Empirical Analysis of the Role of Digital Agriculture in Enabling Coordinated Development of Ecosystem Services and Human Well-Being: Evidence from Provincial Panel Data in China
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. The Direct Impact of Digital Agriculture on the Coordinated Development of Ecosystem Services and Human Well-Being
2.2. The Indirect Impact of Digital Agriculture on the Coordinated Development of Ecosystem Services and Human Well-Being
3. Research Design
3.1. Empirical Model Design
3.1.1. Entropy-Weighted TOPSIS Comprehensive Evaluation Method
- Data Standardization
- Entropy Method for Determining Indicator Weights
- Construct the weighted decision matrix:
- Determine the positive and negative ideal solutions:
- Calculate the Euclidean distance :
- Calculate the relative closeness coefficient :
3.1.2. Coupling Evaluation Method
- Coupling Coordination Degree Model
3.1.3. Baseline Model Construction
3.1.4. Mediation Effect Model
3.1.5. Moderation Effect Model
3.2. Variable Selection and Data Description
3.2.1. Explanatory Variable
3.2.2. Dependent Variable
3.2.3. Mediating Variable
3.2.4. Moderating Variable
3.2.5. Control Variables
3.2.6. Data Sources and Descriptive Statistics
4. Research Results and Analysis
4.1. Analysis of the Coordinated Development Level of Ecosystem Services and Human Well-Being
4.2. Baseline Regression Analysis
4.3. Endogeneity Issues
4.4. Robustness Checks
4.4.1. Adjusting the Time Sample Interval
4.4.2. Adjusting the Regional Sample Interval
4.4.3. Replacing the Explanatory Variable
4.5. Further Discussion
4.5.1. Mediation Effect Analysis
4.5.2. Moderation Effect Analysis
4.5.3. Heterogeneity Analysis
5. Conclusions
5.1. Summary and Conclusions
5.2. Policy Recommendations
5.3. Limitations and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singhal, K.; Feng, Q.; Ganeshan, R.; Sanders, N.R.; Shanthikumar, J.G. Introduction to the Special Issue on Perspectives on Big Data. Prod. Oper. Manag. 2018, 27, 1639–1641. [Google Scholar] [CrossRef]
- State Council. Notice on Issuing the “14th Five-Year Plan” for Digital Economy Development. State Council Bulletin No. 3. 2022. Available online: https://www.gov.cn/gongbao/content/2022/content_5671108.htm (accessed on 11 July 2024).
- Yan, Y. The Internal Logic, Mechanism of Action, and Realization Path of Digital Economy-Driven High-Quality Development. Res. Technol. Econ. Manag. 2023, 7, 1–5. [Google Scholar]
- Zhang, H.; Wang, H.; Li, Z. Measurement of the High-Quality Development Level of Digital Agriculture in China under the Background of Rural Revitalization: An Analysis Based on Data from 31 Provinces and Cities in China (2015–2019). J. Shaanxi Norm. Univ. Philos. Soc. Sci. Ed. 2021, 50, 141–154. [Google Scholar] [CrossRef]
- Digital Economy Empowering the Modernization of Agriculture and Rural Areas with Chinese Characteristics: Logic and Path. Guangming Online. Available online: https://topics.gmw.cn/2023-11/28/content_36994469.htm (accessed on 7 October 2024).
- Reid, W.V.; Mooney, H.A. Ecosystems and Human Well-Being: A Framework for Evaluation; Millennium Ecosystem Assessment Report Series; China Environmental Science Press: Beijing, China, 2007; ISBN 978-7-80209-411-6. [Google Scholar]
- Dong, X.; Liu, M. Research Progress on the Relationship between Land Use/Cover Change, Ecosystem Services, and Human Well-Being. J. Beijing Norm. Univ. Nat. Sci. Ed. 2022, 58, 465–475. [Google Scholar]
- Millennium Ecosystem Assessment. Available online: https://www.millenniumassessment.org/en/Framework.html (accessed on 29 September 2024).
- Qiu, J.; Liu, Y.; Chen, C.; Huang, Q. Spatial Patterns and Driving Mechanisms of the Coupling between Ecosystem Services and Human Well-Being: A Case Study of Guangzhou. J. Nat. Resour. 2023, 38, 760–778. [Google Scholar]
- Fedele, G.; Locatelli, B.; Djoudi, H. Mechanisms Mediating the Contribution of Ecosystem Services to Human Well-Being and Resilience. Ecosyst. Serv. 2017, 28, 43–54. [Google Scholar] [CrossRef]
- Zhong, W.; Luo, B.; Xie, L. International Experience in Digital Agriculture Development and Its Implications. Reform 2021, 5, 64–75. [Google Scholar]
- Shi, L. General Office of the CPC Central Committee and General Office of the State Council Issued the “Digital Rural Development Strategy Outline”. Relevant Central Government Documents. Available online: https://www.gov.cn/zhengce/2019-05/16/content_5392269.htm (accessed on 26 September 2024).
- Shi, L.; Ministry of Agriculture and Rural Affairs; Central Cyberspace Affairs Commission. Notice on Issuing the “Digital Agriculture and Rural Development Plan (2019–2025)”. State Council Department Documents. Available online: https://www.gov.cn/zhengce/zhengceku/2020-01/20/content_5470944.htm (accessed on 23 September 2024).
- Tian, N.; Yang, X.; Shan, D.; Wu, J. Current Status and Outlook of Digital Agriculture in China. Chin. J. Agric. Mech. 2019, 40, 210–213. [Google Scholar] [CrossRef]
- Gore, A. The Digital Earth: Understanding Our Planet in the 21st Century. Aust. Surv. 1998, 43, 89–91. [Google Scholar] [CrossRef]
- Ayoub Shaikh, T.; Rasool, T.; Rasheed Lone, F. Towards Leveraging the Role of Machine Learning and Artificial Intelligence in Precision Agriculture and Smart Farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar] [CrossRef]
- Mondejar, M.E.; Avtar, R.; Diaz, H.L.B.; Dubey, R.K.; Esteban, J.; Gómez-Morales, A.; Hallam, B.; Mbungu, N.T.; Okolo, C.C.; Prasad, K.A.; et al. Digitalization to Achieve Sustainable Development Goals: Steps towards a Smart Green Planet. Sci. Total Environ. 2021, 794, 148539. [Google Scholar] [CrossRef] [PubMed]
- Rotz, S.; Duncan, E.; Small, M.; Botschner, J.; Dara, R.; Mosby, I.; Reed, M.; Fraser, E.D.G. The Politics of Digital Agricultural Technologies: A Preliminary Review. Sociol. Rural. 2019, 59, 203–229. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A Review of Social Science on Digital Agriculture, Smart Farming and Agriculture 4.0: New Contributions and a Future Research Agenda. NJAS Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Petushkova, V.V. China’s Experience and Prospects for Sustainable Development. Her. Russ. Acad. Sci. 2022, 92, 207–215. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Zhong, F. Sustainable Design; Industrial Design Science and Culture Series; Tsinghua University Press: Beijing, China, 2023; p. 249. ISBN 978-7-302-60926-1. [Google Scholar]
- Guangming Daily. Internet+Agriculture: Bringing Agricultural Products ‘Out of the Village’ and Information ‘Into the Village’. Available online: https://www.gov.cn/zhengce/2018-07/03/content_5303038.htm (accessed on 14 November 2024).
- Zhang, Y. International Experience and Implications of High-Quality Development of Digital Agriculture. Res. Technol. Econ. Manag. 2022, 10, 93–98. [Google Scholar]
- White Paper on Digital Agriculture (2019), Part 1: Introduction to Digital Agriculture. Tsinghua University Internet Industry Research Institute. Available online: https://www.iii.tsinghua.edu.cn/info/1059/2233.htm (accessed on 14 November 2024).
- Sarkar, S.; Ganapathysubramanian, B.; Singh, A.; Fotouhi, F.; Kar, S.; Nagasubramanian, K.; Chowdhary, G.; Das, S.K.; Kantor, G.; Krishnamurthy, A.; et al. Cyber-Agricultural Systems for Crop Breeding and Sustainable Production. Trends Plant Sci. 2024, 29, 130–149. [Google Scholar] [CrossRef]
- Lin, Y.; Li, C. The Impact of Agricultural Digital Transformation on Agricultural Green Growth. China Agric. Resour. Zoning 2024, 45, 28–41. [Google Scholar]
- Liu, X.; Qin, C.; Liu, B.; Ahmed, A.D.; Ding, C.J.; Huang, Y. The Economic and Environmental Dividends of the Digital Development Strategy: Evidence from Chinese Cities. J. Clean. Prod. 2024, 440, 140398. [Google Scholar] [CrossRef]
- Zhong, Z.; Liu, Y. How Data as a Production Factor Empowers Agricultural Modernization. Teach. Res. 2021, 12, 53–67. [Google Scholar]
- Li, X.; Li, J. The Impact of Digital Economy Development on the Urban-Rural Income Gap. Agric. Technol. Econ. 2022, 2, 77–93. [Google Scholar]
- Bampasidou, M.; Goldgaber, D.; Gentimis, T.; Mandalika, A. Overcoming ‘Digital Divides’: Leveraging Higher Education to Develop next Generation Digital Agriculture Professionals. Comput. Electron. Agric. 2024, 224, 109181. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, Y.; Si, H. Digital Economy Development and the Urban–Rural Income Gap: Intensifying or Reducing. Land 2022, 11, 1980. [Google Scholar] [CrossRef]
- Peng, A.; An, X.; Zhang, L. Issues and Solutions in the Digital Transformation of Chinese Agriculture. Reg. Econ. Rev. 2023, 4, 91–99. [Google Scholar]
- Li, Y.; Huang, R. Research on Digital Industrialization and Industrial Digitization Models in China. Res. Sci. Technol. Manag. 2019, 39, 129–134. [Google Scholar]
- Verdecchia, R. The Future of Sustainable Digital Infrastructures: A Landscape of Solutions, Adoption Factors, Impediments, Open Problems, and Scenarios. Sustain. Comput. Inform. Syst. 2022, 35, 100767. [Google Scholar] [CrossRef]
- Xu, S.; Yang, C.; Huang, Z.; Failler, P. Interaction between Digital Economy and Environmental Pollution: New Evidence from a Spatial Perspective. Int. J. Environ. Res. Public Health 2022, 19, 5074. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Kshetri, N.; Hughes, L.; Slade, E.L.; Jeyaraj, A.; Kar, A.K.; Baabdullah, A.M.; Koohang, A.; Raghavan, V.; Ahuja, M.; et al. Opinion Paper: “So What If ChatGPT Wrote It?” Multidisciplinary Perspectives on Opportunities, Challenges and Implications of Generative Conversational AI for Research, Practice and Policy. Int. J. Inf. Manag. 2023, 71, 102642. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, A.; Feng, S.; Qin, Y. Digital Economy, Technological Progress, and City Export Trade. PLoS ONE 2022, 17, e0269314. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Ortiz, J. A Sustainable Digital Ecosystem: Digital Servitization Transformation and Digital Infrastructure Support. Sustainability 2023, 15, 1530. [Google Scholar] [CrossRef]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing Digital Twins to Agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Wu, J.; Chen, T. Impact of Digital Economy on Dual Circulation: An Empirical Analysis in China. Sustainability 2022, 14, 14466. [Google Scholar] [CrossRef]
- Xia, L.; Baghaie, S.; Mohammad Sajadi, S. The Digital Economy: Challenges and Opportunities in the New Era of Technology and Electronic Communications. Ain Shams Eng. J. 2024, 15, 102411. [Google Scholar] [CrossRef]
- Feng, Z.; Wu, Q. Research on the Empowerment of Platform Economy in the Development of Real Economy: Evidence from Provincial Panel Data in China. Ind. Technol. Econ. 2024, 43, 103–112. [Google Scholar]
- Wei, H.; Yang, C.; Wen, C.; Wang, Y. Design of a Digital Platform for Carbon Generalized System of Preferences Communities Based on the TAO Model of Three-Way Decisions. Appl. Sci. 2024, 14, 7423. [Google Scholar] [CrossRef]
- Li, Z.; Liu, C.; Li, W.; Chen, J.; Kang, Y. The Impact of Digital Economy Industry Development on Manufacturing Innovation Path Driven by Big Data. IEEE Trans. Eng. Manag. 2024, 71, 5523–5535. [Google Scholar] [CrossRef]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A Review on the Practice of Big Data Analysis in Agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Achieving Sustainable Performance in a Data-Driven Agriculture Supply Chain: A Review for Research and Applications. Int. J. Prod. Econ. 2020, 219, 179–194. [Google Scholar] [CrossRef]
- Li, Z.; Li, N.; Wen, H. Digital Economy and Environmental Quality: Evidence from 217 Cities in China. Sustainability 2021, 13, 8058. [Google Scholar] [CrossRef]
- Seclen-Luna, J.P.; Galera-Zarco, C.; Moya-Fernández, P. Technological Innovation and Eco-Efficiency in Manufacturing Companies: Does Co-Innovation Orientation Matter? J. Clean. Prod. 2024, 449, 141669. [Google Scholar] [CrossRef]
- Kuznets, S. Quantitative Aspects of the Economic Growth of Nations: II. Industrial Distribution of National Product and Labor Force. Econ. Dev. Cult. Chang. 1957, 5, 1–111. [Google Scholar] [CrossRef]
- Guiding Industrial Structure Adjustment and Upgrading to Promote High-Quality Economic Development—Interpretation of the ‘Industrial Structure Adjustment Guiding Catalog’ (2019 Edition) Part One. National Development and Reform Commission. Available online: https://www.ndrc.gov.cn/fggz/cyfz/zcyfz/201911/t20191107_1201848.html (accessed on 1 September 2024).
- Li, Y.; Zhang, Z.; Lin, X. The Impact of Digital Infrastructure on China’s Economic Dual Circulation Development. Stat. Decis. 2024, 40, 102–107. [Google Scholar] [CrossRef]
- Lang, Y.; Fan, B.; Zeng, C.; Huang, S. The Driving Mechanism and Improvement Path of Digital Economy on Industrial Transition: Based on the Mediating Role of Technological Innovation and the Moderating Effect of Industrial Ecology. Science Research. pp. 1–18. Available online: https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq4w9C8aeQPWH2rrEjwW4vLmZ0upEvLQC_qi3ToLy8SEJuCpRTZqDNM7_U6iDlcYm2kK14sridWHdPs8ynUvTu1W22wMJ8oWvmTCx9zjh_a55QCfqfUtpB171fTRTIJzXdkQBhOBJD_AYnCkSE6H_EmUxaQ0TxvdQxKkeiBA8CFDXOpxVFD0hWJv&uniplatform=NZKPT&language=CHS (accessed on 31 August 2024). [CrossRef]
- Timmer, M.P.; Dietzenbacher, E.; Los, B.; Stehrer, R.; De Vries, G.J. An Illustrated User Guide to the World Input–Output Database: The Case of Global Automotive Production. Rev Int. Econ. 2015, 23, 575–605. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, D.; Wen, H.; Song, H. Does the Digital Economy Promote Upgrading the Industrial Structure of Chinese Cities? Sustainability 2022, 14, 10235. [Google Scholar] [CrossRef]
- Does Change of Industrial Structure Affect Energy Consumption Structure: A Study Based on the Perspective of Energy Grade Calculation—Yang Hong, Peng Can, Yang Xiaona, Li Ruixue. 2019. Available online: http://ras.hbut.edu.cn/https/PEp8AOoo8L6sNdOYA3EYHbiuin1w8RP6HmM6a2TuWvK/doi/10.1177/0144598718784032 (accessed on 31 August 2024).
- Li, B.; Wang, Z.; Xu, F. Does Optimization of Industrial Structure Improve Green Efficiency of Industrial Land Use in China? Int. J. Environ. Res. Public Health 2022, 19, 9177. [Google Scholar] [CrossRef]
- Xu, S.; Cao, Z. Industrial Structure Optimization and Upgrading, Green Taxation, and Green Total Factor Productivity: Analysis Based on Threshold and Moderating Effects. Ecol. Econ. 2024, 40, 45–53. [Google Scholar]
- Wang, Y.; Huo, Z.; Li, H. Industrial Structure, Energy Consumption Structure and Green Total Factor Productivity in the Beijing-Tianjin-Hebei Region. Available online: http://www.eemj.icpm.tuiasi.ro/pdfs/vol23/no2/15_613_Wang_23.pdf (accessed on 16 October 2024).
- Gu, R.; Li, C.; Li, D.; Yang, Y.; Gu, S. The Impact of Rationalization and Upgrading of Industrial Structure on Carbon Emissions in the Beijing-Tianjin-Hebei Urban Agglomeration. Int. J. Environ. Res. Public. Health 2022, 19, 7997. [Google Scholar] [CrossRef]
- Wen, Z.; Ye, B. Development of Mediation Effect Analysis: Methods and Models. Prog. Psychol. Sci. 2014, 22, 731–745. [Google Scholar]
- Jiang, T. Mediation and Moderation Effects in Causal Inference Research: A Review. China Ind. Econ. 2022, 5, 100–120. [Google Scholar]
- Cao, F. Mechanisms and Empirical Analysis of Digital Agriculture in Narrowing the Urban-Rural Income Gap. Reg. Econ. Rev. 2023, 3, 80–89. [Google Scholar] [CrossRef]
- Xiao, Y.; Xu, X.; Sun, Q. Construction and Measurement of the Evaluation Index System for High-Quality Development of Digital Agriculture. Rural Econ. 2022, 11, 19–26. [Google Scholar]
- Su, J.; Pan, T.; Dong, C. Digital Agriculture Development in China and Regional Disparity Evaluation. J. Northwest AF Univ. (Soc. Sci. Ed.) 2023, 23, 135–144. [Google Scholar] [CrossRef]
- Liu, J.; Huang, L.; Yan, L. The Impact of Ecosystem Services on Human Wellbeing: A Case Study of Tonglu County, Zhejiang Province. Acta Ecol. Sin. 2018, 38, 1687–1697. [Google Scholar]
- Xiao, Y.; Xie, G.; An, K. Economic Value Changes of Ecosystem Services in the Mangcuo Lake Basin. Chin. J. Appl. Ecol. 2003, 14, 676–680. [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of Ecosystem Service Valuation Method Based on Unit Area Value Equivalent Factor. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Millennium Ecosystem Assessment: Ecosystems and Human Well-Being|World Resources Institute. Available online: https://www.wri.org/research/millennium-ecosystem-assessment-ecosystems-and-human-well-being (accessed on 1 October 2024).
- Yang, J.; Huang, X. The 30 m Annual Land Cover Datasets and Its Dynamics in China from 1985 to 2022. 2023. Available online: https://zenodo.org/records/8176941 (accessed on 16 October 2024). [CrossRef]
- Pei, X.; Hu, X. Empirical Analysis on the Impact of Urbanization and Environmental Regulation on Industrial Structure Upgrading. Stat. Decis. 2021, 37, 102–105. [Google Scholar] [CrossRef]
- The Concept, Dimensions and Methods of Assessment of Human Well-Being within a Socioecological Context: A Literature Review|Social Indicators Research. Available online: https://link.springer.com/article/10.1007/s11205-013-0320-0 (accessed on 29 September 2024).
- A Study of Well-Being-Based Eco-Efficiency Based on Super-SBM and Tobit Regression Model: The Case of China|Social Indicators Research. Available online: https://link.springer.com/article/10.1007/s11205-023-03107-8 (accessed on 29 September 2024).
- United Nations. Human Development Index; United Nations: Rome, Italy, 2024. [Google Scholar]
- Universal Health Coverage. Available online: https://www.who.int/zh/news-room/fact-sheets/detail/universal-health-coverage-(uhc) (accessed on 29 September 2024).
- OECD. How’s Life? 2017: Measuring Well-Being; OECD: Paris, France, 2017; ISBN 978-92-64-26557-8. [Google Scholar]
- Shi, Y.; Zhang, T.; Jiang, Y. Digital Economy, Technological Innovation and Urban Resilience. Sustainability 2023, 15, 9250. [Google Scholar] [CrossRef]
- Yin, L.; Wu, C. Environmental Regulation and Ecological Efficiency of Pollution-Intensive Industries in the Yangtze River Economic Belt. China Soft Sci. 2021, 8, 181–192. [Google Scholar]
- Pixia Team. Database of Point of Interest [EB/OL]. 1 January 2023. Available online: https://www.ppmandata.cn/ (accessed on 1 October 2024).
- Tang, L.; Lan, T.; Xing, X.; Xie, T.; Li, W.; Fang, C.; Cao, Y.; Xu, Y.; Chen, D.; Wang, L.; et al. Ecological and Environmental Construction Achievements and Development Countermeasures of Mega-City Clusters in Eastern China. Bull. Chin. Acad. Sci. 2023, 38, 394–406. [Google Scholar]
- Ren, Y.; Fang, C.; Lin, X. Ecological Efficiency Evaluation of Four Major City Clusters in Coastal Eastern China. Acta Geogr. Sin. 2017, 72, 2047–2063. [Google Scholar] [CrossRef]
- Song, Y. Supporting High-Quality Development with High-Level Protection—Writing a New Chapter in Western Development in the New Era (Part II). China Government Website. Available online: https://www.gov.cn/yaowen/liebiao/202405/content_6951000.htm (accessed on 14 November 2024).
- Tsinghua University Institute for New-Type Urbanization in China. Available online: https://tucsu.tsinghua.edu.cn/info/research_zjsj/3268 (accessed on 15 November 2024).
- Special Report on Urban-Rural Topics|How to Promote Agricultural Modernization by Region During the 14th Five-Year Plan. Peking University HSBC Business School Think Tank. Available online: https://thinktank.phbs.pku.edu.cn/2022/zhuantibaogao_0323/65.html (accessed on 13 November 2024).
- Analysis of High-Quality Digital Agriculture Development from the Perspective of Rural Revitalization. Available online: https://paper.people.com.cn/rmlt/html/2023-01/31/content_25966155.htm (accessed on 13 November 2024).
- Zhang, X.; Wan, G.; Zhang, J.; He, Z. Digital Economy, Inclusive Finance, and Inclusive Growth. Econ. Res. 2019, 54, 71–86. [Google Scholar]
- Huang, Q.; Yu, Y.; Zhang, S. Internet Development and Manufacturing Productivity Improvement: Internal Mechanisms and China’s Experience. China Ind. Econ. 2019, 8, 5–23. [Google Scholar] [CrossRef]
- Ranjbari, M.; Shams Esfandabadi, Z.; Zanetti, M.C.; Scagnelli, S.D.; Siebers, P.-O.; Aghbashlo, M.; Peng, W.; Quatraro, F.; Tabatabaei, M. Three Pillars of Sustainability in the Wake of COVID-19: A Systematic Review and Future Research Agenda for Sustainable Development. J. Clean. Prod. 2021, 297, 126660. [Google Scholar] [CrossRef] [PubMed]
- Newman AO, P. COVID, CITIES and CLIMATE: Historical Precedents and Potential Transitions for the New Economy. Urban Sci. 2020, 4, 32. [Google Scholar] [CrossRef]
- Silvestre, B.S.; Ţîrcă, D.M. Innovations for Sustainable Development: Moving toward a Sustainable Future. J. Clean. Prod. 2019, 208, 325–332. [Google Scholar] [CrossRef]
- Zhang, Y.; Hong, X.; Wang, Y. Study on the Coupled and Coordinated Development and Evolution of Digital Economy and Green Technology Innovation. Sustainability 2023, 15, 8063. [Google Scholar] [CrossRef]
- Zhu, J.; Li, J. Digital Economy, Technological Innovation, and Urban Green Economic Efficiency: Empirical Analysis Based on Spatial Econometric Models and Mediating Effects. Econ. Probl. Explor. 2023, 2, 65–80. [Google Scholar]
- Peng, B.; Zheng, C.; Wei, G.; Elahi, E. The Cultivation Mechanism of Green Technology Innovation in Manufacturing Industry: From the Perspective of Ecological Niche. J. Clean. Prod. 2020, 252, 119711. [Google Scholar] [CrossRef]
- Gu, S.; Wu, H.; Wu, Q.; Yu, X. Innovation-Driven and Core Technology Breakthroughs Are the Cornerstones of High-Quality Development. China Soft Sci. 2018, 10, 9–18. [Google Scholar]
- Zhou, G.; Xu, H.; Jiang, C.; Deng, S.; Chen, L.; Zhang, Z. Has the Digital Economy Improved the Urban Land Green Use Efficiency? Evidence from the National Big Data Comprehensive Pilot Zone Policy. Land 2024, 13, 960. [Google Scholar] [CrossRef]
- Bai, C.; Quayson, M.; Sarkis, J. COVID-19 Pandemic Digitization Lessons for Sustainable Development of Micro-and Small- Enterprises. Sustain. Prod. Consum. 2021, 27, 1989–2001. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, S.; Zhu, H. Measurement of National Innovation Driving Forces and Its Effect on Economic High-Quality Development. Quant. Econ. Tech. Econ. Res. 2019, 36, 3–23. [Google Scholar] [CrossRef]
- Lamine, W.; Fayolle, A.; Jack, S.; Audretsch, D. Impact of Digital Technologies on Entrepreneurship: Taking Stock and Looking Forward. Technovation 2023, 126, 102823. [Google Scholar] [CrossRef]
- Niu, L.; Shao, Q.; Ning, J.; Huang, H. Ecological Status Changes and Ecosystem Service Trade-offs and Synergies in the Western Region. Acta Geogr. Sin. 2022, 77, 182–195. [Google Scholar]
- Zhao, L.; Rao, X.; Lin, Q. Study of the Impact of Digitization on the Carbon Emission Intensity of Agricultural Production in China. Sci. Total Environ. 2023, 903, 166544. [Google Scholar] [CrossRef]
- Mu, M. Progress in Regional Coordinated Development and Major Strategic Implementation: New Advances in Economic and Social Development Achievements of New China in the Past 75 Years. Department Dynamics, China Government Website. Available online: https://www.gov.cn/lianbo/bumen/202409/content_6974988.htm (accessed on 13 November 2024).
- How Can the Digital Economy Promote the Integration of Rural Industries—Taking China as an Example. Available online: https://www.mdpi.com/2077-0472/13/10/2023 (accessed on 13 November 2024).
Primary Indicator | Secondary Indicator | Indicator Direction |
---|---|---|
Digital Agriculture Infrastructure | Number of Taobao Villages (units) | + |
Length of Optical Cable (km) | + | |
Number of Mobile Phone Base Stations (10,000 units) | + | |
Rural Broadband Access Users (10,000 households) | + | |
Proportion of Administrative Villages with Postal Services (%) | + | |
Macro-Environment of Digital Agriculture | Rural Electricity Consumption (100 million kWh) | + |
Number of Digital Agriculture Enterprises (units) | + | |
Local Government Expenditure on Agriculture, Forestry, and Water Affairs (CNY billion) | + | |
Number of Agricultural Meteorological Observation Stations (units) | + | |
Degree of Agricultural Mechanization (kWh/hectare) | + | |
Green Development of Digital Agriculture | Multiple Cropping Index | + |
Effective Irrigation Rate (%) | + | |
Cultivated Land Area (1000 hectares) | - | |
Water Consumption per Unit Output (cubic meters/CNY) | - | |
Intensity of Pesticide and Fertilizer Use (kg/1000 hectares) | - | |
Production Efficiency of Digital Agriculture | Per Capita Grain Production (kg) | + |
Agricultural Productivity (CNY 10,000/person) | + | |
Rural Electricity Generation (10,000 kWh) | + | |
Total Output Value of Agriculture, Forestry, Animal Husbandry, and Fishery (CNY billion) | + | |
Total Wages of Employees in Agriculture, Forestry, Animal Husbandry, and Fishery (CNY billion) | + |
Primary Indicator | Secondary Indicator | Indicator Direction |
---|---|---|
Material Living Standards | Per Capita Household Consumption Expenditure (CNY) | + |
Per Capita Disposable Income (CNY) | + | |
Per Capita Daily Water Consumption (liters) | + | |
Per Capita Electricity Consumption (100 million kWh) | + | |
Number of Household Cars per 100 Households (units) | + | |
Health and Well-Being | Health Checkup Coverage Rate | + |
Number of Health Technicians per 1000 People (persons) | + | |
Number of Hospital Beds per 1000 People (units) | + | |
Number of Medical Institutions per 1000 People (units) | + | |
Incidence of Class A and B Infectious Diseases (per 100,000) | - | |
Education and Knowledge | Student–Teacher Ratio in Higher Education | - |
Per Capita Government Education Expenditure (CNY) | + | |
Average Years of Education | + | |
Proportion of Higher Education Graduates | + | |
Illiteracy Rate of Population Aged 15 and Above (%) | - | |
Social Governance and Security | Urban–Rural Income Ratio | - |
Proportion of Social Security and Employment Expenditure in Government Budget (%) | + | |
Minimum Living Security Coverage Rate | - | |
Registered Unemployment Rate | - | |
Employee Pension Insurance Coverage Rate | + | |
Environmental Quality and Ecology | Per Capita COD Emissions (tons) | - |
Average PM2.5 Concentration | - | |
Per Capita Public Park Green Space (sqm/person) | + | |
Green Coverage Rate in Urban Areas (%) | + | |
Household Waste Harmless Disposal Rate (%) | + | |
Cultural Life | Per Capita Cultural Expenditure (CNY) | + |
The proportion of Cultural Expenditure in Government Budget (%) | + | |
Cultural Facilities Area per 10,000 People (sqm) | + | |
Per Capita Museum Visits (times) | + | |
Per Capita Participation in Domestic Performances by Art Troupes (times) | + |
Province | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|
Beijing | 0.082 | 0.091 | 0.090 | 0.100 | 0.109 | 0.126 | 0.118 | 0.114 | 0.119 |
Tianjin | 0.091 | 0.093 | 0.080 | 0.080 | 0.069 | 0.078 | 0.079 | 0.078 | 0.079 |
Hebei | 0.148 | 0.152 | 0.149 | 0.164 | 0.182 | 0.208 | 0.240 | 0.274 | 0.300 |
Shanxi | 0.077 | 0.082 | 0.070 | 0.074 | 0.078 | 0.084 | 0.088 | 0.093 | 0.097 |
Inner Mongolia | 0.118 | 0.128 | 0.130 | 0.134 | 0.124 | 0.101 | 0.107 | 0.115 | 0.118 |
Liaoning | 0.100 | 0.107 | 0.110 | 0.114 | 0.101 | 0.096 | 0.094 | 0.100 | 0.105 |
Jilin | 0.070 | 0.077 | 0.082 | 0.082 | 0.082 | 0.077 | 0.079 | 0.083 | 0.086 |
Heilongjiang | 0.229 | 0.233 | 0.237 | 0.269 | 0.261 | 0.195 | 0.139 | 0.149 | 0.153 |
Shanghai | 0.128 | 0.132 | 0.140 | 0.145 | 0.150 | 0.165 | 0.152 | 0.077 | 0.080 |
Jiangsu | 0.244 | 0.263 | 0.278 | 0.290 | 0.319 | 0.350 | 0.366 | 0.322 | 0.329 |
Zhejiang | 0.192 | 0.227 | 0.274 | 0.317 | 0.412 | 0.497 | 0.523 | 0.568 | 0.604 |
Anhui | 0.087 | 0.097 | 0.106 | 0.115 | 0.131 | 0.140 | 0.155 | 0.170 | 0.180 |
Fujian | 0.191 | 0.201 | 0.253 | 0.210 | 0.202 | 0.252 | 0.246 | 0.268 | 0.307 |
Jiangxi | 0.095 | 0.101 | 0.117 | 0.114 | 0.114 | 0.130 | 0.135 | 0.142 | 0.155 |
Shandong | 0.166 | 0.181 | 0.187 | 0.214 | 0.282 | 0.266 | 0.299 | 0.366 | 0.386 |
Henan | 0.123 | 0.137 | 0.146 | 0.157 | 0.173 | 0.176 | 0.197 | 0.221 | 0.242 |
Hubei | 0.111 | 0.116 | 0.129 | 0.141 | 0.139 | 0.143 | 0.170 | 0.170 | 0.189 |
Hunan | 0.158 | 0.168 | 0.181 | 0.176 | 0.175 | 0.205 | 0.208 | 0.220 | 0.223 |
Guangdong | 0.233 | 0.247 | 0.294 | 0.295 | 0.324 | 0.391 | 0.425 | 0.456 | 0.498 |
Guangxi | 0.122 | 0.130 | 0.133 | 0.139 | 0.142 | 0.163 | 0.173 | 0.178 | 0.188 |
Hainan | 0.062 | 0.060 | 0.060 | 0.064 | 0.065 | 0.070 | 0.077 | 0.084 | 0.092 |
Chongqing | 0.072 | 0.075 | 0.082 | 0.088 | 0.092 | 0.105 | 0.144 | 0.158 | 0.141 |
Sichuan | 0.267 | 0.269 | 0.281 | 0.292 | 0.302 | 0.315 | 0.321 | 0.304 | 0.334 |
Guizhou | 0.095 | 0.104 | 0.108 | 0.113 | 0.126 | 0.144 | 0.147 | 0.144 | 0.144 |
Yunnan | 0.227 | 0.243 | 0.258 | 0.269 | 0.273 | 0.258 | 0.263 | 0.266 | 0.287 |
Shaanxi | 0.071 | 0.077 | 0.077 | 0.084 | 0.092 | 0.107 | 0.114 | 0.119 | 0.130 |
Gansu | 0.087 | 0.092 | 0.092 | 0.099 | 0.110 | 0.115 | 0.119 | 0.117 | 0.124 |
Qinghai | 0.066 | 0.069 | 0.071 | 0.074 | 0.076 | 0.079 | 0.080 | 0.071 | 0.079 |
Ningxia | 0.056 | 0.057 | 0.050 | 0.050 | 0.051 | 0.053 | 0.056 | 0.059 | 0.060 |
Xinjiang | 0.227 | 0.246 | 0.242 | 0.254 | 0.124 | 0.125 | 0.133 | 0.149 | 0.149 |
Variable | Variable Name | Variable Code | N | Mean | p50 | SD | Min | Max |
---|---|---|---|---|---|---|---|---|
Dependent Variable | Coordinated Development Level of Ecosystem Services and Human Well-Being | CD-ESWB | 270 | 0.261 | 0.229 | 0.111 | 0.0830 | 0.596 |
Core Explanatory Variable | Digital Agriculture Development Level | LDAD | 270 | 0.165 | 0.135 | 0.098 | 0.050 | 0.604 |
Control Variable | Urbanization Rate | UR | 270 | 0.620 | 0.605 | 0.110 | 0.402 | 0.893 |
Environmental Regulation Intensity | ERI | 270 | 4.064 | 4.078 | 0.335 | 3.178 | 4.820 | |
Human Capital Level | LHC | 270 | 7.929 | 7.900 | 0.275 | 7.107 | 8.599 | |
Financial Development Level | LFD | 270 | 3.587 | 3.366 | 1.076 | 1.972 | 7.618 | |
Mediating Variable | Technological Innovation Effect | TIE | 270 | 0.158 | 0.115 | 0.165 | 0.002 | 0.885 |
Moderating Variable | Industrial Structure Upgrade | ISU | 270 | 1.450 | 1.277 | 0.764 | 0.704 | 5.283 |
Coupling Coordination Degree | Level | 2014 | 2022 |
---|---|---|---|
0 < D ≤ 0.1 | Extreme Imbalance | Shanghai | |
0.1 < D ≤ 0.2 | Severe Imbalance | Tianjin, Shanghai | Tianjin |
0.2 < D ≤ 0.3 | Moderate Imbalance | Tianjin | Beijing |
0.3 < D ≤ 0.4 | Mild Imbalance | Hebei, Liaoning, Anhui, Shandong, Henan, Hainan, Chongqing, Ningxia | Shandong, Henan, Hainan, Ningxia |
0.4 < D ≤ 0.5 | Near Imbalance | Shanxi, Jilin, Jiangsu, Zhejiang, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, Guizhou, Shaanxi, Gansu | Hebei, Shanxi, Liaoning, Jilin, Jiangsu, Anhui, Chongqing, Guizhou |
0.5 < D ≤ 0.6 | Barely Coordinated | Heilongjiang, Sichuan, Yunnan | Zhejiang, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, Shaanxi, Gansu |
0.6 < D ≤ 0.7 | Primary Coordination | Qinghai, Xinjiang | Heilongjiang, Sichuan, Yunnan |
0.7 < D ≤ 0.8 | Intermediate Coordination | Inner Mongolia | Qinghai, Xinjiang |
0.8 < D ≤ 0.9 | Good Coordination | Inner Mongolia | |
0.9 < D ≤ 1 | High Coordination |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
CD-ESWB | ||||
LDAD | 0.364 ** | 0.358 *** | 0.620 *** | 0.466 *** |
(0.154) | (0.112) | (0.165) | (0.130) | |
Cons | 0.171 *** | −1.474 *** | 0.158 *** | −0.722 *** |
(0.021) | (0.387) | (0.027) | (0.167) | |
Control Variables | No | Yes | No | Yes |
Individual/Time Fixed Effects | Yes | Yes | No | No |
Robustness Adjustment | Yes | Yes | Yes | Yes |
N | 270 | 270 | 270 | 270 |
R2 | 0.536 | 0.651 | 0.604 | 0.480 |
RMSE | 0.084 | 0.129 | 0.074 | 0.081 |
Variable | (1) | (2) |
---|---|---|
First | Second | |
LDAD | CD-ESWB | |
LDAD | 0.302 *** | |
(3.46) | ||
IV | −0.000 *** | |
(−6.80) | ||
Cons | −0.201 | −1.820 *** |
(−0.59) | (−8.00) | |
Control Variables | Yes | Yes |
Individual/Time Fixed Effects | Yes | Yes |
Robustness Adjustment | Yes | Yes |
Kleibergen–Paap rk LM statistic | 25.630 *** | |
Cragg–Donald Wald F statistic | 74.798 | |
Kleibergen–Paap rk Wald F statistic | 46.262 | |
N | 270 | 270 |
R2 | 0.248 | 0.954 |
RMSE | 0.117 | 0.024 |
Variable | Adjusting Time Sample | Adjusting Regional Sample | Replacing Explanatory Variable |
---|---|---|---|
(1) | (2) | (3) | |
CD-ESWB | |||
LDAD | 0.339 *** | 0.293 *** | 0.073 *** |
(0.099) | (0.093) | (0.009) | |
Cons | −0.560 ** | −1.486 *** | −0.674 ** |
(0.268) | (0.419) | (0.283) | |
Control Variables | Yes | Yes | Yes |
Individual/Time Fixed Effects | Yes | Yes | Yes |
Robustness Adjustment | Yes | Yes | Yes |
N | 180 | 234 | 270 |
R2 | 0.646 | 0.670 | 0.785 |
RMSE | 0.087 | 0.088 | 0.076 |
Variable | (1) | (2) |
---|---|---|
TIE | ||
LDAD | 0.611 *** | 0.569 *** |
(0.206) | (0.188) | |
Cons | 0.033 | 0.264 |
(0.033) | (0.336) | |
Control Variables | No | Yes |
Individual/Time Fixed Effects | Yes | Yes |
Robustness Adjustment | Yes | Yes |
N | 270 | 270 |
R2 | 0.642 | 0.704 |
RMSE | 0.127 | 0.145 |
Variable | (1) | (2) |
---|---|---|
CD-ESWB | ||
LDAD | 0.380 ** | 0.347 *** |
(0.139) | (0.096) | |
LDAD*ISU | 0.538 * | 0.595 *** |
(0.293) | (0.180) | |
Cons | 0.169 *** | −1.431 *** |
(0.020) | (0.283) | |
Control Variables | No | Yes |
Individual/Time Fixed Effects | Yes | Yes |
Robustness Adjustment | Yes | Yes |
N | 270 | 270 |
R2 | 0.575 | 0.692 |
RMSE | 0.086 | 0.140 |
Variable | Eastern Region | Central Region | Western Region |
---|---|---|---|
(1) | (2) | (3) | |
CD-ESWB | |||
LDAD | 0.494 *** | 0.452 *** | 0.142 |
(0.153) | (0.107) | (0.184) | |
Cons | −1.944 | −0.163 | −0.808 ** |
(1.138) | (0.574) | (0.281) | |
Control Variables | Yes | Yes | Yes |
Individual/Time Fixed Effects | Yes | Yes | Yes |
Robustness Adjustment | Yes | Yes | Yes |
N | 99 | 72 | 99 |
R2 | 0.685 | 0.880 | 0.668 |
RMSE | 0.089 | 0.202 | 0.143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Wang, Y.; Yang, C.; Yu, P. Empirical Analysis of the Role of Digital Agriculture in Enabling Coordinated Development of Ecosystem Services and Human Well-Being: Evidence from Provincial Panel Data in China. Sustainability 2024, 16, 10199. https://doi.org/10.3390/su162310199
Wei H, Wang Y, Yang C, Yu P. Empirical Analysis of the Role of Digital Agriculture in Enabling Coordinated Development of Ecosystem Services and Human Well-Being: Evidence from Provincial Panel Data in China. Sustainability. 2024; 16(23):10199. https://doi.org/10.3390/su162310199
Chicago/Turabian StyleWei, Huilan, Yanlong Wang, Chendan Yang, and Peiyao Yu. 2024. "Empirical Analysis of the Role of Digital Agriculture in Enabling Coordinated Development of Ecosystem Services and Human Well-Being: Evidence from Provincial Panel Data in China" Sustainability 16, no. 23: 10199. https://doi.org/10.3390/su162310199
APA StyleWei, H., Wang, Y., Yang, C., & Yu, P. (2024). Empirical Analysis of the Role of Digital Agriculture in Enabling Coordinated Development of Ecosystem Services and Human Well-Being: Evidence from Provincial Panel Data in China. Sustainability, 16(23), 10199. https://doi.org/10.3390/su162310199