg. Econ. Soc. 2019, 12, 145–165. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, L.; Teng, F.; Dai, J.; Li, Z.; Wang, Z.; Li, Y. Climate technology transfer in BRI era: Needs, priorities, and barriers from receivers’ perspective. Ecosyst. Health Sustain. 2020, 6, 1780948. [Google Scholar] [CrossRef]
- Wang, B.; Gong, S.; Yang, Y. Innovation capability, global cooperation, and sustainable development along the Belt and Road Initiative. Sustain. Dev. 2023, 31, 3490–3512. [Google Scholar] [CrossRef]
- Tian, J. The role of entrepreneurship, cooperative innovation, environmental investment in relationship between the Belt and Road Initiative and green innovation upgrading. Manag. Decis. 2024, 62, 2510–2531. [Google Scholar] [CrossRef]
- Build a sustainable Belt and Road. Nature 2019, 569, 5. [CrossRef]
- Deng, F.; Wang, Y.; Li, Z.; Liang, X. China’s technology spillover effects in the countries along the Belt and Road—Evidence from 49 BRI countries. Appl. Econ. 2020, 52, 5579–5594. [Google Scholar] [CrossRef]
- Wang, H.; Ang, B.W.; Su, B. A multi-region structural decomposition analysis of global CO2 emission intensity. Ecol. Econ. 2017, 142, 163–176. [Google Scholar] [CrossRef]
- González, D.; Martínez, M. Changes in CO2 emission intensities in the Mexican industry. Energy Policy 2012, 51, 149–163. [Google Scholar] [CrossRef]
- Danish; Ulucak, R.; Khan, S.U.D. Relationship between energy intensity and CO2 emissions: Does economic policy matter? Sustain. Dev. 2020, 28, 1457–1464. [Google Scholar] [CrossRef]
- Mirziyoyeva, Z.; Salahodjaev, R. Renewable energy and CO2 emissions intensity in the top carbon intense countries. Renew. Energy 2022, 192, 507–512. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Yang, D. Impacts of the Belt and Roads Initiative on Sustainability: Local Approaches to Spatial Restructuring in the Aras Special Economic Zones. Sustainability 2023, 15, 12347. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Z.; Qian, Z.; Zheng, L.; Fan, S.; Zuo, S. Is cooperative green innovation better for carbon reduction? Evidence from China. J. Clean. Prod. 2023, 394, 136400. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, Y.; Chen, H.; Li, J.; Kou, Y. The impact of international technical cooperation in new energy industry on carbon emissions: Evidence from the top 30 countries in the global innovation index. Environ. Sci. Pollut. Res. 2023, 30, 21708–21722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, X.; Wang, F.; Zhang, J. Does cooperation stimulate firms’ eco-innovation? Firm-level evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 78052–78068. [Google Scholar] [CrossRef]
- Pandey, N.; de Coninck, H.; Sagar, A.D. Beyond technology transfer: Innovation cooperation to advance sustainable development in developing countries. Wiley Interdiscip. Rev. Energy Environ. 2022, 11, 422. [Google Scholar] [CrossRef]
- Poirier, J.; Johnstone, N.; Haščič, I.; Silva, J. The Benefits of International Co-Authorship in Scientific Papers: The Case of Wind Energy Technologies; OECD Environment Working Papers No. 81; Organisation for Economic Co-operation and Development (OECD): Paris, France, 2015. [Google Scholar]
- Maier, D.; Maier, A.; Așchilean, I.; Anastasiu, L.; Gavriș, O. The relationship between innovation and sustainability: A bibliometric review of the literature. Sustainability 2020, 12, 4083. [Google Scholar] [CrossRef]
- Komakech, R.A.; Ombati, T.O. Belt and Road Initiative in developing countries: Lessons from five selected countries in Africa. Sustainability 2023, 15, 12334. [Google Scholar] [CrossRef]
- Fan, J.-L.; Da, Y.-B.; Wan, S.-L.; Zhang, M.; Cao, Z.; Wang, Y.; Zhang, X. Determinants of carbon emissions in ‘Belt and Road initiative’countries: A production technology perspective. Appl. Energy 2019, 239, 268–279. [Google Scholar] [CrossRef]
- Ascensão, F.; Fahrig, L.; Clevenger, A.P.; Corlett, R.T.; Jaeger, J.A.; Laurance, W.F.; Pereira, H.M. Environmental challenges for the Belt and Road Initiative. Nat. Sustain. 2018, 1, 206–209. [Google Scholar] [CrossRef]
- Teo, H.C.; Lechner, A.M.; Walton, G.W.; Chan, F.K.S.; Cheshmehzangi, A.; Tan-Mullins, M.; Chan, H.K.; Sternberg, T.; Campos-Arceiz, A. Environmental impacts of infrastructure development under the Belt and Road Initiative. Environments 2019, 6, 72. [Google Scholar] [CrossRef]
- Maliszewska, M.; Van Der Mensbrugghe, D. The Belt and Road Initiative: Economic, Poverty and Environmental Impacts; World Bank Policy Research Working Paper 8814; World Bank Group: Washington, DC, USA, 2019. [Google Scholar]
- Han, L.; Han, B.; Shi, X.; Su, B.; Lv, X.; Lei, X. Energy efficiency convergence across countries in the context of China’s Belt and Road initiative. Appl. Energy 2018, 213, 112–122. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Wang, W.; Huang, Q. Effect and mechanism of global value chain embedding on carbon emission efficiency: Evidence and implications from the manufacturing industries in the Belt and Road countries. China Popul. Resour. Environ. 2021, 31, 15–26. [Google Scholar]
- Sun, H.; Attuquaye Clottey, S.; Geng, Y.; Fang, K.; Clifford Kofi Amissah, J. Trade openness and carbon emissions: Evidence from belt and road countries. Sustainability 2019, 11, 2682. [Google Scholar] [CrossRef]
- Chernysheva, N.A.; Perskaya, V.V.; Petrov, A.M.; Bakulina, A.A. Green energy for belt and road initiative: Economic aspects today and in the future. Int. J. Energy Econ. Policy 2019, 9, 178–185. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, C.; Hu, C. Does the Belt and Road Initiative increase the carbon emission intensity of participating countries? China World Econ. 2021, 29, 1–25. [Google Scholar] [CrossRef]
- Zhou, Y. How the Green Silk Road Can Support the Decarbonization Process in the Global South. Yuejiang J. 2024, 16, 53–62+172. [Google Scholar]
- Chen, Y.; Qi, C.; Li, J.; Li, Q. Has the Belt and Road Initiative Promoted China’s Technology Transfer to Emerging Market Countries along the Route?—An Analysis Based on the DID Model. Manag. Rev. 2021, 33, 87–96. [Google Scholar]
- Li, S.; Su, J.; Liu, Y.; Lepech, M.D.; Wang, J. How “Belt and Road” initiative implementation has influenced R&D outcomes of Chinese enterprises: Asset-exploitation or knowledge transfer? R&D Manag. 2021, 51, 273–292. [Google Scholar]
- Li, S.; Raza, A.; Si, R.; Huo, X. International trade, Chinese foreign direct investment and green innovation impact on consumption-based CO2 emissions: Empirical estimation focusing on BRI countries. Environ. Sci. Pollut. Res. 2022, 29, 89014–89028. [Google Scholar] [CrossRef]
- Ali, K.; Du, J.; Kirikkaleli, D.; Bács, Z.; Oláh, J. Technological innovation, natural resources, financial inclusion, and environmental degradation in BRI economies. Nat. Resour. Model. 2023, 36, 12373. [Google Scholar] [CrossRef]
- Qiu, W.; Zhang, J.W.; Wu, H.T.; Irfan, M.; Ahmad, M. The role of innovation investment and institutional quality on green total factor productivity: Evidence from 46 countries along the “Belt and Road”. Environ. Sci. Pollu. Res. 2022, 29, 16597–16611. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Dong, B.; Chen, Z. Can foreign trade and technological innovation affect green development: Evidence from countries along the Belt and Road. Econ. Change Restruct. 2022, 55, 1063–1090. [Google Scholar] [CrossRef]
- Zou, E.Y. Unwatched pollution: The effect of intermittent monitoring on air quality. Am. Econ. Rev. 2021, 111, 2101–2126. [Google Scholar] [CrossRef]
- Chagas, A.L.S.; Azzoni, C.R.; Almeida, A.N. A spatial difference-in-differences analysis of the impact of sugarcane production on respiratory diseases. Reg. Sci. Urban Econ. 2016, 59, 24–36. [Google Scholar] [CrossRef]
- Dubé, J.; Legros, D.; Thériault, M.; Des Rosiers, F. A spatial difference-in-differences estimator to evaluate the effect of change in public mass transit systems on house prices. Transp. Res. Part B: Methodol. 2014, 64, 24–40. [Google Scholar] [CrossRef]
- Delgado, M.S.; Florax, R.J.G.M. Difference-in-differences techniques for spatial data: Local autocorrelation and spatial interaction. Econo. Lett. 2015, 137, 123–126. [Google Scholar] [CrossRef]
- Diao, M.; Leonard, D.; Sing, T.F. Spatial-difference-in-differences models for impact of new mass rapid transit line on private housing values. Reg. Sci. Urban Econ. 2017, 67, 64–77. [Google Scholar] [CrossRef]
- Dubé, J.; Legros, D. A spatio-temporal measure of spatial dependence: An example using real estate data. Pap. Reg. Sci. 2013, 92, 19–30. [Google Scholar] [CrossRef]
- Dubé, J.; Legros, D. Spatial econometrics and the hedonic pricing model: What about the temporal dimension? J. Prop. Res. 2014, 31, 333–359. [Google Scholar] [CrossRef]
- Hunt, J.; Cockburn, I.M.; Bessen, J. Is Distance from Innovation a Barrier to the Adoption of Artificial Intelligence? Working Paper 33022; National Bureau of Economic Research: Cambridge, MA, USA, 2024. [Google Scholar]
- McMillan, G.S. Citations to scientific publications: Their impact on firm technological outcomes. Int. J. Technol. Intell. Plann. 2013, 9, 74–79. [Google Scholar] [CrossRef]
- Dzwigol, H.; Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Renewable energy, knowledge spillover and innovation: Capacity of environmental regulation. Energies 2023, 16, 1117. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Jiang, J.; Wu, P. How green is the “Belt and Road Initiative”?—Evidence from Chinese OFDI in the energy sector. Energy Policy 2020, 145, 111709. [Google Scholar] [CrossRef]
- Li, H.Q.; Lu, Y.; Zhang, J.; Wang, T.Y. Trends in road freight transportation carbon dioxide emissions and policies in China. Energy Policy 2013, 57, 99–106. [Google Scholar] [CrossRef]
- Kobayakawa, T. The carbon footprint of capital formation: An empirical analysis on its relationship with a country’s income growth. J. Ind. Ecol. 2021, 26, 522–535. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Kubota, J. The relationship between urbanization, energy use and carbon emissions: Evidence from a panel of Association of Southeast Asian Nations (ASEAN) countries. J. Clean. Prod. 2016, 112, 1368–1374. [Google Scholar] [CrossRef]
- Mayer, T.; Zignago, S. Market Access in Global and Regional Trade; CEPII: Paris, France, 2005. [Google Scholar]
- Li, L.; Guo, L. Institutional distance and performance of cross-national cooperative innovation: Moderating role of cultural tightness. Sci. Technol. Prog. Policy 2021, 38, 16–25. [Google Scholar]
- Fan, Q.; Darren, H. A New Endogenous Spatial Temporal Weight Matrix Based on Rations of Global Moran’s I. J. Quant. Tech. Econ. 2018, 35, 131–149. [Google Scholar]
Content of Indicator | Description of Indicator | Symbol | Unit |
---|---|---|---|
Carbon emission intensity | Ratio of CO2 emissions to GDP | CO2 | tons/10,000 USD |
Innovation performance | Number of scientific journal papers | INNO | paper |
OFDI | China’s direct investment in BRI countries | OFDI | 10,000 USD |
Openness | Proportion of import and export trade to GDP | TRA | % |
Population size | Total population of each country | POP | person |
Industrial development level | Proportion of industrial added value to GDP | IND | % |
Urbanization level | Urbanization rate | URB | % |
Fixed capital investment level | Proportion of gross fixed capital formation to GDP | CAP | % |
Variable | Obs. | Mean | Standard Deviation | Min. | Max. |
---|---|---|---|---|---|
lnINNO | 1802 | 6.010 | 2.500 | 0.315 | 11.376 |
lnOFDI | 1802 | 7.571 | 2.422 | 0.693 | 13.951 |
TRA | 1802 | 67.799 | 37.299 | 10.202 | 343.488 |
lnPOP | 1802 | 16.138 | 1.599 | 11.325 | 19.412 |
IND | 1802 | 29.435 | 13.571 | 4.429 | 86.669 |
URB | 1802 | 53.738 | 21.856 | 9.375 | 100 |
CAP | 1802 | 24.287 | 7.713 | 2.000 | 81.021 |
Variable | Baseline Model | DID Model |
---|---|---|
lnINNO | −0.227 ** (−2.26) | — |
lnOFDI | −0.246 *** (−3.69) | |
lnPOP | 0.882 *** (5.79) | |
TRA | −0.215 *** (−4.84) | |
IND | 0.069 *** (5.39) | |
URB | 0.033 *** (3.28) | |
CAP | 0.031 * (1.91) | |
SDID | −0.048 *** (−3.75) | |
Spatial rho | 0.0875 *** (147.72) | |
Spatial lambda | 0.067 *** (142.59) | |
Cons. | −11.12 *** (−4.83) | — |
Variable | SDM-SDID | NSM-SDID | SXL-SDID | SAR-SDID | SEM-SDID | SDEM-SDID | SAC-SDID | GNSM-SDID |
---|---|---|---|---|---|---|---|---|
lnINNO | −0.171 *** (−4.376) | −0.083 ** (−2.347) | −0.173 *** (−4.378) | −0.089 ** (−2.525) | −0.019 (−0.625) | −0.175 *** (4.450) | −0.095 *** (2.652) | −0.174 *** (4.966) |
lnOFDI | −0.182 * (−2.093) | −0.142 * (−1.798) | −0.175 ** (−1.995) | −0.236 *** (−2.872) | −0.224 *** (−2.793) | −0.184 ** (−2.097) | −0.233 *** (−2.820) | −0.172 ** (−1.989) |
lnPOP | 0.203 ** (1.548) | −0.030 (−0.266) | −0.216 (−1.635) | 0.118 (0.985) | 0.119 (1.037) | −0.202 (−1.533) | 0.110 (0.919) | −0.225 * (−1.711) |
TRA | −0.002 ** (−1.875) | −0.001 ** (−1.877) | −0.002 * (−1.832) | −0.002 (−0.937) | −0.001 (−0.305) | −0.002 (−0.978) | −0.002 (−0.976) | −0.005 ** (−2.125) |
IND | 2.864 *** (15.213) | 3.148 *** (18.155) | 2.858 *** (15.069) | 2.991 *** (16.711) | 3.175 *** (18.116) | 2.877 *** (15.243) | 2.984 *** (16.636) | 2.874 *** (15.513) |
URB | 0.061 *** (7.674) | 0.057 *** (7.842) | 0.061 *** (7.591) | 0.062 *** (8.412) | 0.059 *** (7.945) | 0.061 *** (7.692) | 0.062 *** (8.414) | 0.060 *** (7.839) |
CAP | −0.005 *** (−15.218) | 0.004 ** (2.093) | −0.006 *** (−3.976) | 0.004 (0.742) | 0.002 (0.368) | −0.006 *** (−3.988) | 0.004 (0.770) | −0.006 ** (−2.154) |
SDID | −0.248 *** (−3.969) | −0.870 ** (−2.140) | 0.242 (0.530) | −0.749 * (−1.832) | −1.069 *** (−2.717) | 0.255 (0.562) | −0.720 * (−1.755) | 0.286 (0.766) |
ρ | 0.999 * (2.178) | — | — | −0.392 *** (−3.412) | — | — | −0.393 *** (−3.350) | −7.346 *** (−9203.090) |
λ | — | — | — | — | −0.999 ** (−2.150) | −0.999 ** (−2.150) | 0.070 (0.184) | −27.307 *** (−67,269.083) |
TW∗lnINNO | −0.069 * (−1.653) | — | −0.076 ** (−2.196) | — | — | 0.062 (0.208) | — | −1.558 *** (−6.822) |
TW∗lnOFDI | −0.118 *** (−7.718) | — | 0.564 *** (2.118) | — | — | −1.134 (−0.230) | — | 4.262 *** (3.152) |
TW∗lnPOP | −10.369 ** (−1.851) | — | −11.121 (−1.576) | — | — | −8.932 *** (−2.247) | — | −16.520 *** (−7.224) |
TW∗TRA | −0.148 ** (−2.514) | — | −0.145 (−0.998) | — | — | −0.155 (−1.070) | — | −0.255 *** (−8.543) |
TW∗IND | 17.464 ** (2.315) | — | 15.311 (1.393) | — | — | 19.686 (1.590) | — | 15.810 *** (5.573) |
TW∗URB | 0.008 *** (8.019) | — | −0.061 (−0.141) | — | — | −0.156 (−0.390) | — | 1.114 *** (10.742) |
TW∗CAP | −1.396 *** (−3.982) | — | −1.567 *** (−4.568) | — | — | −1.601 *** (−4.824) | — | −0.352 *** (−2.801) |
TW∗SDID | −0.455 ** (−2.140) | — | 1.863 (0.295) | — | — | 1.439 (0.259) | — | −4.722 *** (−2.816) |
Cons. | 79.001 (0.468) | −25.55 *** (−10.010) | 112.597 (0.662) | −24.241 *** (−9.419) | −27.074 *** (−10.688) | 52.758 (0.293) | −24.147 *** (−9.379) | 123.541 *** (2.560) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Liu, K.; Huang, C. Cooperative Innovation Under the “Belt and Road Initiative” for Reducing Carbon Emissions: An Estimation Based on the Spatial Difference-in-Differences Model. Sustainability 2024, 16, 10504. https://doi.org/10.3390/su162310504
Zhang K, Liu K, Huang C. Cooperative Innovation Under the “Belt and Road Initiative” for Reducing Carbon Emissions: An Estimation Based on the Spatial Difference-in-Differences Model. Sustainability. 2024; 16(23):10504. https://doi.org/10.3390/su162310504
Chicago/Turabian StyleZhang, Kaicheng, Kai Liu, and Caihong Huang. 2024. "Cooperative Innovation Under the “Belt and Road Initiative” for Reducing Carbon Emissions: An Estimation Based on the Spatial Difference-in-Differences Model" Sustainability 16, no. 23: 10504. https://doi.org/10.3390/su162310504
APA StyleZhang, K., Liu, K., & Huang, C. (2024). Cooperative Innovation Under the “Belt and Road Initiative” for Reducing Carbon Emissions: An Estimation Based on the Spatial Difference-in-Differences Model. Sustainability, 16(23), 10504. https://doi.org/10.3390/su162310504