Analyzing the 222Rn/220Rn Ratio in a Seismic Area: A Reliable Method to Understand the Development of Active Structural Discontinuities in Earthquake Surveillance and Sustainability
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Randazzo, P.; Caracausi, A.; Aiuppa, A.; Cardellini, C.; Chiodini, G.; D’Alessandro, W.; Li Vigni, L.; Papic, P.; Marinkovic, G.; Ionescu, A. Active degassing of deeply sourced fluids in central Europe: New evidences from a geochemical study in Serbia. Geochem. Geophys. Geosyst. 2021, 22, e2021GC010017. [Google Scholar] [CrossRef]
- Giammanco, S.; Sims, K.W.W.; Neri, M. Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy): Implications for gas transport and shallow ground fracture. Geochem. Geophys. Geosyst. 2007, 8, Q10001. [Google Scholar] [CrossRef]
- Giammanco, S.; Sims, K.W. Monitoring volcanic activity through combined measurements of CO2 efflux and (222Rn) and (220Rn) in soil gas: An application to Mount Etna, Italy. In Isotopic Constraints on Earth System Processes; American Geophysical Union: Washington, DC, USA, 2022; pp. 167–202. [Google Scholar]
- Mogro-Campero, A.; Fleischer, R.L. Subterrestrial fluid convection: A hypothesis for long-distance migration of radon within the earth. Earth Planet. Sci. Lett. 1977, 34, 321–325. [Google Scholar] [CrossRef]
- LaBrecque, J.J. Simple and rapid methods for on-site determination of radon and thoron in soil-gases for seismic studies. J. Radioanal. Nucl. Chem. 2002, 254, 439–444. [Google Scholar] [CrossRef]
- Woith, H. Radon earthquake precursor: A short review. Eur. Phys. J. Spec. Top. 2015, 224, 611–627. [Google Scholar] [CrossRef]
- Huang, P.; Lv, W.; Huang, R.; Luo, Q.; Yang, Y. Earthquake precursors: A review of key factors influencing radon concentration. J. Environ. Radioact. 2024, 271, 107310. [Google Scholar] [CrossRef] [PubMed]
- Morales-Simfors, N.; Wyss, R.A.; Bundschuh, J. Recent progress in radon-based monitoring as seismic and volcanic precursor: A critical review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 979–1012. [Google Scholar] [CrossRef]
- Hwa Oh, Y.; Kim, G. A radon-thoron isotope pair as a reliable earthquake precursor. Sci. Rep. 2015, 5, 13084. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Nakanishi, T.; Nakahara, H. Determination of thoron and radon ratio by liquid scintillation spectrometry. J. Radioanal. Nuclear Chem. 2006, 267, 195–203. [Google Scholar] [CrossRef]
- Doglioni, C. A proposal for the kinematic modelling of W-dipping subductions—Possible applications to the Tyrrhenian-Apennines system. Terra Nova 1991, 3, 423–434. [Google Scholar] [CrossRef]
- Faccenna, C.; Becker, T.W.; Lucente, F.P.; Jolivet, L.; Rossetti, F. History of subduction and back-arc extension in central Mediterranean. Geophys. J. Int. 2001, 145, 809–820. [Google Scholar] [CrossRef]
- Valensise, G.; Pantosti, D. The investigation of potential earthquake sources in peninsular Italy: A review. J. Seismol. 2001, 5, 287–306. [Google Scholar] [CrossRef]
- Basili, R.; Valensise, G.; Vannoli, P.; Burrato, P.; Fracassi, U.; Mariano, S.; Tiberti, M.M.; Boschi, E. The Database of Individual Seismogenic Sources (DISS), version 3: Summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics 2008, 453, 20–43. [Google Scholar] [CrossRef]
- Bonini, L.; Di Bucci, D.; Toscani, G.; Seno, S.; Valensise, G. On the complexity of surface ruptures during normal faulting earthquakes: Excerpts from the 6 April 2009 L’Aquila (central Italy) earthquake (Mw 6.3). Solid Earth 2014, 5, 389. [Google Scholar] [CrossRef]
- Chiarabba, C.; Amato, A.; Anselmi, M.; Baccheschi, P.; Bianchi, I.; Cattaneo, M.; Cecere, G.; Chiaraluce, L.; Ciaccio, M.G.; De Gori, P.; et al. The 2009 L’Aquila (central Italy) MW6. 3 earthquakes: Main shock and aftershocks. Geophys. Res. Lett. 2009, 36, L18308. [Google Scholar] [CrossRef]
- Falcucci, E.; Gori, S.; Peronace, E.; Fubelli, G.; Moro, M.; Saroli, M.; Giaccio, B.; Messina, P.; Naso, G.; Scardia, G.; et al. The Paganica fault and surface coseismic ruptures caused by the 6 April 2009 earthquake (L’Aquila, central Italy). Seismol. Res. Lett. 2009, 80, 940–950. [Google Scholar] [CrossRef]
- Voltattorni, N.; Quattrocchi, F.; Gasparini, A.; Sciarra, A. Soil gas degassing during the 2009 L’Aquila earthquake: Study of the seismotectonic and fluid geochemistry relation. Ital. J. Geosci. 2012, 131, 440–447. [Google Scholar] [CrossRef]
- Voltattorni, N.; Giammanco, S.; Galli, G.; Gasparini, A.; Neri, M. Indoor Radon Monitoring and Associated Diffuse Radon Emissions in the Flanks of Mt. Etna (Italy). Atmosphere 2024, 15, 1359. [Google Scholar] [CrossRef]
- Janik, M.; Gomez, C.; Kodaira, S.; Hasan, M.M. Preliminary results of spatial distribution of radon and thoron with associated parameters in soil around active faults in Japan. Radiat. Prot. Dosim. 2024, 200, 1726–1731. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Katlamudi, M.; Gakka, U.L. Singular spectrum analysis on soil radon time series (222 Rn) in Kachchh, Gujarat, India: Detection of periodic oscillations and earthquake precursors. Arab. J. Geosci. 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Galli, G.; Cannelli, V.; Nardi, A.; Piersanti, A. Implementing soil radon detectors for long term continuous monitoring. Appl. Radiat. Isot. 2019, 153, 108813. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, M.E. Environmental conditions affecting concentrations of He, CO2, O2 and N2 in soil gases. Appl. Geochem. 1994, 9, 53–63. [Google Scholar] [CrossRef]
- Filzmoser, P.; Garrett, R.G.; Reimann, C. Multivariate outlier detection in exploration geochemistry. Comput. Geosci. 2005, 31, 579–587. [Google Scholar] [CrossRef]
- Reimann, C.; De Caritat, P. Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Sci. Total Environ. 2005, 337, 91–107. [Google Scholar] [CrossRef]
- Voltattorni, N.; Gasparini, A.; Galli, G. The analysis of 222Rn and 220Rn natural radioactivity for local hazard estimation: The case study of Cerveteri (Central Italy). Int. J. Environ. Res. Public Health 2023, 20, 6420. [Google Scholar] [CrossRef]
- Sinclair, A.J. A fundamental approach to threshold estimation in exploration geochemistry: Probability plots revisited. J. Geochem. Expl. 1991, 41, 1–22. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Pearson College Div., Addison Wesley Ed.: Boston, MA, USA, 1977; ISBN 0-201-07616-0. [Google Scholar]
- Blumetti, A.M.; Di Filippo, M.; Zaffiro, P.; Marsan, P.; Toro, B. Seismic hazard of the city of L’Aquila (Abruzzo—Central Italy): New data from geological, morphotectonic and gravity prospecting analysis. Studi Geologici Camerti 2002, 1, 7–18. [Google Scholar]
- Yang, T.F.; Walia, V.; Chyi, L.L.; Fu, C.C.; Chen, C.H.; Liu, T.K.; Song, S.R.; Lee, C.Y.; Lee, M. Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan. Radiat. Meas. 2005, 40, 496–502. [Google Scholar] [CrossRef]
- Walters, R.J.; Elliott, J.R.; D’Agostino, N.; England, P.C.; Hunstad, I.; Jackson, J.A.; Parsons, B.; Phillips, R.J.; Roberts, G. The 2009 L’Aquila earthquake (central Italy): A source mechanism and implications for seismic hazard. Geophys. Res. Lett. 2009, 36, L17312. [Google Scholar] [CrossRef]
- Lombardi, S.; Voltattorni, N. Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults. Appl. Geochem. 2010, 25, 1206–1220. [Google Scholar] [CrossRef]
- Cvetković, M.; Kapuralić, J.; Pejić, M.; Kolenković Močilac, I.; Rukavina, D.; Smirčić, D.; Kamenski, A.; Matoš, B.; Špelić, M. Soil gas measurements of radon, CO2 and hydrocarbon concentrations as indicators of subsurface hydrocarbon accumulation and hydrocarbon seepage. Sustainability 2021, 13, 3840. [Google Scholar] [CrossRef]
- Prasetio, R.; Hutabarat, J.; Daud, Y.; Hendarmawan, H. Distribution of 222Rn and CO2 across faults and its origin in Wayang Windu geothermal area, West Java-Indonesia. Geothermics 2023, 110, 102691. [Google Scholar] [CrossRef]
- Girault, F.; Viveiros, F.; Silva, C.; Thapa, S.; Pacheco, J.E.; Adhikari, L.B.; Bhattarai, M.; Koirala, B.P.; Agrinier, P.; France-Lanord, C.; et al. Radon signature of CO2 flux constrains the depth of degassing: Furnas volcano (Azores, Portugal) versus Syabru-Bensi (Nepal Himalayas). Sci. Rep. 2022, 12, 10837. [Google Scholar] [CrossRef] [PubMed]
- Guerrieri, L.; Baer, G.; Hamiel, Y.; Amit, R.; Blumetti, A.M.; Comerci, V.; Di Manna, P.; Michetti, A.M.; Salamon, A.; Mushkin, A.; et al. InSAR data as a field guide for mapping minor earthquake surface ruptures: Ground displacements along the Paganica Fault during the 6 April 2009 L’Aquila earthquake. J. Geophys. Res. 2010, 115, B12331. [Google Scholar] [CrossRef]
- Amato, A.; Margheriti, L.; Azzara, R.M.; Basili, A.; Chiarabba, C.; Ciaccio, M.G.; Cimini, G.B.; Di Bona, M.; Frepoli, A.; Lucente, F.P.; et al. Passive seismology and deep structure in Central Italy. Pure Appl. Geophys. 1998, 151, 479–493. [Google Scholar] [CrossRef]
- Cocco, M.; Nostro, C.; Ekström, G. Static stress changes and fault interaction during the 1997 Umbria-Marche earthquake sequence. J. Seismol. 2000, 4, 501–516. [Google Scholar] [CrossRef]
- Xu, Z.H.; Yu, T.F.; Lin, P.; Wang, W.Y.; Shao, R.Q. Integrated geochemical, mineralogical, and microstructural identification of faults in tunnels and its application to TBM jamming analysis. Tunn. Undergr. Space Technol. 2022, 128, 104650. [Google Scholar] [CrossRef]
- Chiodini, G.; Cardellini, C.; Di Luccio, F.; Selva, J.; Frondini, F.; Caliro, S.; Rosiello, A.; Beddini, G.; Ventura, G. Correlation between tectonic CO2 Earth degassing and seismicity is revealed by a 10-year record in the Apennines, Italy. Sci. Adv. 2020, 6, eabc2938. [Google Scholar] [CrossRef] [PubMed]
- Romano, D.; Sabatino, G.; Magazù, S.; Di Bella, M.; Tripodo, A.; Gattuso, A.; Italiano, F. Distribution of soil gas radon concentration in north-eastern Sicily (Italy): Hazard evaluation and tectonic implications. Environ. Earth Sci. 2023, 82, 273. [Google Scholar] [CrossRef]
- Beltrán-Torres, S.; Szabó, K.Z.; Tóth, G.; Tóth-Bodrogi, E.; Kovács, T.; Szabó, C. Estimated versus field measured soil gas radon concentration and soil gas permeability. J. Environ. Radioact. 2023, 265, 107224. [Google Scholar] [CrossRef]
- Miklyaev, P.S.; Petrova, T.B.; Shchitov, D.V.; Sidyakin, P.A.; Murzabekov, M.A.; Marennyy, A.M.; Nefedov, N.A.; Sapozhnikov, Y.A. The results of long-term simultaneous measurements of radon exhalation rate, radon concentrations in soil gas and groundwater in the fault zone. Appl. Radiat. Isot. 2021, 167, 109460. [Google Scholar] [CrossRef] [PubMed]
- Xuan, P.T.; Duong, N.A.; Van Chinh, V.; Dang, P.T.; Qua, N.X.; Van Pho, N. Soil gas radon measurement for identifying active faults in Thua Thien hue (Vietnam). J. Geosci. Environ. Prot. 2020, 8, 44. [Google Scholar] [CrossRef]
- Papachristodoulou, C.; Stamoulis, K.; Ioannides, K. Temporal variation of soil gas radon associated with seismic activity: A case study in NW Greece. Pure Appl. Geophys. 2020, 177, 821–836. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Kaown, D.; Lee, K.K. Thoron, radon and microbial community as supportive indicators of seismic activity in groundwater. Sci. Rep. 2024, 14, 25955. [Google Scholar] [CrossRef]
Mean | Median | Min Value | Max Value | S.D. | IQR | Skewness | Anomaly Threshold | |
---|---|---|---|---|---|---|---|---|
222Rn_2009 (Bq/m3) | 8900 | 6700 | 238 | 38,900 | 7.4 | 8.9 | 1.3 | 1440 |
222Rn_2016 (Bq/m3) | 9000 | 7600 | 100 | 49,000 | 7.8 | 8.0 | 2.1 | 24,300 |
220Rn_2009 (Bq/m3) | 25,800 | 19,500 | 0 | 133,000 | 25.0 | 30.3 | 1.5 | 52,000 |
220Rn_2016 (Bq/m3) | 51,600 | 41,000 | 63 | 341,000 | 49.4 | 41.3 | 2.5 | 71,400 |
He_2009 (ppm, v/v) | 5.0 | 4.9 | 0.5 | 10.3 | 1.7 | 0.4 | 3.4 | 5.3 |
He_2016 (ppm, v/v) | 5.3 | 5.0 | 0.4 | 24.6 | 2.5 | 0.7 | 2.7 | 5.2 |
H2_2009 (ppm, v/v) | 0.8 | 0.5 | 0.2 | 5.7 | 0.8 | 1.2 | 5.6 | 0.6 |
H2_2016 (ppm, v/v) | 1.1 | 0.8 | 0.2 | 16.5 | 1.2 | 2.5 | 6.3 | 0.7 |
O2_2009 (%, v/v) | 18.9 | 19.0 | 18.0 | 18.8 | 0.7 | 0.03 | −1.7 | 19 |
O2_2016 (%, v/v) | 18.0 | 18.1 | 19.9 | 19.7 | 0.5 | 0.03 | −1.7 | 18.9 |
N2_2009 (%, v/v) | 76.2 | 76.3 | 74.3 | 78.5 | 0.9 | 0.01 | −0.2 | 78.2 |
N2_2016 (%, v/v) | 76.8 | 76.8 | 74.2 | 79.0 | 0.6 | 0.009 | −0.2 | 78.4 |
CH4_2009 (ppm, v/v) | 12.0 | 0.5 | 0.2 | 642.5 | 62.4 | 5.1 | 8.7 | 1.4 |
CH4_2016 (ppm, v/v) | 9.8 | 3.9 | 0.1 | 543.0 | 49 | 5.1 | 10.7 | 1.3 |
CO2_2009 (%, v/v) | 2.6 | 2.2 | 0.1 | 8.2 | 1.7 | 0.6 | 1.1 | 1.2 |
CO2_2016 (%, v/v) | 0.8 | 0.7 | 0.1 | 2.6 | 0.5 | 0.7 | 1.1 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voltattorni, N.; Gasparini, A.; Cinti, D.; Galli, G.; Procesi, M. Analyzing the 222Rn/220Rn Ratio in a Seismic Area: A Reliable Method to Understand the Development of Active Structural Discontinuities in Earthquake Surveillance and Sustainability. Sustainability 2024, 16, 10449. https://doi.org/10.3390/su162310449
Voltattorni N, Gasparini A, Cinti D, Galli G, Procesi M. Analyzing the 222Rn/220Rn Ratio in a Seismic Area: A Reliable Method to Understand the Development of Active Structural Discontinuities in Earthquake Surveillance and Sustainability. Sustainability. 2024; 16(23):10449. https://doi.org/10.3390/su162310449
Chicago/Turabian StyleVoltattorni, Nunzia, Andrea Gasparini, Daniele Cinti, Gianfranco Galli, and Monia Procesi. 2024. "Analyzing the 222Rn/220Rn Ratio in a Seismic Area: A Reliable Method to Understand the Development of Active Structural Discontinuities in Earthquake Surveillance and Sustainability" Sustainability 16, no. 23: 10449. https://doi.org/10.3390/su162310449
APA StyleVoltattorni, N., Gasparini, A., Cinti, D., Galli, G., & Procesi, M. (2024). Analyzing the 222Rn/220Rn Ratio in a Seismic Area: A Reliable Method to Understand the Development of Active Structural Discontinuities in Earthquake Surveillance and Sustainability. Sustainability, 16(23), 10449. https://doi.org/10.3390/su162310449