Resilience Assessment of Flood Disasters in Zhengzhou Metropolitan Area Based on the PSR Model
Abstract
:1. Introduction
2. Study Area and Data Source
3. Model Settings
3.1. Data Standardization
3.2. Index Weight Calculation
3.3. Comprehensive Evaluation Model
3.4. Kernel Density Estimation
3.5. Factor Contribution Model
4. Results
4.1. General Variation Law of Flood Disaster Resilience Level
4.2. Analysis of the Development Trend of Flood Disaster Resilience
4.3. Analysis of Spatiotemporal Distribution of Flood Disaster Resilience
4.3.1. Analysis of Temporal and Spatial Variation of Overall Resilience
4.3.2. Analysis of Temporal and Spatial Variation of Pressure Resilience
4.3.3. Analysis of Temporal and Spatial Variation of State Resilience
4.3.4. Analysis of Temporal and Spatial Variation of Response Resilience
4.4. Analysis of Driving Factors of Flood Disaster Resilience
5. Discussion and Suggestions
5.1. Discussion
5.2. Suggestions
6. Conclusions
6.1. Conclusions
6.2. Deficiencies and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quinlan, A.E.; Berbes-Blazquez, M.; Haider, L.J.; Peterson, G.D. Measuring and assessing resilience: Broadening understanding through multiple disciplinary perspectives. J. Appl. Ecol. 2016, 53, 677–687. [Google Scholar] [CrossRef]
- Hu, P.; Chen, B.; Shi, P. Spatiotemporal patterns and influencing factors of rainstorm-induced flood disasters in China. Acta Geogr. Sin. 2021, 76, 1148–1162. (In Chinese) [Google Scholar] [CrossRef]
- Compilation group of China Flood and Drought Disaster Prevention Bulletin. Summary of China Flood and Drought Disaster Prevention Bulletin 2022. China Flood Drought Manag. 2023, 33, 78–82. (In Chinese) [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- UN Office for Disaster Risk Reduction. UNDRR Strategic Framework 2022–2025; UNDRR: Geneva, Switzerland, 2023. [Google Scholar]
- Kong, L.; Mu, X.; Hu, G.; Zhang, Z. The application of resilience theory in urban development: A literature review. Environ. Sci. Pollut. Res. 2022, 29, 49651–49671. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Liang, Z. Assessment of the Construction of a Climate Resilient City: An Empirical Study Based on the Difference in Differences Model. Int. J. Environ. Res. Public. Health 2021, 18, 2082. [Google Scholar] [CrossRef]
- Alberti, M.; Marzluff, J.M.; Shulenberger, E.; Bradley, G.; Ryan, C.; Zumbrunnen, C. Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. Adv. Anim. Biosci. 2003, 53, 1169–1179. [Google Scholar] [CrossRef]
- Berkes, F. Understanding uncertainty and reducing vulnerability: Lessons from resilience thinking. Nat. Hazards 2007, 41, 283–295. [Google Scholar] [CrossRef]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Change-Hum. Policy Dimens. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Teng, W.; Luo, X.; Wang, B.L.; Mao, Y.Y. Research on Urban Security and Disaster Prevention Planning from the Perspective of Urban Resilience Theory: A Case of Pudong New Area District, Shanghai. Urban Dev. Stud. 2018, 25, 39–46. (In Chinese) [Google Scholar]
- Parsons, M.; Reeve, I.; McGregor, J.; Hastings, P.; Marshall, G.R.; McNeill, J.; Stayner, R.; Glavac, S. Disaster resilience in Australia: A geographic assessment using an index of coping and adaptive capacity. Int. J. Disaster Risk Reduct. 2021, 62, 102422. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, H.; Chen, L.; Liu, X.; Gu, M.; Pan, W. Multiattribute decision making for the assessment of disaster resilience in the Three Gorges Reservoir Area. Ecol. Soc. 2020, 25, 5. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, W.; Cai, K.; Gao, X.; Zhang, X.; Liu, J.; Wang, Z.; Li, D. Analysis of the Spatial Distribution Characteristics of Urban Resilience and Its Influencing Factors: A Case Study of 56 Cities in China. Int. J. Environ. Res. Public. Health 2019, 16, 4442. [Google Scholar] [CrossRef] [PubMed]
- Saja, A.M.A.; Teo, M.; Goonetilleke, A.; Ziyath, A.M. A Critical Review of Social Resilience Properties and Pathways in Disaster Management. Int. J. Disaster Risk Sci. 2021, 12, 790–804. [Google Scholar] [CrossRef]
- Huang, P.; Pan, H.; Peng, L.; Chen, T.; Xu, J. Temporal and spatial variation characteristics of disaster resilience in Southwest China’s mountainous regions against the background of urbanization. Nat. Hazards 2020, 103, 3783–3802. [Google Scholar] [CrossRef]
- Shan, S.; Zhao, F. Social media-based urban disaster recovery and resilience analysis of the Henan deluge. Nat. Hazards 2023, 118, 377–405. [Google Scholar] [CrossRef]
- Chen, C.; Xu, L.; Zhao, D.; Xu, T.; Lei, P. A new model for describing the urban resilience considering adaptability, resistance and recovery. Saf. Sci. 2020, 128, 104756. [Google Scholar] [CrossRef]
- Zhao, Z.; Hu, Z.; Han, X.; Chen, L.; Li, Z. Evaluation of Urban Resilience and Its Influencing Factors: A Case Study of the Yichang-Jingzhou-Jingmen-Enshi Urban Agglomeration in China. Sustainability 2024, 16, 7090. [Google Scholar] [CrossRef]
- Wang, W.; Xu, C.; He, J.; Chi, Z.; Bai, W.; Liu, R. Resilience-Vulnerability Balance and Obstacle Factor Analysis in Urban Flooding: A Case Study in the Qinghai-Tibetan Plateau. Buildings 2024, 14, 1274. [Google Scholar] [CrossRef]
- He, W.; Zheng, S.; Zhao, X. Exploring the spatiotemporal changes and influencing factors of urban resilience based on Scale-Density-Morphology-A case study of the Chengdu-Deyang-Mianyang Economic Belt, China. Front. Environ. Sci. 2023, 11, 1042264. [Google Scholar] [CrossRef]
- Cui, P.; Liu, Y.; Ju, X.; Gu, T. Key Influencing Factors and Optimization Strategy of Epidemic Resilience in Urban Communities-A Case Study of Nanjing, China. Int. J. Environ. Res. Public. Health 2022, 19, 9993. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Li, D.; Feng, H.; Zhang, N. The influencing factors and mechanisms for urban flood resilience in China: From the perspective of social-economic-natural complex ecosystem. Ecol. Indic. 2023, 147, 109959. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Liu, Y.; Lyu, S. Spatiotemporal Evolution and Influencing Factors for Urban Resilience in China: A Provincial Analysis. Buildings 2024, 14, 502. [Google Scholar] [CrossRef]
- Cao, F.; Xu, X.; Zhang, C.; Kong, W. Evaluation of urban flood resilience and its Space-Time Evolution: A case study of Zhejiang Province, China. Ecol. Indic. 2023, 154, 110643. [Google Scholar] [CrossRef]
- Chen, J.; Li, Q.; Wang, H.; Deng, M. A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta, China. Int. J. Environ. Res. Public. Health 2020, 17, 49. [Google Scholar] [CrossRef]
- Xu, T.; Xie, Z.; Jiang, F.; Yang, S.; Deng, Z.; Zhao, L.; Wen, G.; Du, Q. Urban flooding resilience evaluation with coupled rainfall and flooding models: A small area in Kunming City, China as an example. Water Sci. Technol. 2023, 87, 2820–2839. [Google Scholar] [CrossRef]
- Pei, J.; Liu, W.; Han, L. Research on Evaluation Index System of Chinese City Safety Resilience Based on Delphi Method and Cloud Model. Int. J. Environ. Res. Public. Health 2019, 16, 3802. [Google Scholar] [CrossRef]
- Jiang, C.; Guan, X.; Zhu, J.; Wang, Z.; Song, F.; Zhao, C. Resilience of healthy cities in the post-pandemic era: Findings based on internet of things data and artificial intelligence algorithms. Internet Things 2023, 23, 100810. [Google Scholar] [CrossRef]
- Standing Committee of the National People’s Congress. Outline of the 14th Five Year Plan for National Economic and Social Development of the People’s Republic of China and the Long Range Objectives for 2035. People’s Daily, 13 March 2021; p. 001. [Google Scholar]
- Walz, R. Development of Environmental Indicator Systems: Experiences from Germany. Environ. Manag. 2000, 25, 613–623. [Google Scholar] [CrossRef]
- Das, S.; Pradhan, B.; Shit, P.K.; Alamri, A.M. Assessment of Wetland Ecosystem Health Using the Pressure-State-Response (PSR) Model: A Case Study of Mursidabad District of West Bengal (India). Sustainability 2020, 12, 5932. [Google Scholar] [CrossRef]
- Lei, Z.; Hui, Z. The Study of An Assessment of Land Use Security in Mining Area—A case study of Wu’an in China. Procedia Eng. 2011, 26, 311–320. [Google Scholar] [CrossRef]
- Lai, S.; Sha, J.; Eladawy, A.; Li, X.; Wang, J.; Kurbanov, E.; Lin, Z.; Wu, L.; Han, R.; Su, Y.-C. Evaluation of ecological security and ecological maintenance based on pressure-state-response (PSR) model, case study: Fuzhou city, China. Hum. Ecol. Risk Assess. 2022, 28, 734–761. [Google Scholar] [CrossRef]
- Fu, J.; Zang, C.; Zhang, J. Economic and resource and environmental carrying capacity trade-off analysis in the Haihe River basin in China. J. Clean. Prod. 2020, 270, 122271. [Google Scholar] [CrossRef]
- Ruan, J.; Chen, Y.; Yang, Z. Assessment of temporal and spatial progress of urban resilience in Guangzhou under rainstorm scenarios. Int. J. Disaster Risk Reduct. 2021, 66, 102578. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, Y.; Wang, E.; Wang, Y.; Zhang, J. Measuring Urban Infrastructure Resilience via Pressure-State-Response Framework in Four Chinese Municipalities. Appl. Sci. 2022, 12, 2819. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, J.; Xu, Y.; Chen, S.; Zhang, J.; Tang, S.; Wang, G. Community Resilience Assessment and Identification of Barriers in the Context of Population Aging: A Case Study of Changchun City, China. Sustainability 2023, 15, 7185. [Google Scholar] [CrossRef]
- Joyce, J.; Chang, N.-B.; Harji, R.; Ruppert, T. Coupling infrastructure resilience and flood risk assessment via copulas analyses for a coastal green-grey-blue drainage system under extreme weather events. Environ. Model. Softw. 2018, 100, 82–103. [Google Scholar] [CrossRef]
- Yang, F.; Xiong, S.; Ou, J.; Zhao, Z.; Lei, T. Human Settlement Resilience Zoning and Optimizing Strategies for River-Network Cities under Flood Risk Management Objectives: Taking Yueyang City as an Example. Sustainability 2022, 14, 9595. [Google Scholar] [CrossRef]
- Suna, R.; Shia, S.; Rehemana, Y.; Lib, S. Measurement of urban flood resilience using a quantitative model based on the correlation of vulnerability and resilience. Int. J. Disaster Risk Reduct. 2022, 82, 103344. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Z.; Zhou, H.; Qian, X.; Zhang, X. Urban Flood Resilience Assessment Based on VIKOR-GRA: A Case Study in Chongqing, China. Ksce J. Civ. Eng. 2022, 26, 4178–4194. [Google Scholar] [CrossRef]
- Yu, S.; Li, R.; Zhang, Y.; Wang, M.; Zhang, P.; Wu, A.; Yu, F.; Zhang, X.; Yang, L.; Cui, Y.a. A research on urban disaster resilience assessment system for rainstorm and flood disasters: A case study of Beijing. PLoS ONE 2023, 18, e0291674. [Google Scholar] [CrossRef] [PubMed]
- Rivosecchi, A.; Singh, M.; Huang, C. Small Island City Flood Risk Assessment: The Case of Kingston, Jamaica. Water 2023, 15, 3936. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Zhang, H.; Wang, J.; Wang, Y. Evaluation of urban resilience based on PSR model and information sensitivity:a case study of Beijing. China Saf. Sci. J. 2023, 33, 198–204. (In Chinese) [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Lu, J. Assessment of long and short-term flood risk using the multi-criteria analysis model with the AHP-Entropy method in Poyang Lake basin. Int. J. Disaster Risk Reduct. 2022, 75, 102968. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Jenifer, M.A.; Jha, M.K. Comparison of Analytic Hierarchy Process, Catastrophe and Entropy techniques for evaluating groundwater prospect of hard-rock aquifer systems. J. Hydrol. 2017, 548, 605–624. [Google Scholar] [CrossRef]
- Xu, H.; Ma, C.; Lian, J.; Xu, K.; Chaima, E. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. J. Hydrol. 2018, 563, 975–986. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, Q.; Dai, L.; Wang, H.; Deng, L.; Wang, C.; Zhang, Y.; Zhou, X.; Yang, C.; Xiang, C.; et al. Research on comprehensive evaluation method of distribution network based on AHP-entropy weighting method. Front. Energy Res. 2022, 10, 975462. [Google Scholar] [CrossRef]
- Lu, H.; Zheng, J.; Ou, H.; Liu, Y.; Li, X. Vulnerability Assessment and Spatio-Temporal Difference Analysis of Inland Fisheries Flood Disaster in China. Front. Ecol. Evol. 2022, 10, 899786. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Zhang, J.; Liu, C.; Wang, G. Assessment of water resources vulnerability and identification of its contribution factors in typical dry year in Henan Province. Hydro-Sci. Eng. 2022, 5, 1–11. (In Chinese) [Google Scholar]
- Central China Development Research Institute. Economic Operation Analysis of Henan Province’s Cities and Regions: Pingdingshan Chapter. 2022. Available online: http://www.ccdr.ha.cn/jingjiyunxing/281.html (accessed on 25 October 2024).
- Luoyang Municipal People’s Government. Regulations on Urban Greening in Luoyang City. 2014. Available online: https://www.ly.gov.cn/2014/12-20/28844.html (accessed on 18 November 2024).
- Zhou, Y.; Chen, Y.; Li, Z.; Jiang, W. Ecological Resilience Assessment of an Emerging Urban Agglomeration: A Case Study of Chengdu-Chongqing Economic Circle, China. Pol. J. Environ. Stud. 2022, 31, 2381–2395. [Google Scholar] [CrossRef]
- Lv, J.; Zeng, H.; Liu, Z. The Impact of Green Innovation Capacity on Urban Economic Resilience: Evidence from China’s Yangtze River Delta Region. Sustainability 2023, 15, 15235. [Google Scholar] [CrossRef]
- Yi, P.; Wang, S.; Li, W.; Dong, Q. Urban resilience assessment based on “window” data: The case of three major urban agglomerations in China. Int. J. Disaster Risk Reduct. 2023, 85, 103528. [Google Scholar] [CrossRef]
- Agrawal, N.; Elliott, M.; Simonovic, S.P. Risk and Resilience: A Case of Perception versus Reality in Flood Management. Water 2020, 12, 1254. [Google Scholar] [CrossRef]
- Carvalho, P.; Spataru, C. Gaps in the governance of floods, droughts, and heatwaves in the United Kingdom. Front. Earth Sci. 2023, 11, 1124166. [Google Scholar] [CrossRef]
- Fekete, A. Critical infrastructure cascading effects. Disaster resilience assessment for floods affecting city of Cologne and Rhein-Erft-Kreis. J. Flood Risk Manag. 2020, 13, e312600. [Google Scholar] [CrossRef]
- Heras Gutiérrez, D.D.L.; Adame Martínez, S.; Cadena Vargas, E.G.; Campos Alanís, J. Sustentabilidad del desarrollo urbano en la Megalópolis de México: Perspectiva desde el análisis espacial. Econ. Soc. Territ. 2020, 20, 719–752. [Google Scholar] [CrossRef]
- Mackay, B.R.; Shaker, R.R. A Megacities Review: Comparing Indicator-Based Evaluations of Sustainable Development and Urban Resilience. Sustainability 2024, 16, 8076. [Google Scholar] [CrossRef]
- Wang, S.; Palazzo, E. Sponge City and social equity: Impact assessment of urban stormwater management in Baicheng City, China. Urban Clim. 2021, 37, 100829. [Google Scholar] [CrossRef]
Rules | Domains | Indicators | Index Properties |
---|---|---|---|
Pressure resilience | Topography | Elevation (P1) [40,41] | + |
Precipitation | Annual average precipitation (P2) [37,41] | − | |
Hydrology | Drainage density (P3) [37] | − | |
State resilience | Economy | Regional GDP (S1) [42] | + |
Secondary and tertiary industry ratios (S2) [42] | + | ||
Per capita disposable income (S3) [43,44] | + | ||
Society | Road density (S4) [37,41,45] | + | |
Population density (S5) [41,43,45] | − | ||
Proportion of elderly and young (S6) [39,42] | − | ||
Ecology | Green coverage rate of built-up areas (S7) [44] | + | |
Sewage treatment rate (S8) [42] | + | ||
Per capita park green space area (S9) [46] | + | ||
Response resilience | Prevention | Number of universities (R1) [46] | + |
Public security spending ratio (R2) [39,44] | + | ||
Disposal | Hospital beds per 1000 people (R3) [39,43,44] | + |
Weight | ||||
---|---|---|---|---|
Rules | Indicators | Entropy Method | AHP Method | Combined Method |
Pressure resilience | P1 | 0.1242 | 0.0654 | 0.0948 |
P2 | 0.0154 | 0.2158 | 0.1156 | |
P3 | 0.0554 | 0.1188 | 0.0871 | |
State resilience | S1 | 0.1141 | 0.0113 | 0.0627 |
S2 | 0.0152 | 0.0123 | 0.0138 | |
S3 | 0.0609 | 0.0261 | 0.0435 | |
S4 | 0.1087 | 0.0227 | 0.0657 | |
S5 | 0.0145 | 0.0331 | 0.0238 | |
S6 | 0.0175 | 0.0381 | 0.0278 | |
S7 | 0.0202 | 0.0294 | 0.0248 | |
S8 | 0.0089 | 0.0084 | 0.0086 | |
S9 | 0.0306 | 0.0187 | 0.0246 | |
Response resilience | R1 | 0.2470 | 0.0783 | 0.1626 |
R2 | 0.1182 | 0.1243 | 0.1212 | |
R3 | 0.0492 | 0.1974 | 0.1233 |
Target Layer | Resilience Contribution/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
Elevation | 8.64 | 8.78 | 9.33 | 9.61 | 9.57 | 9.50 | 9.57 | 11.09 | 10.71 | 12.35 | 10.69 | 9.77 | 11.73 |
Annual average precipitation | 5.22 | 5.50 | 1.31 | 1.46 | 3.94 | 4.75 | 6.82 | 5.21 | 4.80 | 3.11 | 6.50 | 16.20 | 3.43 |
Drainage density | 5.07 | 5.14 | 5.44 | 5.51 | 5.47 | 5.47 | 5.47 | 6.21 | 5.99 | 6.84 | 5.92 | 5.54 | 6.38 |
Regional GDP | 8.20 | 8.03 | 8.44 | 8.46 | 8.24 | 8.13 | 7.97 | 8.76 | 7.88 | 8.75 | 7.49 | 6.77 | 7.68 |
Secondary and tertiary industry ratios | 0.77 | 0.74 | 0.77 | 0.78 | 0.72 | 0.67 | 0.62 | 0.60 | 0.52 | 0.59 | 0.57 | 0.51 | 0.58 |
Per capita disposable income | 5.88 | 5.67 | 5.73 | 5.52 | 5.14 | 4.37 | 4.15 | 4.75 | 3.31 | 3.56 | 2.84 | 2.19 | 2.16 |
Road density | 8.40 | 8.31 | 8.79 | 8.83 | 8.68 | 8.69 | 8.29 | 8.93 | 8.18 | 9.26 | 7.70 | 6.73 | 7.60 |
Population density | 1.33 | 1.38 | 1.55 | 1.58 | 1.64 | 1.54 | 1.47 | 1.48 | 1.44 | 1.52 | 1.41 | 1.26 | 1.61 |
Proportion of elderly and young | 0.80 | 0.91 | 1.12 | 1.22 | 1.32 | 1.52 | 1.67 | 2.20 | 2.49 | 3.18 | 3.12 | 2.53 | 2.95 |
Green coverage rate of built-up areas | 2.25 | 2.24 | 2.19 | 2.02 | 1.79 | 2.04 | 2.13 | 2.07 | 1.76 | 1.84 | 1.39 | 0.98 | 1.14 |
Sewage treatment rate | 0.39 | 0.39 | 0.34 | 0.32 | 0.23 | 0.22 | 0.13 | 0.12 | 0.10 | 0.10 | 0.06 | 0.03 | 0.02 |
Per capita park green space area | 2.60 | 2.55 | 2.67 | 2.65 | 2.50 | 2.49 | 2.27 | 2.21 | 1.92 | 1.98 | 1.40 | 1.13 | 1.31 |
Number of universities | 20.24 | 20.04 | 21.31 | 20.89 | 20.50 | 21.13 | 21.29 | 24.04 | 22.39 | 25.80 | 21.87 | 20.19 | 23.33 |
Public security spending ratio | 14.76 | 15.50 | 16.50 | 17.44 | 17.47 | 17.59 | 17.28 | 11.07 | 18.73 | 10.49 | 19.49 | 19.15 | 23.29 |
Hospital beds per 1000 people | 15.45 | 14.83 | 14.50 | 13.72 | 12.80 | 11.88 | 10.88 | 11.27 | 9.78 | 10.63 | 9.56 | 7.00 | 6.80 |
City | Project | Pressure Resilience | State Resilience | Response Resilience | |||
---|---|---|---|---|---|---|---|
1 | 2 | 1 | 2 | 1 | 2 | ||
Zhengzhou | Contribution factors | P1 | P3 | S5 | S7 | R2 | R3 |
level of contribution | 23.9203 | 3.7765 | 6.0081 | 4.9859 | 46.9257 | 6.4384 | |
Kaifeng | Contribution factors | P1 | P3 | S1 | S4 | R1 | R2 |
level of contribution | 13.6127 | 5.4819 | 8.2004 | 7.4718 | 24.1125 | 19.4188 | |
Luoyang | Contribution factors | P1 | P2 | S4 | S1 | R1 | R2 |
level of contribution | 5.5435 | 2.3375 | 11.8153 | 7.7504 | 31.2229 | 24.9776 | |
Pingdingshan | Contribution factors | P1 | P3 | S4 | S1 | R1 | R2 |
level of contribution | 10.1186 | 9.1631 | 8.6548 | 7.7950 | 22.9577 | 18.3990 | |
Xinxiang | Contribution factors | P1 | P3 | S4 | S1 | R1 | R2 |
level of contribution | 14.8024 | 7.2842 | 9.8179 | 7.3633 | 21.6010 | 18.4476 | |
Jiaozuo | Contribution factors | P1 | P3 | S1 | S4 | R1 | R2 |
level of contribution | 9.8623 | 8.1112 | 9.9252 | 7.1070 | 28.0321 | 20.0290 | |
Xuchang | Contribution factors | P3 | P1 | S1 | S4 | R1 | R2 |
level of contribution | 13.3263 | 13.1888 | 7.0011 | 6.7032 | 23.7707 | 18.1657 | |
Luohe | Contribution factors | P1 | P3 | S1 | S4 | R1 | R2 |
level of contribution | 14.5162s | 9.0417 | 8.9444 | 6.8464 | 25.4799 | 19.5782 | |
Jiyuan | Contribution factors | P2 | P3 | S1 | S4 | R1 | R2 |
level of contribution | 4.7410 | 1.2542 | 12.1774 | 9.9720 | 32.7891 | 23.6406 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Li, H. Resilience Assessment of Flood Disasters in Zhengzhou Metropolitan Area Based on the PSR Model. Sustainability 2024, 16, 10243. https://doi.org/10.3390/su162310243
Cheng S, Li H. Resilience Assessment of Flood Disasters in Zhengzhou Metropolitan Area Based on the PSR Model. Sustainability. 2024; 16(23):10243. https://doi.org/10.3390/su162310243
Chicago/Turabian StyleCheng, Shubo, and Haoying Li. 2024. "Resilience Assessment of Flood Disasters in Zhengzhou Metropolitan Area Based on the PSR Model" Sustainability 16, no. 23: 10243. https://doi.org/10.3390/su162310243
APA StyleCheng, S., & Li, H. (2024). Resilience Assessment of Flood Disasters in Zhengzhou Metropolitan Area Based on the PSR Model. Sustainability, 16(23), 10243. https://doi.org/10.3390/su162310243