Determinants of Climate-Smart Agriculture Adoption Among Rice Farmers: Enhancing Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Analysis
2.2. Variables in Model and Data Analysis
- = 1 = adoption;
- = 0 = non-adoption.
- The dependent variable is :
- = Probability of adoption of one of the CSA practices.
- The independent variables are as follows:
- = Age of the household head (continuous);
- = Gender of the household head (categorical);
- = Family member involvement (continuous);
- = Education of the household head (continuous);
- = Income (continuous);
- = Off-farm income (categorical);
- = Membership in climate-related organization (categorical);
- = Membership in farmers’ organization (categorical);
- = Leased land (categorical);
- = Farming experience (continuous);
- = Farm size (continuous);
- = Access to extension (categorical);
- = Access to credit (categorical);
- a = Intercept;
- to = Regression coefficients of the dependent variables;
- U = Error term.
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seck, P.A.; Diagne, A.; Mohanty, S.; Wopereis, M.C.S. Crops That Feed the World 7: Rice. Food Secur. 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Pandey, S.; Byerlee, D.; Dawe, D.; Dobermann, A.; Mohanty, S.; Rozelle, S.; Hardy, B. Rice in the Global Economy, Strrategic Research and Policy Issues for Food Security; International Rice Research Institute: Los Baños, Philippines, 2015; ISBN 9789712202582. [Google Scholar]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An Overview of Global Rice Production, Supply, Trade, and Consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef]
- Shi, J.; An, G.; Weber, A.P.M.; Zhang, D. Prospects for Rice in 2050. Plant Cell Environ. 2023, 46, 1037–1045. [Google Scholar] [CrossRef]
- Bin Rahman, A.N.M.R.; Zhang, J. Trends in Rice Research: 2030 and Beyond. Food Energy Secur. 2023, 12, e390. [Google Scholar] [CrossRef]
- Zeigler, R.S.; Barclay, A. The Relevance of Rice. Rice 2008, 1, 3–10. [Google Scholar] [CrossRef]
- Wheeler, T.; Von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Rayamajhee, V.; Guo, W.; Bohara, A.K. The Impact of Climate Change on Rice Production in Nepal. Econ. Disasters Clim. Chang. 2021, 5, 111–134. [Google Scholar] [CrossRef]
- Knox, J.; Hess, T.; Daccache, A.; Wheeler, T. Climate Change Impacts on Crop Productivity in Africa and South Asia. Environ. Res. Lett. 2012, 7, 034032. [Google Scholar] [CrossRef]
- Gairhe, J.J.; Adhikari, M. Intervention of Climate Smart Agriculture Practices in Farmers Field to Increase Production and Productivity of Winter Maize in Terai Region of Nepal. J. Inst. Agric. Anim. Sci. 2018, 35, 59–66. [Google Scholar] [CrossRef]
- Kafle, K.R.; Simkhada, K. Performances of Transplanted Spring Rice under Different Weed Management Techniques in Kapilbastu, Nepal. Turkish J. Agric.-Food Sci. Technol. 2023, 11, 644–650. [Google Scholar] [CrossRef]
- Simkhada, K.; Thapa, R. Turkish Journal of Agriculture—Food Science and Technology Rice Blast, A Major Threat to the Rice Production and Its Various Management Techniques. Turk. J. Agric.-Food Sci. Technol. 2022, 10, 147–157. [Google Scholar]
- Mishra, S.; Panta, H.K.; Bhandari, T. Analyzing the Socioeconomic Determinants of Adoption of Climate Smart Agriculture in Nawalparasi District of Nepal. J. Inst. Agric. Anim.Sci 2020, 36, 21–29. [Google Scholar] [CrossRef]
- Khanal, U.; Wilson, C.; Hoang, V.N.; Lee, B. Farmers’ Adaptation to Climate Change, Its Determinants and Impacts on Rice Yield in Nepal. Ecol. Econ. 2018, 144, 139–147. [Google Scholar] [CrossRef]
- Shrestha, S.; Gyawali, B.; Bhattarai, U. Impacts of Climate Change on Irrigation Water Requirements for Rice-Wheat Cultivation in Bagmati River Basin, Nepal. J. Water Clim. Chang. 2013, 4, 422–439. [Google Scholar] [CrossRef]
- Adhikari, S.; Dhungana, N.; Upadhaya, S. Watershed Communities’ Livelihood Vulnerability to Climate Change in the Himalayas. Clim. Chang. 2020, 162, 1307–1321. [Google Scholar] [CrossRef]
- Dhungana, N.; Silwal, N.; Upadhaya, S.; Khadka, C.; Regmi, S.K.; Joshi, D.; Adhikari, S. Rural Coping and Adaptation Strategies for Climate Change by Himalayan Communities in Nepal. J. Mt. Sci. 2020, 17, 1462–1474. [Google Scholar] [CrossRef]
- Karki, G.; Bhatta, B.; Devkota, N.R.; Acharya, R.P.; Kunwar, R.M. Climate Change Adaptation (CCA) Research in Nepal: Implications for the Advancement of Adaptation Planning. Mitig. Adapt. Strateg. Glob. Chang. 2022, 27, 18. [Google Scholar] [CrossRef]
- Ranabhat, S.; Acharya, S.; Upadhaya, S.; Adhikari, B.; Thapa, R.; Ranabhat, S.; Gautam, D.R. Climate Change Impacts and Adaptation Strategies in Watershed Areas in Mid-Hills of Nepal. J. Environ. Stud. Sci. 2023, 13, 240–252. [Google Scholar] [CrossRef]
- Paudel, B.; Khanal, R.C.; KC, A.; Bhatta, K.; Chaudhary, P. Climate-Smart Agriculture in Nepal: Champion Technologies and Their Pathways for Scaling Up. CSA Ctry. Profiles Asia Ser. 2017, 1–10. [Google Scholar]
- Gairhe, J.J.; Adhikari, M.; Ghimire, D.; Khatri-Chhetri, A.; Panday, D. Intervention of Climate-smart Practices in Wheat under Rice- Wheat Cropping System in Nepal. Climate 2021, 9, 19. [Google Scholar] [CrossRef]
- Ishtiaque, A.; Krupnik, T.J.; Krishna, V.; Uddin, M.N.; Aryal, J.P.; Srivastava, A.K.; Kumar, S.; Shahzad, M.F.; Bhatt, R.; Gardezi, M.; et al. Overcoming Barriers to Climate-Smart Agriculture in South Asia. Nat. Clim. Chang. 2024, 14, 111–113. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-Smart Agriculture for Food Security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Thakur, A.K.; Uphoff, N.T. How the System of Rice Intensification Can Contribute to Climate-Smart Agriculture. Agron. J. 2017, 109, 1163–1182. [Google Scholar] [CrossRef]
- Mishra, B.; Gyawali, B.R.; Paudel, K.P.; Poudyal, N.C.; Simon, M.F.; Dasgupta, S.; Antonious, G. Adoption of Sustainable Agriculture Practices among Farmers in Kentucky, USA. Environ. Manag. 2018, 62, 1060–1072. [Google Scholar] [CrossRef]
- Bashiru, M.; Ouedraogo, M.; Ouedraogo, A.; Läderach, P. Smart Farming Technologies for Sustainable Agriculture: A Review of the Promotion and Adoption Strategies by Smallholders in Sub-Saharan Africa. Sustainability 2024, 16, 4817. [Google Scholar] [CrossRef]
- Scherr, S.J.; Shames, S.; Friedman, R. From Climate-Smart Agriculture to Climate-Smart Landscapes. Agric. Food Secur. 2012, 1, 12. [Google Scholar] [CrossRef]
- Mereu, V.; Santini, M.; Cervigni, R.; Augeard, B.; Bosello, F.; Scoccimarro, E.; Spano, D.; Valentini, R. Robust Decision Making for a Climate-Resilient Development of the Agricultural Sector in Nigeria. In Climate Smart Agriculture; Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., Branca, G., Eds.; Springer: Cham, Switzerland, 2018; Volume 52, ISBN 9783319611938. [Google Scholar] [CrossRef]
- Taylor, M. Climate-Smart Agriculture: What Is It Good For? J. Peasant Stud. 2018, 45, 89–107. [Google Scholar] [CrossRef]
- Smit, B.; Skinner, M.W. Adaptation Options in Agriculture to Climate Change: A Typology. Mitig. Adapt. Strateg. Glob. Chang. 2002, 7, 85–114. [Google Scholar] [CrossRef]
- Tran, N.L.D.; Rañola, R.F.; Ole Sander, B.; Reiner, W.; Nguyen, D.T.; Nong, N.K.N. Determinants of Adoption of Climate-Smart Agriculture Technologies in Rice Production in Vietnam. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 238–256. [Google Scholar] [CrossRef]
- Zakaria, A.; Alhassan, S.I.; Kuwornu, J.K.M.; Azumah, S.B.; Derkyi, M.A.A. Factors Influencing the Adoption of Climate-Smart Agricultural Technologies among Rice Farmers in Northern Ghana. Earth Syst. Environ. 2020, 4, 257–271. [Google Scholar] [CrossRef]
- Sisay, T.; Tesfaye, K.; Ketema, M.; Dechassa, N.; Getnet, M. Climate-Smart Agriculture Technologies and Determinants of Farmers’ Adoption Decisions in the Great Rift Valley of Ethiopia. Sustainability 2023, 15, 3471. [Google Scholar] [CrossRef]
- Sanogo, K.; Touré, I.; Arinloye, D.D.A.A.; Dossou-Yovo, E.R.; Bayala, J. Factors Affecting the Adoption of Climate-Smart Agriculture Technologies in Rice Farming Systems in Mali, West Africa. Smart Agric. Technol. 2023, 5, 100283. [Google Scholar] [CrossRef]
- Ngaiwi, M.E.; Molua, E.L.; Sonwa, D.J.; Meliko, M.O.; Bomdzele, E.J.; Ayuk, J.E.; Castro-Nunez, A.; Latala, M.M. Do Farmers’ Socioeconomic Status Determine the Adoption of Conservation Agriculture? An Empirical Evidence from Eastern and Southern Regions of Cameroon. Sci. Afr. 2023, 19, e01498. [Google Scholar] [CrossRef]
- Bhatta, D.; Paudel, K.P.; Liu, K. Factors Influencing Water Conservation Practices Adoptions by Nepali Farmers. Environ. Dev. Sustain. 2023, 25, 10879–10901. [Google Scholar] [CrossRef]
- Frank, S.; Havlík, P.; Soussana, J.F.; Levesque, A.; Valin, H.; Wollenberg, E.; Kleinwechter, U.; Fricko, O.; Gusti, M.; Herrero, M.; et al. Reducing Greenhouse Gas Emissions in Agriculture without Compromising Food Security? Environ. Res. Lett. 2017, 12, 105004. [Google Scholar] [CrossRef]
- Ruba, U.B.; Talucder, M.S.A.; Zaman, M.N.; Montaha, S.; Tumpa, M.F.A.; Duel, M.A.K.; Puja, R.S.; Triza, A.H. The Status of Implemented Climate Smart Agriculture Practices Preferred by Farmers of Haor Area as a Climate Resilient Approach. Heliyon 2024, 10, e25780. [Google Scholar] [CrossRef]
- Khatri-Chhetri, A.; Aggarwal, P.K.; Joshi, P.K.; Vyas, S. Farmers’ Prioritization of Climate-Smart Agriculture (CSA) Technologies. Agric. Syst. 2017, 151, 184–191. [Google Scholar] [CrossRef]
- Below, T.B.; Mutabazi, K.D.; Kirschke, D.; Franke, C.; Sieber, S.; Siebert, R.; Tscherning, K. Can Farmers’ Adaptation to Climate Change Be Explained by Socio-Economic Household-Level Variables? Glob. Environ. Chang. 2012, 22, 223–235. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M.; Ringler, C. Perception of and Adaptation to Climate Change by Farmers in the Nile Basin of Ethiopia. J. Agric. Sci. 2011, 149, 23–31. [Google Scholar] [CrossRef]
- Von Hippel, P. Linear vs. Logistic Probability Models: Which Is Better, and When; Statistical Horizons. 2015. Available online: https://statisticalhorizons.com/linear-vs-logistic/ (accessed on 13 November 2024).
- Jamil, I.; Jun, W.; Mughal, B.; Raza, M.H.; Imran, M.A.; Waheed, A. Does the Adaptation of Climate-Smart Agricultural Practices Increase Farmers’ Resilience to Climate Change? Environ. Sci. Pollut. Res. 2021, 28, 27238–27249. [Google Scholar] [CrossRef]
- Makate, C.; Makate, M.; Mango, N.; Siziba, S. Increasing Resilience of Smallholder Farmers to Climate Change through Multiple Adoption of Proven Climate-Smart Agriculture Innovations. Lessons from Southern Africa. J. Environ. Manag. 2018, 231, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, A.J.G.; Thanh, L.H.; Chuong, P.H.; Kiet, N.T.; Trang, V.T.; Duc, T.C.; Hopanda, J.C.; Carmelita, B.M.; Bernardo, E.B. Farming Household Adoption of Climate-Smart Agricultural Technologies: Evidence from North-Central Vietnam. Asia-Pac. J. Reg. Sci. 2023, 7, 641–663. [Google Scholar] [CrossRef]
- Abegunde, V.O.; Sibanda, M.; Obi, A. Determinants of the Adoption of Climate-Smart Agricultural Practices by Small-Scale Farming Households in King Cetshwayo District Municipality, South Africa. Sustainability 2020, 12, 195. [Google Scholar] [CrossRef]
- Akrofi-Atitianti, F.; Ifejika Speranza, C.; Bockel, L.; Asare, R. Assessing Climate Smart Agriculture and Its Determinants of Practice in Ghana: A Case of the Cocoa Production System. Land 2018, 7, 30. [Google Scholar] [CrossRef]
- Villalba, R.; Joshi, G.; Daum, T.; Venus, T.E. Financing Climate-Smart Agriculture: A Case Study from the Indo-Gangetic Plains. Mitig. Adapt. Strateg. Glob. Chang. 2024, 29, 33. [Google Scholar] [CrossRef]
- Makate, C.; Makate, M.; Mutenje, M.; Mango, N.; Siziba, S. Synergistic Impacts of Agricultural Credit and Extension on Adoption of Climate-Smart Agricultural Technologies in Southern Africa. Environ. Dev. 2019, 32, 100458. [Google Scholar] [CrossRef]
- Engel, S.; Muller, A. Payments for Environmental Services to Promote “Climate-Smart Agriculture”? Potential and Challenges. Agric. Econ. (U. K.) 2016, 47, 173–184. [Google Scholar] [CrossRef]
- Poudyal, B.; Upadhaya, S.; Acharya, S.; Khanal Chhetri, B.B. Assessing Socio-Economic Factors Affecting the Implementation of Payment for Ecosystem Services (PES) Mechanism. World 2021, 2, 81–91. [Google Scholar] [CrossRef]
- Haile, K.K.; Tirivayi, N.; Tesfaye, W. Farmers’ Willingness to Accept Payments for Ecosystem Services on Agricultural Land: The Case of Climate-Smart Agroforestry in Ethiopia. Ecosyst. Serv. 2019, 39, 100964. [Google Scholar] [CrossRef]
- Mizik, T. Climate-Smart Agriculture on Small-Scale Farms: A Systematic Literature Review. Agronomy 2021, 11, 1096. [Google Scholar] [CrossRef]
- George, W. Economics of On-Farm Climate Smart Agricultural Practices in Crop-Based Farming Systems in Morogoro Rural District. J. Afr. Econ. Perspect. 2024, 2, 14–20. [Google Scholar] [CrossRef]
- Poudel, S.; Thapa, R.; Mishra, B. A Farmer-Centric Cost–Benefit Analysis of Climate-Smart Agriculture in the Gandaki River Basin of Nepal. Climate 2024, 12, 145. [Google Scholar] [CrossRef]
- Sang, X.; Chen, C.; Hu, D.; Rahut, D.B. Economic Benefits of Climate-Smart Agricultural Practices: Empirical Investigations and Policy Implications. Mitig. Adapt. Strateg. Glob. Chang. 2024, 29, 9. [Google Scholar] [CrossRef]
- Khatri-Chhetri, A.; Aryal, J.P.; Sapkota, T.B.; Khurana, R. Economic Benefits of Climate-Smart Agricultural Practices to Smallholder Farmers in the Indo-Gangetic Plains of India. Curr. Sci. 2016, 110, 1251–1256. [Google Scholar]
- Zheng, H.; Ma, W.; He, Q. Climate-Smart Agricultural Practices for Enhanced Farm Productivity, Income, Resilience, and Greenhouse Gas Mitigation: A Comprehensive Review. Mitig. Adapt. Strateg. Glob. Chang. 2024, 29, 28. [Google Scholar] [CrossRef]
- Vishnoi, S.; Goel, R.K. Climate Smart Agriculture for Sustainable Productivity and Healthy Landscapes. Environ. Sci. Policy 2024, 151, 103600. [Google Scholar] [CrossRef]
Variables | Description | Mean | S.D. |
---|---|---|---|
Age | Age of the respondent (years) | 49.51 | 14.22 |
Gender | Gender of the respondent (=1 if male, 0 female) | 0.51 | 0.50 |
Involved members | Number of family members engaged in rice farming | 2.91 | 1.57 |
Education | Formal education of the respondent (years) | 5.7 | 4.73 |
Income | Annual income of household (USD) | 2935.50 | 3363.93 |
Off-farm | =1 if the respondent has an off-farm income source, 0 otherwise | 0.35 | 0.47 |
Climate member | =1 if the respondent has climate organization membership, 0 otherwise | 0.22 | 0.42 |
Group member | =1 if the respondent has farmer organization membership, 0 otherwise | 0.55 | 0.49 |
Lease | =1 if the respondent has leased in land for rice farming, 0 otherwise | 0.19 | 0.39 |
Exp | Rice farming experience (years) | 25.61 | 15.48 |
Farm size | Land used for rice farming (kattha) | 16.46 | 13.26 |
Extension | =1 if the respondent has regular contact with the extension worker, 0 otherwise | 0.15 | 0.36 |
Access to credit | =1 if the respondent has access to a credit facility, 0 otherwise | 0.69 | 0.46 |
Adoption | =1 if the respondent has adopted at least one CSA practice, 0 otherwise | 0.72 | 0.45 |
Variables | Coefficient | p-Value | SE |
---|---|---|---|
Age | 0.226 | 0.155 | 0.016 |
Gender | 0.457 | 0.277 | 0.420 |
Involve members | 0.181 | 0.183 | 0.135 |
Education | 0.195 | 0.000 | 0.050 |
Income | 0.136 | 0.023 | 0.021 |
Off-farm | −0.355 | 0.411 | 0.433 |
Climate member | 1.272 | 0.012 | 0.508 |
Group member | 0.118 | 0.757 | 0.383 |
Lease | 0.188 | 0.792 | 0.714 |
Exp | −0.037 | 0.005 | 0.014 |
Farm size | −0.005 | 0.016 | 0.021 |
Extension | 0.293 | 0.596 | 0.554 |
Access to credit | −0.874 | 0.048 | 0.442 |
Constant | −1.104 | 0.677 | 2.648 |
Summary Statistics | |||
N | 200 | ||
LR chi2(13) | 46.980 | ||
Prob > chi2 | 0.000 | ||
Pseudo R2 | 0.491 | ||
Log Likelihood | −94.143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandeya, S.; Gajurel, A.; Mishra, B.P.; Devkota, K.; Gyawali, B.R.; Upadhaya, S. Determinants of Climate-Smart Agriculture Adoption Among Rice Farmers: Enhancing Sustainability. Sustainability 2024, 16, 10247. https://doi.org/10.3390/su162310247
Pandeya S, Gajurel A, Mishra BP, Devkota K, Gyawali BR, Upadhaya S. Determinants of Climate-Smart Agriculture Adoption Among Rice Farmers: Enhancing Sustainability. Sustainability. 2024; 16(23):10247. https://doi.org/10.3390/su162310247
Chicago/Turabian StylePandeya, Shreesha, Aarju Gajurel, Binayak P. Mishra, Kedar Devkota, Buddhi R. Gyawali, and Suraj Upadhaya. 2024. "Determinants of Climate-Smart Agriculture Adoption Among Rice Farmers: Enhancing Sustainability" Sustainability 16, no. 23: 10247. https://doi.org/10.3390/su162310247
APA StylePandeya, S., Gajurel, A., Mishra, B. P., Devkota, K., Gyawali, B. R., & Upadhaya, S. (2024). Determinants of Climate-Smart Agriculture Adoption Among Rice Farmers: Enhancing Sustainability. Sustainability, 16(23), 10247. https://doi.org/10.3390/su162310247