Carbon Footprint Accounting and Verification of Seven Major Urban Agglomerations in China Based on Dynamic Emission Factor Model
Abstract
:1. Introduction
2. Carbon Footprint-Accounting Methods
2.1. Accounting Method of Carbon Footprint Based on Emission Factors
2.1.1. Selection of Carbon Footprint-Accounting Methods
2.1.2. Data Selection for Carbon Footprint Accounting
2.1.3. Carbon Footprint-Accounting Model
2.2. Carbon Footprint Accounting Based on Adjusted Emission Factors
2.2.1. Main Influencing Factors of Carbon Emission Factors
2.2.2. Derivation of Dynamic Carbon Emission Factors
- Definition of the green progress factors for the average low calorific value and the carbon content per unit calorific value (:
- 2.
- New definition of and through the transformation of Equations (3) and (4):
- 3.
- Combined with the emission factor calculation formula in the above Equations (1) and (2), the adjusted dynamic emission factor is
- 4.
- Let ; then, Equation (8) can be transformed into
2.2.3. Determination of the GTAC
- Construct the original index data matrix .
- 2.
- Dimensionless processing of indicators:
- 3.
- Calculate the proportion of the indicator value of the evaluation object under the indicator:
- 4.
- Calculate the entropy value of the indicator, where :
- 5.
- Calculate the difference coefficient of the evaluation index:
- 6.
- Determine the weight coefficient of the indicator:
- 7.
- Calculate the score of the evaluation index and sum up the comprehensive score :
- 8.
- Finally, calculate the green computing adjustment coefficient :
- 9.
- Finally, the is calculated:
2.2.4. Calculation of Dynamic Carbon Emission Factors
2.3. Carbon Footprint Accounting from the Perspective of Carbon Sinks
2.3.1. Carbon Footprint-Accounting Method Based on Carbon Sinks
2.3.2. Regarding the Adoption of CLUD Data Explanation
2.3.3. Carbon Footprint Accounting Based on Carbon Sinks
2.3.4. Ecological Carrying Capacity Based on Carbon Sinks
3. Analysis and Conclusion of Carbon Footprint-Accounting Results
3.1. Estimation and Analysis of Urban Carbon Footprint Based on Emission Factor Method
3.2. Estimation and Analysis of Urban Carbon Footprint Based on the Adjusted Emission Factor Method
3.2.1. Estimation of Urban Carbon Footprint
3.2.2. Estimation and Validation of Provincial Carbon Footprint
3.3. Estimation and Analysis of Urban Carbon Footprint Based on Carbon Sinks
3.3.1. Estimation of Urban Carbon Sinks
3.3.2. Estimation of Urban Net Carbon Sinks
3.3.3. Urban Ecological Carrying Capacity
4. Conclusions
4.1. Discovery
4.2. Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandey, D.; Agrawal, M.; Pandey, J.S. Carbon footprint: Current methods of estimation. Environ. Monit. Assess. 2011, 178, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, T.; Minx, J. A definition of “carbon footprint”. In Ecological Economics Research Trends; Nova Science Publishers: Hauppauge, NY, USA, 2008; pp. 1–11. [Google Scholar]
- Demeter, C.; Lin, P.-C.; Sun, Y.-Y.; Dolnicar, S. Assessing the carbon footprint of tourism businesses using environmentally extended input-output analysis. J. Sustain. Tour. 2022, 30, 128–144. [Google Scholar] [CrossRef]
- ISO 14067/GB/T 24067; Greenhouse Gases-Carbon Footprint of Products: Requirements and Guidelines for Quantification. International Organization for Standardization: Geneva, Switzerland, 2018.
- IPCC. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2019. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html (accessed on 23 August 2019).
- Kaya, Y. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios; Intergovernmental Panel on Climate Change/Response Strategies Working Group: Paris, France, 1990. [Google Scholar]
- Yu, J.; Zhang, Y.; Liu, W.; Wang, Y.; Jiang, Y.; Zhang, Y. Spatial decomposition of carbon footprint and implied carbon transfer of e-commerce express boxes. Geogr. Res. 2022, 41, 92–110. [Google Scholar]
- Zhang, X.; Fan, L. Measurement and decomposition of Shanghai FDI carbon footprint—An inter-provincial input-output table based on distinguishing the heterogeneity of domestic and foreign enterprises. Shanghai Econ. Res. 2024, 6, 99–113. [Google Scholar]
- Giusti, G.; Galo, N.R.; Tóffano Pereira, R.P.; Lopes Silva, D.A.; Filimonau, V. Assessing the impact of drought on carbon footprint of soybean production from the life cycle perspective. J. Clean. Prod. 2023, 425, 138843. [Google Scholar] [CrossRef]
- Wei, Y.B.; Chen, Y.X.; Yang, L.M.; Ramaswami, A.; Chen, W.Q.; Tong, K.K. Tracking a Chinese Megacitys Communitywide carbon footprint and adriving forces from a multistructural perspective. J. Clean. Prod. 2024, 460, 142420. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, X.; Zhong, T. Analysis of carbon emission intensity and carbon footprint in different industrial spaces in China. J. Geogr. 2010, 65, 1048–1057. [Google Scholar]
- Sommer, M.; Kratena, K. The carbon footprint of European households and income distribution. Ecol. Econ. 2017, 136, 6272. [Google Scholar] [CrossRef]
- Yan, Y.; Ji, G.; Hu, N.; Chen, L.; Zheng, J.; Hu, F. Analysis of carbon footprints of different planting systems in paddy fields in the lower reaches of the Yangtze River. Resour. Environ. Yangtze River Basin 2024, 33, 1462–1473. [Google Scholar]
- Han, X.; Han, X.; Li, T.; Li, Y.; Li, K. Research on carbon footprint accounting and emission reduction strategies of Chinese potato provinces—Based on life cycle assessment method. China Agric. Resour. Zoning 2024, 45, 11–19. [Google Scholar]
- Dai, L.; Xu, Q.; Peng, X.; Li, J.; Zhou, Y.; Huang, J.; Ao, D.C.; Dou, Z.; Gao, H. Evaluation of the carbon footprint of the rice-fishery co-cropping model and analysis of emission reduction countermeasures. Resour. Environ. Yangtze River Basin 2023, 32, 1971–1980. [Google Scholar]
- Ma, H.; Zhu, Q. Rice carbon footprint accounting in our country based on life cycle assessment. Resour. Environ. Arid. Reg. 2023, 37, 11–19. [Google Scholar]
- Liu, X.R.; Wang, K. The inequality of household carbon footprint in China: The city was multilevel analysis. Energy Policy 2024, 188, 114098. [Google Scholar] [CrossRef]
- Pang, J.; Gao, X.; Shi, Y.; Shi, Y.; Sun, W. Research on regional carbon footprint and carbon transfer at provincial level in China based on MRIO model. J. Environ. Sci. 2017, 37, 2012–2020. [Google Scholar]
- Caib, F.; Lu, J.; Wang, J.; Dong, H.; Liu, X.; Chen, Y.; Chen, Z.; Cong, J.; Cui, Z.; Dai, C. A benchmark city—Level carbon dioxide emission inventory for China in 2005. Appl. Energy 2019, 233–234, 659. [Google Scholar]
- Meng, F.; Li, F.; Liu, X.; Cai, B.; Su, M.; Hu, J.; Zhang, W. Analysis of CO2 emission characteristics of China’s “Belt and Road Initiative” node cities. China Population. Resour. Environ. 2019, 29, 32. [Google Scholar]
- Shan, Y.L.; Guan, D.B.; Zheng, H.R.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Meng, F.; Cui, S.; Yu, Y.; Zhao, S. Analysis of carbon footprint of urban energy utilization: A case study of Xiamen City. J. Ecol. 2012, 32, 3782. [Google Scholar]
- Chen, S.; Long, H.; Chen, B. Evaluation of urban low-carbon performance from the perspective of metabolism. Sci. China Earth Sci. 2021, 51, 1693. [Google Scholar]
- Ramaswami, A.; Hillman, T.; Janson, B.; Reiner, M.; Thomas, G. A demand-Centered, hybrid life-Cycle methodology for city-Scale greenhouse gas inventories. Environ. Sci. Technol. 2008, 42, 6455. [Google Scholar] [CrossRef]
- Mi, Z.; Zhang, Y.; Guan, D.; Shan, Y.; Liu, Z.; Cong, R.; Yuan, X.-C.; Wei, Y.-M. Consumption based emission accounting for Chinese cities. Appl. Energy 2016, 184, 1073. [Google Scholar] [CrossRef]
- Meng, F.X.; Liu, G.Y.; Hu, Y.C.; Su, M.; Yang, Z. Urban carbon flow and structure analysis in a multi—Scales economy. Energy Policy 2018, 121, 553. [Google Scholar] [CrossRef]
- Chen, S.Q.; Long, H.H.; Chen, B.; Feng, K.; Hubacek, K. Urban carbon footprints across scale: Important considerations for choosing system boundaries. Appl. Energy 2020, 259, 114201. [Google Scholar] [CrossRef]
- Jiang, H.-D.; Pallav, P.; Liang, Q.-M.; Liu, L.-J.; Zhang, Y.-F. Improving the regional deployment of carbon mitigation efforts by incorporating air-quality co-benefits: A multi-provincial analysis of China. Ecol. Econ. 2023, 204, 107675. [Google Scholar] [CrossRef]
- Cui, C.; Li, S.; Zhao, W.; Liu, B.; Shan, Y.; Guan, D. Energy-related CO2 emission accounts and datasets for 40 emerging economies in 2010–2019. Earth Syst. Sci. Data 2023, 15, 1317–1328. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; China Emission Accounts and Datasets (CEADs). Energy and Sustainability Research Institute Groningen Dataset. Available online: https://www.ceads.net.cn/ (accessed on 9 June 2024).
- International Energy Agency. CO2 Emissions from Fuel Combustion. Available online: https://www.iea.org/data-and-statistics/data-products (accessed on 20 May 2024).
- Long, Y.; Ayyoob, S.; Huang, L.; Chen, J. Urban carbon accounting: An overview. Urban Clim. 2022, 44, 101195. [Google Scholar]
- National Bureau of Statistics. China City Statistical Yearbook (2006–2021); China Statistics Press: Beijing, China, 2022. [Google Scholar]
- National Bureau of Statistics. China Energy Statistical Yearbook (2006–2021); China Statistics Press: Beijing, China, 2024. [Google Scholar]
- Zheng, D.-F.; Wang, Y.-Y.; Liu, X.-X.; Jiang, J.-C. Temporal-spatial Pattern and Potential Analysis of China’s Ecological Well-being Zone Based on Ecosystem Services. J. Ecol. Rural. Environ. 2020, 36, 645–653. [Google Scholar]
- Wang, Y.; Tan, D.; Zhang, J.; Meng, N.; Han, B.; Ouyang, Z. The impact of urbanization on carbon emissions: Analysis of panel data from 158 cities in China. Acta Ecol. Sin. 2020, 40, 7897–7907. [Google Scholar]
- General Rules for Calculation of the Comprehensive Energy Consumption. Available online: https://std.samr.gov.cn/gb (accessed on 20 May 2024).
- National Center for Climate Change Strategy and International Cooperation. Compilation Guidelines for Provincial Greenhouse Gas Inventories [EB/OL]. Available online: http://www.ncsc.org.cn/ (accessed on 9 March 2024).
- Chen, S. Energy Consumption, CO2 Emission and Sustainable Development in Chinese Industry. Econ. Res. J. 2009, 44, 41–55. [Google Scholar]
- Ministry of Natural Resources. PRC China Mineral Resources 2022. Available online: https://www.mnr.gov.cn/sj/sjfw (accessed on 18 September 2023).
- Intergovernmental Panel on Climate Change. IPCC Sixth Assessment Report. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 9 July 2023).
- Wiloso, I.E.; Wiloso, R.A.; Setiawan, R.A.A.; Jupesta, J.; Fang, K.; Heijungs, R.; Faturay, F. Indonesia’s contribution to global carbon flows: Which sectors are most responsible for the emissions embodied in trade? Sustain. Prod. Consum. 2024, 48, 157–168. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; Liu, M.; Lv, J.; Liu, J.; Yue, G. Development and prospect of ultra (ultra) critical coal-fired power generation technology. Therm. Power Gener. 2021, 50, 1–9. [Google Scholar]
- Chen, G.; Li, D.; Chen, Z.; He, R.; Zheng, G.; Zhou, J.; Feng, Y.; Chen, T.; Liao, H.; Cheng, M. Research and engineering application of key technologies for combustion adjustment test of coal-fired power plants. Energy Eng. 2020, 6, 10–15. [Google Scholar]
- Lv, J.; Jiang, L.; Ke, X.; Zhang, H.; Liu, Q.; Huang, Z.; Zhou, T.; Zhang, M.; Wang, J.; Xiao, F.; et al. The development prospect of circulating fluidized bed combustion technology in China under the background of carbon neutrality. Coal Sci. Technol. 2023, 51, 514–522. [Google Scholar]
- Liu, Z.; Wu, X.; Fan, W.; Zhang, X.; Liu, Y. Effect of characteristic elements of coal ash on ash-forming characteristics of pulverized coal during high temperature oxygen-enriched combustion. Clean Coal Technol. 2021, 27, 272–280. [Google Scholar]
- Yu, T.; Geng, P.; Huo, E.; Cao, M. Combustion optimization of coal-fired power station boilers based on intelligent algorithm. Chin. J. Power Eng. 2016, 36, 594–599. [Google Scholar]
- Iman, R.; Kashif, R.; Bok, J.Y.; Dong, S.K. Development of environment-friendly dual fuel pulverized coal-natural gas combustion technology for the co-firing power plant boiler: Experimental and numerical analysis. Energy 2021, 228, 120550. [Google Scholar]
- Luigi, T.; Dino, P.; Luca, M. 1D numerical study on hydrogen injection enabling ultra-lean combustion in a small gasoline Spark Ignition engine. E3S Web Conf. 2020, 179, 06001. [Google Scholar] [CrossRef]
- Zhu, L.; Guo, D.; Wei, W.; Steven, J.; Philippe, C.; Jin, B.; Shushi, P.; Qiang, Z.; Klaus, H.; Gregg, M.; et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015, 524, 335–338. [Google Scholar]
- Shan, Y.; Liu, J.; Liu, Z.; Xu, X.; Shao, S.; Wang, P.; Guan, D. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Appl. Energy 2016, 184, 742–750. [Google Scholar] [CrossRef]
- Hu, X.; Yang, L. Analysis of Growth Differences and Convergence of Regional Green TFP in China. J. Financ. Econ. 2011, 37, 123–134. [Google Scholar]
- Chen, Y.; Miao, J.; Zhu, Z. Measuring green total factor productivity of China’s agricultural sector: A three-stage SBM-DEA model with non-point source pollution and CO2 emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar] [CrossRef]
- Juan, Q.; Rui, B. Impact of Energy-Biased Technological Progress on Inclusive Green Growth. Sustainability. 2022, 14, 16151. [Google Scholar]
- Shao, Z.; Yang, L. Threshold effects of renewable energy consumption on economic growth under energy transformation. China Popul. Resour. Environ. 2018, 2, 19–27. [Google Scholar]
- Yang, J.; Huang, X. The 30m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Wang, X. Carbon Dioxide, Climate Change, and Agriculture; Meteorological Press: Beijing, China, 1996. [Google Scholar]
- He, Y. Climate and Terrestrial Ecosystem Carbon Cycle in China; Meteorological Press: Beijing, China, 2006. [Google Scholar]
- Fang, J.; Guo, Z.; Park, S. Estimation of China’s terrestrial vegetation carbon sink from 1981 to 2000. Sci. China Ser. D. 2007, 37, 804–812. [Google Scholar]
- Zhao, R.; Huang, X.; Zhong, T. Carbon effect assessment and low-carbon optimization of regional land use structure. Chin. J. Agric. Eng. 2013, 29, 220–229. [Google Scholar]
- Sun, H.; Liang, H.; Chang, X. China’s land use carbon emissions and their spatial correlation. Econ. Geogr. 2015, 35, 154–162. [Google Scholar]
- Li, L.; Dong, J.; Xu, L.; Zhang, J. Spatial differentiation of carbon budget and carbon compensation zoning of land use in functional areas—A case study of Wuhan urban circle. Chin. J. Nat. Resour. 2019, 34, 1003–1015. [Google Scholar]
- Li, Y.; Wei, W.; Zhou, J.; Hao, R.; Chen, D. Changes in Land Use Carbon Emissions and Coordinated Zoning in China. Environ. Sci. 2023, 3, 1267–1276. [Google Scholar]
- Tian, Y.; Zhang, J.; Li, B. Research on agricultural carbon emissions in China: Measurement, spatiotemporal comparison and decoupling effect. Resour. Sci. 2012, 34, 2097–2105. [Google Scholar]
- Li, Q.; Gao, W.; Wei, J.; Jiang, Z.; Zhang, Y.; Lv, J. Spatiotemporal evolution and comprehensive zoning of net carbon sink in cultivated land use in China. Trans. Chin. Soc. Agric. Eng. 2022, 11, 239–249. [Google Scholar]
- Lu, J.; Huang, X.; Dai, L. Analysis of the Equity of Carbon Emissions from Energy Consumption in China’s Provincial Regions Based on Spatiotemporal Scales. J. Nat. Resour. 2012, 12, 2006–2017. [Google Scholar]
Economic Circle | Yangtze River Delta Central | Plains Circle | Guanzhong Circle | Pearl River Delta | Beijing–Tianjin–Hebei | Middle Reaches of the Yangtze River | Chengdu–Chongqing Circle | |
---|---|---|---|---|---|---|---|---|
Year | ||||||||
2007 | 2.74 | 2.74 | 2.70 | 2.72 | 2.74 | 2.74 | 2.74 | |
2008 | 2.69 | 2.67 | 2.62 | 2.71 | 2.64 | 2.70 | 2.57 | |
2009 | 2.65 | 2.64 | 2.56 | 2.69 | 2.59 | 2.67 | 2.56 | |
2010 | 2.60 | 2.63 | 2.50 | 2.67 | 2.54 | 2.63 | 2.54 | |
2011 | 2.57 | 2.61 | 2.41 | 2.65 | 2.50 | 2.52 | 2.53 | |
2012 | 2.55 | 2.57 | 2.31 | 2.65 | 2.47 | 2.42 | 2.52 | |
2013 | 2.53 | 2.53 | 2.31 | 2.63 | 2.46 | 2.39 | 2.50 | |
2014 | 2.52 | 2.53 | 2.27 | 2.62 | 2.44 | 2.34 | 2.47 | |
2015 | 2.50 | 2.51 | 2.26 | 2.61 | 2.39 | 2.35 | 2.45 | |
2016 | 2.48 | 2.48 | 2.24 | 2.59 | 2.34 | 2.34 | 2.41 | |
2017 | 2.45 | 2.44 | 2.20 | 2.57 | 2.29 | 2.30 | 2.33 | |
2018 | 2.44 | 2.43 | 2.19 | 2.56 | 2.28 | 2.29 | 2.32 | |
2019 | 2.43 | 2.42 | 2.18 | 2.55 | 2.27 | 2.28 | 2.31 | |
2020 | 2.42 | 2.41 | 2.16 | 2.55 | 2.26 | 2.26 | 2.29 | |
2021 | 2.42 | 2.41 | 2.15 | 2.54 | 2.26 | 2.26 | 2.27 |
Researcher | Carbon Sink Coefficient of Cultivated Land | Carbon Sink Coefficient of Forest | Carbon Sink Coefficient of Grassland | Carbon Sink Coefficient of Water Area | Carbon Sink Coefficient of Wasteland |
---|---|---|---|---|---|
Wang Xiulan (1996) [57] | - | 3.81 | 0.91 | - | - |
He Yong (2006) [58] | 0.69 | - | - | - | - |
Fang Jingyun (2007) [59] | - | 5.77 | - | - | 0.002 |
Zhao Rongqin (2013) [60] | 0.22 | - | 0.95 | 0.46 | - |
Sun He (2015) [61] | 0.42 | - | - | 0.28 | - |
Li Lu (2019) [62] | 0.13 | - | - | - | - |
Li Yuanyuan (2023) [63] | 0.42 | 0.64 | 0.021 | 0.25 | 0.005 |
Mean Value | 0.38 | 4.79 | 0.93 | 0.33 | 0.0036 |
Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
Carbon Sink Coefficient of Cultivated Land | 0.31 | 0.31 | 0.33 | 0.34 | 0.36 | 0.39 | 0.41 | 0.43 |
Year | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
Carbon Sink Coefficient of Cultivated Land | 0.44 | 0.46 | 0.41 | 0.42 | 0.44 | 0.46 | 0.49 | 0.50 |
Economic Circle | Yangtze River Delta | Central Plains Circle | Guanzhong Circle | Pearl River Delta | Beijing–Tianjin–Hebei | Middle Reaches of Yangtze River | Chengdu–Chongqing Circle | |
---|---|---|---|---|---|---|---|---|
Year | ||||||||
2006 | 31.2 | 20.8 | 18.1 | 35.9 | 37.4 | 24.5 | 11.7 | |
2007 | 31.9 | 21.7 | 18.4 | 38.5 | 39.9 | 21.8 | 12.9 | |
2008 | 34.4 | 23.1 | 19.2 | 39.6 | 42.1 | 22.4 | 12.5 | |
2009 | 37.1 | 23.4 | 20.4 | 40.4 | 43.7 | 23.4 | 13.4 | |
2010 | 40.4 | 24.7 | 21.6 | 44.9 | 48.9 | 25.7 | 14.8 | |
2011 | 41.6 | 25.8 | 22.9 | 48.8 | 49.2 | 26.1 | 15.1 | |
2012 | 42.8 | 26.3 | 23.3 | 49.5 | 50.4 | 25.7 | 15.1 | |
2013 | 40.7 | 26.7 | 24.5 | 51.4 | 45.9 | 27.2 | 15.0 | |
2014 | 41.8 | 27.4 | 24.7 | 54.1 | 49.1 | 26.8 | 15.0 | |
2015 | 41.8 | 27.4 | 24.7 | 50.8 | 46.7 | 26.7 | 14.4 | |
2016 | 41.1 | 26.6 | 22.2 | 52.0 | 47.5 | 25.8 | 13.6 | |
2017 | 49.1 | 29.7 | 26.1 | 54.7 | 55.9 | 29.7 | 15.5 | |
2018 | 50.7 | 29.8 | 29.0 | 55.4 | 60.1 | 29.9 | 15.6 | |
2019 | 52.3 | 30.2 | 29.6 | 58.3 | 62.7 | 33.0 | 16.7 | |
2020 | 54.9 | 31.8 | 25.4 | 58.8 | 64.4 | 33.5 | 16.2 | |
2021 | 59.1 | 34.1 | 31.4 | 70.0 | 65.9 | 35.4 | 18.0 |
Indicator | Calculation Method | Unit | Abbreviation | Weight | Entropy Value |
---|---|---|---|---|---|
Unit sulfur dioxide emissions | Total sulfur dioxide emissions/total standard coal consumption | Ton/ten thousand tons | SO2C | 0.26 | 1.00 |
Unit nitrogen oxide emissions | Total nitrogen oxide emissions/total standard coal consumption | Ton/ten thousand tons | NOXC | 0.50 | 0.99 |
Unit chemical oxygen demand | Total chemical oxygen demand/total standard coal consumption | Ton/ten thousand tons | O2C | 0.24 | 1.00 |
Economic Circle | Yangtze River Delta | Central Plains Circle | Guanzhong Circle | Pearl River Delta | Beijing–Tianjin–Hebei | Middle Reaches of Yangtze River | Chengdu–Chongqing Circle | |
---|---|---|---|---|---|---|---|---|
Year | ||||||||
2006 | 135.0 | 62.6 | 295.4 | 164.1 | 220.7 | 390.8 | 201.9 | |
2007 | 134.6 | 62.4 | 296.6 | 165.3 | 221.0 | 390.4 | 201.7 | |
2008 | 135.6 | 64.3 | 299.1 | 166.2 | 224.0 | 390.7 | 206.0 | |
2009 | 135.7 | 64.8 | 300.9 | 166.1 | 225.6 | 389.0 | 206.4 | |
2010 | 136.5 | 66.2 | 303.5 | 166.3 | 228.3 | 388.2 | 207.8 | |
2011 | 137.3 | 67.7 | 306.8 | 166.8 | 231.4 | 388.7 | 208.9 | |
2012 | 137.4 | 69.0 | 308.8 | 167.0 | 234.1 | 388.8 | 210.5 | |
2013 | 136.4 | 69.8 | 310.9 | 168.7 | 236.1 | 388.5 | 209.8 | |
2014 | 136.2 | 70.4 | 312.5 | 168.7 | 237.1 | 388.0 | 210.9 | |
2015 | 136.4 | 71.5 | 315.3 | 168.7 | 239.0 | 387.7 | 213.9 | |
2016 | 134.5 | 69.1 | 313.8 | 167.8 | 236.1 | 384.4 | 213.9 | |
2017 | 135.1 | 70.2 | 316.1 | 166.8 | 237.6 | 384.7 | 215.0 | |
2018 | 135.6 | 71.3 | 318.0 | 166.4 | 239.6 | 385.1 | 216.2 | |
2019 | 135.8 | 72.7 | 320.3 | 165.9 | 241.5 | 385.8 | 220.4 | |
2020 | 136.4 | 74.4 | 323.4 | 165.4 | 243.7 | 386.6 | 224.1 | |
2021 | 136.7 | 74.9 | 324.7 | 165.4 | 244.4 | 387.4 | 225.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Dai, S. Carbon Footprint Accounting and Verification of Seven Major Urban Agglomerations in China Based on Dynamic Emission Factor Model. Sustainability 2024, 16, 9817. https://doi.org/10.3390/su16229817
Wang L, Dai S. Carbon Footprint Accounting and Verification of Seven Major Urban Agglomerations in China Based on Dynamic Emission Factor Model. Sustainability. 2024; 16(22):9817. https://doi.org/10.3390/su16229817
Chicago/Turabian StyleWang, Lingling, and Shufen Dai. 2024. "Carbon Footprint Accounting and Verification of Seven Major Urban Agglomerations in China Based on Dynamic Emission Factor Model" Sustainability 16, no. 22: 9817. https://doi.org/10.3390/su16229817
APA StyleWang, L., & Dai, S. (2024). Carbon Footprint Accounting and Verification of Seven Major Urban Agglomerations in China Based on Dynamic Emission Factor Model. Sustainability, 16(22), 9817. https://doi.org/10.3390/su16229817