Cadmium Contamination in Aquatic Environments: Detoxification Mechanisms and Phytoremediation Approach
Abstract
:1. Introduction
2. Cd Toxicity in Humans
3. Effects of Cd in Plants
4. Mechanisms of Plant Resistance to Heavy Metals
4.1. Extracellular Mechanisms
4.2. Intracellular Mechanisms
5. Evolution of Heavy Metal Tolerance Mechanisms
6. Bioremediation Strategies
7. Phytoremediation
Examples of Plants | Growing Conditions | Cd Concentrations (mg.kg−1) | Efficiency | Effect | References |
---|---|---|---|---|---|
Sedum plumbizincicola | Phytoextraction was conducted for two growing seasons in an 8-ha polluted field with Cd. | 170 in shoots first crop 172 in shoots second crop | soil Cd decline based on plant uptake 40% soil Cd decline after phytoextraction 10% | Decline in biomass from the first to the second crop is 53.3%. | [101] |
Sedum plumbizincicola | Phytoextraction was conducted for three growing seasons in a 140-ha polluted field with Cd and ad the hydroxyapatite. | 13.8 in shoots first crop 14 in shoots second crop 14 in shoots third crop | soil Cd decline first 8.49% soil Cd decline second 8.88% soil Cd decline third 13.79% | Greater immobilization of Cd in the soil due to the addition of hydroxyapatite which raised the pH from 4.24 to 5.17. | [102] |
Setaria lutescens | 1.5 in shoots first crop 1.8 in shoots second crop 1.8 in shoots third crop | soil Cd decline first 2.91% soil Cd decline second 0.76% soil Cd decline third 4.18% | |||
Elsholtzia splendens | 2.3 in shoots first crop 2.3 in shoots second crop 2.3 in shoots third crop | soil Cd decline first 5.33% soil Cd decline second 5.58% soil Cd decline third 10.34% | |||
Pennisetum sp. | 1.9 in shoots first crop 2 in shoots second crop 2 in shoots third crop | soil Cd decline first 7.76% soil Cd decline second 10.65% soil Cd decline third 13.79% | |||
Lolium perenne | Polluted field with Cd 3.06 mg.kg−1and mycorrhizae or not. | 2 in shoot-only plants 1 in shoots plant + mycorrhizae 0.5 in root-only plants 1.5 in root plants + mycorrhizae | - | Increased plant tolerance to Cd higher concentration of CD in the root zone. | [103] |
Sedum alfredii | Hydroponic system and 25 μM Cd for 4 weeks. | 3500 in shoot-only plants 4000 in shoots plant + Pseudomonas fluorescens 800 in root-only plants 1500 in root plants + Pseudomonas fluorescens | - | ↑ Chlorophyll Biomass Absorption nutrition Absorption Cd in shoot | [104] |
Brassica juncea | Plastic pots with 8 dm−3 of soil and levels of Cd 0–30 mg.kg−1. | 14.8 in grains 75.8 in shoots | - | ↓ biomass | [105] |
Brassica campestris | Plastic pots with 8 dm−3 of soil and levels of Cd 0–30 mg.kg−1. | 16.5 in grains 95.8 in shoots | - | ↓ biomass | |
Brassica napus | Plastic pots with 5 kg soil and levels of Cd 0–80 mg.kg−1. | 15.3 in grains 85.7 in shoots | - | ↓ biomass | |
Crambe abyssinica | Plastic pots with 8 dm−3 of soil and levels of Cd 0–30 mg.kg−1. | 3598 in leaf 95 in stems 124.75 in roots | - | ↓ Chlorophyll Biomass Absorsion nutrition | [106] |
Arachis hypogaea L. | Plastic pots with 20 kg soil and 0.438 mg.kg−1 of Cd and levels of Cl 10–136%. | 3.2 in shoots 4.39 in roots 4.5 in leaves | - | ↑ Accumulation Cd | [107] |
Tagetes erecta | Plastic pots with 2.8 kg soil and mean 36.9 mg.kg−1 of Cd and either pig or cattle manure, or organic fertilizer. | 12.2 in shoots 9.1 in roots 1.25 in flowers | - | little biomass reduction increase in phenol production | [108] |
Tagetes erecta | 125 m2 polluted field with 38.2 mg.kg−1 of Cd and either pig or cattle manure, or organic fertilizer. | 9.3 in shoots 7.9 in roots 0.48 in flowers | soil Cd decline based on plant uptake 78.6% | little biomass reduction increase in phenol production | [108] |
Canna indica | Hydroponic system and levels of Cd 0–400 mg and 18 days. | Whole plant 1088.61 mg.g−1 | 89.5% to 96.8% calculated from the residual substrate concentration | ↓ Chlorophyll biomass | [109] |
8. Evaluation of Phytoremediation Efficiency
9. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahzad, A.; Zahra, A.; Li, H.Y.; Qin, M.; Wu, H.; Wen, M.Q.; Ali, M.; Iqbal, Y.; Xie, S.H.; Sattar, S.; et al. Modern Perspectives of Heavy Metals Alleviation from Oil Contaminated Soil: A Review. Ecotoxicol. Environ. Saf. 2024, 282, 116698. [Google Scholar] [CrossRef] [PubMed]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and Environmental Effects of Heavy Metals. J. King Saud Univ.-Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Novoselov, A.A.; Hodson, M.E.; Tapia-Gatica, J.; Dovletyarova, E.A.; Yáñez, C.; Neaman, A. The Effect of Rock Lithology on the Background Concentrations of Trace Elements in Alluvial Soils: Implications for Environmental Regulation. Appl. Geochem. 2022, 146, 105440. [Google Scholar] [CrossRef]
- Torres, P.; Llopis, A.L.; Melo, C.S.; Rodrigues, A. Environmental Impact of Cadmium in a Volcanic Archipelago: Research Challenges Related to a Natural Pollution Source. J. Mar. Sci. Eng. 2023, 11, 100. [Google Scholar] [CrossRef]
- Bia, G.; García, M.G.; Cosentino, N.J.; Borgnino, L. Dispersion of Arsenic Species from Highly Explosive Historical Volcanic Eruptions in Patagonia. Sci. Total Environ. 2022, 853, 158389. [Google Scholar] [CrossRef]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of Heavy Metal Pollution from Anthropogenic Activities and Remediation Strategies: A Review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef]
- Edo, G.I.; Samuel, P.O.; Oloni, G.O.; Ezekiel, G.O.; Ikpekoro, V.O.; Obasohan, P.; Ongulu, J.; Otunuya, C.F.; Opiti, A.R.; Ajakaye, R.S.; et al. Environmental Persistence, Bioaccumulation, and Ecotoxicology of Heavy Metals. Chem. Ecol. 2024, 40, 322–349. [Google Scholar] [CrossRef]
- Kolarova, N.; Napiórkowski, P. Trace Elements in Aquatic Environment. Origin, Distribution, Assessment and Toxicity Effect for the Aquatic Biota. Ecohydrol. Hydrobiol. 2021, 21, 655–668. [Google Scholar] [CrossRef]
- Algül, F.; Beyhan, M. Concentrations and Sources of Heavy Metals in Shallow Sediments in Lake Bafa, Turkey. Sci. Rep. 2020, 10, 11782. [Google Scholar] [CrossRef]
- Orhue, E.R.; Frank, U.O. Fate of Some Heavy Metals in Soils: A Review. J. Appl. Nat. Sci. 2011, 3, 131–138. [Google Scholar] [CrossRef]
- Bharti, R.; Sharma, R. Effect of Heavy Metals: An Overview. Mater. Today Proc. 2022, 51, 880–885. [Google Scholar] [CrossRef]
- WHO Guidelines for Drinking-Water Quality, 4th Edition, Incorporating the 1st Addendum. Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 29 October 2024).
- Substance Priority List|ATSDR. Available online: https://www.atsdr.cdc.gov/programs/substance-priority-list.html (accessed on 3 September 2024).
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.U.; Nazir, S.; Irshad, R.; Tahir, K.; ur Rehman, K.; Islam, R.U.; Wahab, Z. Toxicity of Heavy Metals in Plants and Animals and Their Uptake by Magnetic Iron Oxide Nanoparticles. J. Mol. Liq. 2021, 321, 114455. [Google Scholar] [CrossRef]
- Andreazza, R.; Okeke, B.C.; Pieniz, S.; Brandelli, A.; Lambais, M.R.; Camargo, F.A.O. Bioreduction of Cu(II) by Cell-Free Copper Reductase from a Copper Resistant Pseudomonas Sp. NA. Biol. Trace Elem. Res. 2011, 143, 1182–1192. [Google Scholar] [CrossRef]
- Afonso, T.F.; Demarco, C.F.; Pieniz, S.; Camargo, F.A.O.; Quadro, M.S.; Andreazza, R. Potential of Solanum Viarum Dunal in Use for Phytoremediation of Heavy Metals to Mining Areas, Southern Brazil. Environ. Sci. Pollut. Res. Int. 2019, 26, 24132–24142. [Google Scholar] [CrossRef]
- Xin, J.; Ma, S.; Li, Y.; Zhao, C.; Tian, R. Pontederia Cordata, an Ornamental Aquatic Macrophyte with Great Potential in Phytoremediation of Heavy-Metal-Contaminated Wetlands. Ecotoxicol. Environ. Saf. 2020, 203, 111024. [Google Scholar] [CrossRef]
- Islam, F.; Yasmeen, T.; Ali, Q.; Ali, S.; Arif, M.S.; Hussain, S.; Rizvi, H. Influence of Pseudomonas aeruginosa as PGPR on Oxidative Stress Tolerance in Wheat under Zn Stress. Ecotoxicol. Environ. Saf. 2014, 104, 285–293. [Google Scholar] [CrossRef]
- Rajkumar, M.; Freitas, H. Influence of Metal Resistant-Plant Growth-Promoting Bacteria on the Growth of Ricinus Communis in Soil Contaminated with Heavy Metals. Chemosphere 2008, 71, 834–842. [Google Scholar] [CrossRef]
- Demarco, C.F.; Bonemann, D.H.; Ribeiro, A.S.; Cadaval, T.R.S.; Gelesky, M.A.; Godinho, M.; Quadro, M.S.; Pieniz, S.; Andreazza, R. Resistance Mechanisms of Hydrocotyle ranunculoides to Cr(VI): A Biolfilter Plant. J. Clean. Prod. 2023, 405, 136721. [Google Scholar] [CrossRef]
- Jayasri, M.A.; Suthindhiran, K. Effect of Zinc and Lead on the Physiological and Biochemical Properties of Aquatic Plant Lemna Minor: Its Potential Role in Phytoremediation. Appl. Water Sci. 2017, 7, 1247–1253. [Google Scholar] [CrossRef]
- Bianconi, D.; Pietrini, F.; Massacci, A.; Iannelli, M.A. Uptake of Cadmium by Lemna Minor, a (Hyper?-) Accumulator Plant Involved in Phytoremediation Applications. E3S Web Conf. 2013, 1, 13002. [Google Scholar] [CrossRef]
- Järup, L. Hazards of Heavy Metal Contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Gustin, M.S.; Hou, D.; Tack, F.M.G. The Term “Heavy Metal(s)”: History, Current Debate, and Future Use. Sci. Total Environ. 2021, 789, 147951. [Google Scholar] [CrossRef]
- Riaz, U.; Aslam, A.; uz Zaman, Q.; Javeid, S.; Gul, R.; Iqbal, S.; Javid, S.; Murtaza, G.; Jamil, M. Cadmium Contamination, Bioavailability, Uptake Mechanism and Remediation Strategies in Soil-Plant-Environment System: A Critical Review. Curr. Anal. Chem. 2021, 17, 49–60. [Google Scholar] [CrossRef]
- Zhang, H.; Reynolds, M. Cadmium Exposure in Living Organisms: A Short Review. Sci. Total Environ. 2019, 678, 761–767. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Raj, D.; Maiti, S.K. Sources, Bioaccumulation, Health Risks and Remediation of Potentially Toxic Metal(Loid)s (As, Cd, Cr, Pb and Hg): An Epitomised Review. Environ. Monit. Assess. 2020, 192, 108. [Google Scholar] [CrossRef]
- Mahajan, P.; Kaushal, J. Role of Phytoremediation in Reducing Cadmium Toxicity in Soil and Water. J. Toxicol. 2018, 2018, 4864365. [Google Scholar] [CrossRef]
- Raza, A.; Habib, M.; Kakavand, S.N.; Zahid, Z.; Zahra, N.; Sharif, R.; Hasanuzzaman, M. Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. Biology 2020, 9, 177. [Google Scholar] [CrossRef]
- Luo, J.-S.; Zhang, Z. Mechanisms of Cadmium Phytoremediation and Detoxification in Plants. Crop J. 2021, 9, 521–529. [Google Scholar] [CrossRef]
- Pajares, M.J.; Palanca-Ballester, C.; Urtasun, R.; Alemany-Cosme, E.; Lahoz, A.; Sandoval, J. Methods for Analysis of Specific DNA Methylation Status. Methods 2021, 187, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, M.; Nordberg, G.F. Metallothionein and Cadmium Toxicology—Historical Review and Commentary. Biomolecules 2022, 12, 360. [Google Scholar] [CrossRef] [PubMed]
- Vieira, L.R.; Corrêa, E.S.; Moraes, B.S.; Rossato, M.V.; Vestena, S. Toxicidade de cádmio em plantas. Rev. Eletrônica Gestão Educ. Tecnol. Ambient. 2015, 19, 1574–1588. [Google Scholar] [CrossRef]
- Shaari, N.E.M.; Tajudin, M.T.F.M.; Khandaker, M.M.; Majrashi, A.; Alenazi, M.M.; Abdullahi, U.A.; Mohd, K.S. Cadmium Toxicity Symptoms and Uptake Mechanism in Plants: A Review. Braz. J. Biol. 2024, 84, e252143. [Google Scholar] [CrossRef]
- Souza, V.L.; Silva, D.d.C.; Santana, K.B.; Mielke, M.S.; Almeida, A.-A.F.d.; Mangabeira, P.A.O.; Rocha, E.A. Efeitos do cádmio na anatomia e na fotossíntese de duas macrófitas aquáticas. Acta Bot. Bras. 2009, 23, 343–354. [Google Scholar] [CrossRef]
- Zhou, R.; Xu, J.; Li, L.; Yin, Y.; Xue, B.; Li, J.; Sun, F. Exploration of the Effects of Cadmium Stress on Photosynthesis in Oenanthe Javanica (Blume) DC. Toxics 2024, 12, 307. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Naeem, M.; Danish, S.; Khan, M.J.; Fahad, S.; Datta, R.; Brtnicky, M.; Kintl, A.; Hussain, G.S.; El-Esawi, M.A. Effect of Cadmium-Tolerant Rhizobacteria on Growth Attributes and Chlorophyll Contents of Bitter Gourd under Cadmium Toxicity. Plants 2020, 9, 1386. [Google Scholar] [CrossRef]
- Bari, M.A.; Akther, M.S.; Reza, M.A.; Kabir, A.H. Cadmium Tolerance Is Associated with the Root-Driven Coordination of Cadmium Sequestration, Iron Regulation, and ROS Scavenging in Rice. Plant Physiol. Biochem. 2019, 136, 22–33. [Google Scholar] [CrossRef]
- Dresler, S.; Hawrylak-Nowak, B.; Kováčik, J.; Pochwatka, M.; Hanaka, A.; Strzemski, M.; Sowa, I.; Wójciak-Kosior, M. Allantoin Attenuates Cadmium-Induced Toxicity in Cucumber Plants. Ecotoxicol. Environ. Saf. 2019, 170, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Khanna, K.; Kohli, S.K.; Ohri, P.; Bhardwaj, R.; Ahmad, P. Agroecotoxicological Aspect of Cd in Soil–Plant System: Uptake, Translocation and Amelioration Strategies|Environmental Science and Pollution Research. Available online: https://link.springer.com/article/10.1007/s11356-021-18232-5 (accessed on 31 October 2024).
- Li, Y.; Zhang, S.; Jiang, W.; Liu, D. Cadmium Accumulation, Activities of Antioxidant Enzymes, and Malondialdehyde (MDA) Content in Pistia stratiotes L. Environ. Sci. Pollut. Res. Int. 2013, 20, 1117–1123. [Google Scholar] [CrossRef]
- Andreazza, R.; Camargo, F.A.d.O.; Antoniolli, Z.I.; Quadro, M.S.; Barcelos, A.A. Biorremediação de áreas contaminadas com cobre. Rev. Ciências Agrárias 2013, 36, 127–136. [Google Scholar] [CrossRef]
- Rodrigues, A.C.D.; Santos, A.M.d.; Santos, F.S.d.; Pereira, A.C.C.; Sobrinho, N.M.B.A. Mecanismos de Respostas das Plantas à Poluição por Metais Pesados: Possibilidade de Uso de Macrófitas para Remediação de Ambientes Aquáticos Contaminados. Rev. Virtual Química 2016, 8, 262–276. [Google Scholar]
- Hall, J.L. Cellular Mechanisms for Heavy Metal Detoxification and Tolerance. J. Exp. Bot. 2002, 53, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Souza, V.C.d.; Silva, R.A.d.; Cardoso, G.D.; Barreto, A.F. Estudos sobre fungos micorrízicos. Rev. Bras. Eng. Agríc. Ambient. 2006, 10, 612–618. [Google Scholar] [CrossRef]
- Gomes, S.I.F.; Merckx, V.S.F.T.; Kehl, J.; Gebauer, G. Mycoheterotrophic Plants Living on Arbuscular Mycorrhizal Fungi Are Generally Enriched in 13C, 15N and 2H Isotopes. J. Ecol. 2020, 108, 1250–1261. [Google Scholar] [CrossRef]
- González-Guerrero, M.; Escudero, V.; Saéz, Á.; Tejada-Jiménez, M. Transition Metal Transport in Plants and Associated Endosymbionts: Arbuscular Mycorrhizal Fungi and Rhizobia. Front. Plant Sci. 2016, 7, 1088. [Google Scholar] [CrossRef]
- Chauhan, S.; Mahawar, S.; Jain, D.; Udpadhay, S.K.; Mohanty, S.R.; Singh, A.; Maharjan, E. Boosting Sustainable Agriculture by Arbuscular Mycorrhiza under Stress Condition: Mechanism and Future Prospective. BioMed Res. Int. 2022, 2022, 5275449. [Google Scholar] [CrossRef]
- Göhre, V.; Paszkowski, U. Contribution of the Arbuscular Mycorrhizal Symbiosis to Heavy Metal Phytoremediation. Planta 2006, 223, 1115–1122. [Google Scholar] [CrossRef]
- González-Chávez, M.C.; Carrillo-González, R.; Wright, S.F.; Nichols, K.A. The Role of Glomalin, a Protein Produced by Arbuscular Mycorrhizal Fungi, in Sequestering Potentially Toxic Elements. Environ. Pollut. 2004, 130, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ankit; Tiwari, J.; Bauddh, K. Frontiers|Plant-Mycorrhizal Fungi Interactions in Phytoremediation of Geogenic Contaminated Soils. Available online: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.843415/full (accessed on 31 October 2024).
- Wang, H.-R.; Zhao, X.-Y.; Zhang, J.-M.; Lu, C.; Feng, F.-J. Arbuscular Mycorrhizal Fungus Regulates Cadmium Accumulation, Migration, Transport, and Tolerance in Medicago Sativa. J. Hazard. Mater. 2022, 435, 129077. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.P.; Silva, G.H. Utilização do Salgueiro (Salix humboldtiana Willd) como espécie fitorremediadora em rejeitos da indústria de Zinco. Sci. For. 2011, 39, 117–123. [Google Scholar]
- Souza, E.P.d.; Silva, I.d.F.d.; Ferreira, L.E. Mecanismos de tolerância a estresses por metais pesados em plantas. Curr. Agric. Sci. Technol. 2011, 17, 167–173. [Google Scholar]
- Yang, Z.; Yang, F.; Liu, J.-L.; Wu, H.-T.; Yang, H.; Shi, Y.; Liu, J.; Zhang, Y.-F.; Luo, Y.-R.; Chen, K.-M. Heavy Metal Transporters: Functional Mechanisms, Regulation, and Application in Phytoremediation. Sci. Total Environ. 2022, 809, 151099. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; He, T.; Saleem, M.; He, G. Metalloprotein-Specific or Critical Amino Acid Residues: Perspectives on Plant-Precise Detoxification and Recognition Mechanisms under Cadmium Stress. Int. J. Mol. Sci. 2022, 23, 1734. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, R.; Ishimaru, Y.; Senoura, T.; Shimo, H.; Ishikawa, S.; Arao, T.; Nakanishi, H.; Nishizawa, N.K. The OsNRAMP1 Iron Transporter Is Involved in Cd Accumulation in Rice. J. Exp. Bot. 2011, 62, 4843–4850. [Google Scholar] [CrossRef]
- Liu, Q.; Zheng, X.; Du, R.; Shao, Y.; Wen, Q.; Shen, X.; Wang, F.; Qi, Y.; Shen, J.; Hu, Y. Enrichment Characteristics of Cd and Hg and Regulation of Heavy Metal Transporter Signaling in Pleurotus ostreatus. Sci. Total Environ. 2024, 955, 176909. [Google Scholar] [CrossRef]
- Plaza, S.; Tearall, K.L.; Zhao, F.-J.; Buchner, P.; McGrath, S.P.; Hawkesford, M.J. Expression and Functional Analysis of Metal Transporter Genes in Two Contrasting Ecotypes of the Hyperaccumulator Thlaspi Caerulescens. J. Exp. Bot. 2007, 58, 1717–1728. [Google Scholar] [CrossRef]
- Fan, W.; Liu, C.; Cao, B.; Qin, M.; Long, D.; Xiang, Z.; Zhao, A. Genome-Wide Identification and Characterization of Four Gene Families Putatively Involved in Cadmium Uptake, Translocation and Sequestration in Mulberry. Front. Plant Sci. 2018, 9, 879. [Google Scholar] [CrossRef]
- Midhat, L.; Ouazzani, N.; Hejjaj, A.; Ouhammou, A.; Mandi, L. Accumulation of Heavy Metals in Metallophytes from Three Mining Sites (Southern Centre Morocco) and Evaluation of Their Phytoremediation Potential. Ecotoxicol. Environ. Saf. 2019, 169, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Krämer, U. Metal Hyperaccumulation in Plants. Annu. Rev. Plant Biol. 2010, 61, 517–534. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, L.; Salahuddin; Khan, A.; Zhou, Y.; He, M.; Alrefaei, A.F.; Khan, M.; Ali, S. Physiological and Ultrastructural Changes in Dendranthema Morifolium Cultivars Exposed to Different Cadmium Stress Conditions. Agriculture 2023, 13, 317. [Google Scholar] [CrossRef]
- Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping Active Oxygen under Control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 249–279. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Zia Ur Rehman, M.; Rinklebe, J.; Tsang, D.C.W.; Bashir, A.; Maqbool, A.; Tack, F.M.G.; Ok, Y.S. Cadmium Phytoremediation Potential of Brassica Crop Species: A Review. Sci. Total Environ. 2018, 631–632, 1175–1191. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Dubey, R.S. Lead Toxicity Induces Lipid Peroxidation and Alters the Activities of Antioxidant Enzymes in Growing Rice Plants. Plant Sci. 2003, 164, 645–655. [Google Scholar] [CrossRef]
- Demarco, C.F.; Quadro, M.S.; Selau Carlos, F.; Pieniz, S.; Morselli, L.B.G.A.; Andreazza, R. Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives. Sustainability 2023, 15, 1411. [Google Scholar] [CrossRef]
- Guo, J.; Qin, S.; Rengel, Z.; Gao, W.; Nie, Z.; Liu, H.; Li, C.; Zhao, P. Cadmium Stress Increases Antioxidant Enzyme Activities and Decreases Endogenous Hormone Concentrations More in Cd-Tolerant than Cd-Sensitive Wheat Varieties. Ecotoxicol. Environ. Saf. 2019, 172, 380–387. [Google Scholar] [CrossRef]
- Kaya, C.; Akram, N.A.; Sürücü, A.; Ashraf, M. Alleviating Effect of Nitric Oxide on Oxidative Stress and Antioxidant Defence System in Pepper (Capsicum Annuum L.) Plants Exposed to Cadmium and Lead Toxicity Applied Separately or in Combination. Sci. Hortic. 2019, 255, 52–60. [Google Scholar] [CrossRef]
- Sepehri, A.; Gharehbaghli, N. Selenium Alleviate Cadmium Toxicity by Improving Nutrient Uptake, Antioxidative and Photosynthetic Responses of Garlic. Russ. J. Plant Physiol. 2019, 66, 152–159. [Google Scholar] [CrossRef]
- Vasconcellos, M.C.; Pagliuso, D.; Sotomaior, V.S. Fitorremediação: Uma proposta de descontaminação do solo. Estud. Biol. 2012, 34, 261–267. [Google Scholar] [CrossRef]
- Sutar, H.; Kumar, D. A Review on: Bioremediation. Int. J. Res. Chem. Environ. 2012, 2, 13–21. [Google Scholar]
- Kumar, V.; SHahi, S.; Singh, S. Bioremediation: An Eco-Sustainable Approach for Restoration of Contaminated Sites. In Microbial Bioprospecting for Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2018; pp. 115–136. ISBN 9789811300530. [Google Scholar]
- Tyagi, B.; Kumar, N. Chapter 1—Bioremediation: Principles and Applications in Environmental Management. In Bioremediation for Environmental Sustainability; Saxena, G., Kumar, V., Shah, M.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–28. ISBN 978-0-12-820524-2. [Google Scholar]
- Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation Techniques–Classification Based on Site of Application: Principles, Advantages, Limitations and Prospects. World J. Microbiol. Biotechnol. 2016, 32, 180. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Guo, S.; Ali, M.; Song, X.; Tang, Z.; Zhang, Z.; Zhang, M.; Luo, Y. Thermally Enhanced Bioremediation: A Review of the Fundamentals and Applications in Soil and Groundwater Remediation. J. Hazard. Mater. 2022, 433, 128749. [Google Scholar] [CrossRef] [PubMed]
- Kavamura, V.N.; Esposito, E. Biotechnological Strategies Applied to the Decontamination of Soils Polluted with Heavy Metals. Biotechnol. Adv. 2010, 28, 61–69. [Google Scholar] [CrossRef]
- Kuppan, N.; Padman, M.; Mahadeva, M.; Srinivasan, S.; Devarajan, R. A Comprehensive Review of Sustainable Bioremediation Techniques: Eco Friendly Solutions for Waste and Pollution Management. Waste Manag. Bull. 2024, 2, 154–171. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Zhakypbek, Y.; Kossalbayev, B.D.; Belkozhayev, A.M.; Murat, T.; Tursbekov, S.; Abdalimov, E.; Pashkovskiy, P.; Kreslavski, V.; Kuznetsov, V.; Allakhverdiev, S.I. Reducing Heavy Metal Contamination in Soil and Water Using Phytoremediation. Plants 2024, 13, 1534. [Google Scholar] [CrossRef]
- Ranjan, S.; Sow, S. Phytoremediation: An Eco-Friendly Approach towards Clean and Green Future. Pharma Innov. 2021, 10, 839–850. [Google Scholar] [CrossRef]
- Oubohssaine, M.; Dahmani, I. Phytoremediation: Harnessing Plant Power and Innovative Technologies for Effective Soil Remediation. Plant Stress 2024, 14, 100578. [Google Scholar] [CrossRef]
- Sabreena; Hassan, S.; Bhat, S.A.; Kumar, V.; Ganai, B.A.; Ameen, F. Phytoremediation of Heavy Metals: An Indispensable Contrivance in Green Remediation Technology. Plants 2022, 11, 1255. [Google Scholar] [CrossRef]
- Todde, G.; Carboni, G.; Marras, S.; Caria, M.; Sirca, C. Industrial Hemp (Cannabis sativa L.) for Phytoremediation: Energy and Environmental Life Cycle Assessment of Using Contaminated Biomass as an Energy Resource. Sustain. Energy Technol. Assess. 2022, 52, 102081. [Google Scholar] [CrossRef]
- Demarco, C.F.; Afonso, T.F.; Schoeler, G.P.; dos Santos Barboza, V.; dos Santos Rocha, L.; Pieniz, S.; Giongo, J.L.; de Almeida Vaucher, R.; Igansi, A.V.; Cadaval Jr, T.R.S. New Low-Cost Biofilters for SARS-CoV-2 Using Hymenachne Grumosa as a Precursor. J. Clean. Prod. 2022, 331, 130000. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Role of Hyperaccumulators in Phytoextraction of Metals From Contaminated Mining Sites: A Review. Crit. Rev. Environ. Sci. Technol. 2011, 41, 168–214. [Google Scholar] [CrossRef]
- Kumar, J.I.N.; Soni, H.; Kumar, R.N.; Bhatt, I. Macrophytes in Phytoremediation of Heavy Metal Contaminated Water and Sediments in Pariyej Community Reserve, Gujarat, India. Turk. J. Fish. Aquat. Sci. 2008, 8, 193–200. [Google Scholar]
- Guimaraes, F.P.; Aguiar, R.; Oliveira, J.A.; Silva, J.a.A.; Karam, D. Potential of Macrophyte for Removing Arsenic from Aqueous Solution. Planta Daninha 2012, 30, 683–696. [Google Scholar] [CrossRef]
- Dahmani-Muller, H.; van Oort, F.; Gélie, B.; Balabane, M. Strategies of Heavy Metal Uptake by Three Plant Species Growing near a Metal Smelter. Environ. Pollut. 2000, 109, 231–238. [Google Scholar] [CrossRef]
- Susarla, S.; Medina, V.; Mccutcheon, S. Phytoremediation: An Ecological Solution to Organic Chemical Contamination. Ecol. Eng. 2002, 18, 647–658. [Google Scholar] [CrossRef]
- Document Display|NEPIS|US EPA. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/30003T7G.txt?ZyActionD=ZyDocument&Client=EPA&Index=1995%20Thru%201999&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5CZYFILES%5CINDEX%20DATA%5C95THRU99%5CTXT%5C00000016%5C30003T7G.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r65g4/r65g4/x150y150g16/i360&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=2 (accessed on 6 September 2024).
- Khan, A.H.A.; Kiyani, A.; Santiago-Herrera, M.; Ibáñez, J.; Yousaf, S.; Iqbal, M.; Martel-Martín, S.; Barros, R. Sustainability of Phytoremediation: Post-Harvest Stratagems and Economic Opportunities for the Produced Metals Contaminated Biomass. J. Environ. Manag. 2023, 326, 116700. [Google Scholar] [CrossRef]
- Alkorta, I.; Hernandez-Allica, J.; Becerril, J.; Amezaga, I.; Albizu, I.; Garbisu, C. Recent Findings on the Phytoremediation of Soils Contaminated with Environmentally Toxic Heavy Metals and Metalloids Such as Zinc, Cadmium, Lead, and Arsenic. Rev. Environ. Sci. Bio/Technol. 2004, 3, 71–90. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, B.; Manchanda, V.K. Phytoremediation: Role of Terrestrial Plants and Aquatic Macrophytes in the Remediation of Radionuclides and Heavy Metal Contaminated Soil and Water. Environ. Sci. Pollut. Res. Int. 2015, 22, 946–962. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Khan, A.H.A.; Hussain, I.; Farooqi, A.; Muhammad, Y.S.; Iqbal, M.; Arslan, M.; Yousaf, S. Soil Conditioners Improve Rhizodegradation of Aged Petroleum Hydrocarbons and Enhance the Growth of Lolium Multiflorum. Environ. Sci. Pollut. Res. 2022, 29, 9097–9109. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, B.; Ma, Y.; Zhang, X.; Lyu, W.; Chen, M. Stabilization of Heavy Metals in Biochar Derived from Plants in Antimony Mining Area and Its Environmental Implications. Environ. Pollut. 2022, 300, 118902. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, T.; Wang, W.; Zhao, J.; Li, Z.; Ge, Y.; Wang, Z.; Wu, L.; Christie, P. Phytoextraction of Highly Cadmium-Polluted Agricultural Soil by Sedum plumbizincicola: An Eight-Hectare Field Study. Sci. Total Environ. 2023, 905, 167216. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xing, X.; Liang, J.; Peng, J.; Zhou, J. In Situ Phytoremediation of Copper and Cadmium in a Co-Contaminated Soil and Its Biological and Physical Effects. RSC Adv. 2019, 9, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Saldarriaga, J.F.; López, J.E.; Díaz-García, L.; Montoya-Ruiz, C. Changes in Lolium Perenne L. Rhizosphere Microbiome during Phytoremediation of Cd- and Hg-Contaminated Soils. Environ. Sci. Pollut. Res. 2023, 30, 49498–49511. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, L.; Liu, Q.; Sikder, M.M.; Vestergård, M.; Zhou, K.; Wang, Q.; Yang, X.; Feng, Y. Pseudomonas fluorescens Promote Photosynthesis, Carbon Fixation and Cadmium Phytoremediation of Hyperaccumulator Sedum alfredii. Sci. Total Environ. 2020, 726, 138554. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Kaur, J.; Shukla, A.K.; Singh, J.; Singh, P. Cadmium Phytoremediation Potential of Brassica Genotypes Grown in Cd Spiked Loamy Sand Soils: Accumulation and Tolerance. Chemosphere 2022, 302, 134842. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Schwantes, D.; Braga de Sousa, R.F.; Benetoli da Silva, T.R.; Guimarães, V.F.; Campagnolo, M.A.; Soares de Vasconcelos, E.; Zimmermann, J. Phytoremediation Capacity, Growth and Physiological Responses of Crambe abyssinica Hochst on Soil Contaminated with Cd and Pb. J. Environ. Manag. 2020, 262, 110342. [Google Scholar] [CrossRef]
- Mo, Y.; Zou, D.; Xiong, J.; Kang, J.; Yang, Y.; Wu, Q.; Zeng, X.; Xiao, Z. Enhanced Cd Accumulation and Yield in Peanut (Arachis hypogaea L.) via Combined Chlorine-Containing Fertiliser Application. Ind. Crops Prod. 2024, 222, 119698. [Google Scholar] [CrossRef]
- Meeinkuirt, W.; Phusantisampan, T.; Kubola, J.; Chumroenphat, T.; Pichtel, J. Phytomanagement of Cadmium Using Tagetes Erecta in Greenhouse and Field Conditions. J. Hazard. Mater. Adv. 2024, 16, 100481. [Google Scholar] [CrossRef]
- Ozurumba, Z.N.; Tanee, F.B.G.; Agbagwa, I.O. Phytoextraction Potential of Canna indica (L.) for Cd Removal from a Hydroponic System. Chem. Ecol. 2024, 40, 466–485. [Google Scholar] [CrossRef]
- Schnabel, B.; Wright, S.; Miller, R.; Bryant, L.D.; Kjeldsen, T.R.; Maconachie, R.; Gbanie, S.P.; Bangura, K.S.; Kamara, A.J. Urban Surface Water Quality and the Potential of Phytoremediation to Improve Water Quality in Peri-Urban and Urban Areas in Sub-Saharan Africa—A Review. Water Supply 2022, 22, 8372–8404. [Google Scholar] [CrossRef]
- Hosseinniaee, S.; Jafari, M.; Tavili, A.; Zare, S.; Cappai, G.; De Giudici, G. Perspectives for Phytoremediation Capability of Native Plants Growing on Angouran Pb–Zn Mining Complex in Northwest of Iran. J. Environ. Manag. 2022, 315, 115184. [Google Scholar] [CrossRef] [PubMed]
- Lan, W.; Zhou, Q.; Li, J.; Liu, M.; Deng, Y.; Huang, Y.; Zhou, Y.; Yang, H.; Xiao, Y. Investigation of Cd and Pb Enrichment Capacities of Erigeron sumatrensis across Three Polluted Regions: Insights into Soil Parameters and Microbial Communities. Environ. Res. 2024, 262, 119868. [Google Scholar] [CrossRef]
- Zhou, Y.; Lan, W.; Yang, F.; Zhou, Q.; Liu, M.; Li, J.; Yang, H.; Xiao, Y. Invasive Amaranthus Spp. for Heavy Metal Phytoremediation: Investigations of Cadmium and Lead Accumulation and Soil Microbial Community in Three Zinc Mining Areas. Ecotoxicol. Environ. Saf. 2024, 285, 117040. [Google Scholar] [CrossRef]
- Zakaria, Z.; Zulkafflee, N.S.; Mohd Redzuan, N.A.; Selamat, J.; Ismail, M.R.; Praveena, S.M.; Tóth, G.; Abdull Razis, A.F. Understanding Potential Heavy Metal Contamination, Absorption, Translocation and Accumulation in Rice and Human Health Risks. Plants 2021, 10, 1070. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, F.; Zafar, A.; Khan, Z.I.; Ahmad, K.; Ch, S.A.; Batool, A.I.; Nadeem, M. Assessment of Potential Toxicological Risk for Public Health of Heavy Metal Iron in Diverse Wheat Varieties Irrigated with Various Types of Waste Water in South Asian Country. Agric. Water Manag. 2023, 276, 108044. [Google Scholar] [CrossRef]
- Soubasakou, G.; Cavoura, O.; Damikouka, I. Phytoremediation of Cadmium-Contaminated Soils: A Review of New Cadmium Hyperaccumulators and Factors Affecting Their Efficiency. Bull. Environ. Contam. Toxicol. 2022, 109, 783–787. [Google Scholar] [CrossRef]
Plant Species | Cd Levels | Photosynthetic Parameters | Reference |
---|---|---|---|
Oenanthe javanica | 100 mg L−1 | Impacting PSII reaction centers during the initial to mid-phases, followed by a reduction in PSI activity at the later phase | Zhou et al. [40] |
Momordica charantia | 2 mg kg−1 and 5 mg kg−1 | Decreased levels of chlorophyll a, chlorophyll b, and total chlorophyll. | Zafar-Ul-Hye et al. [41] |
Oryza sativa | 10 μM | Reduced chlorophyll a, chlorophyll b, and total chlorophyll content | Bari et al. [42] |
Cucumis sativus | 5, 10, 15 μM | Decreased chlorophyll content associated with higher metal concentrations | Dresler et al. [43] |
Plant Species | Cd Levels | Effects on Antioxidative Activity | Reference |
---|---|---|---|
T. aestivum | 3 mg kg−1 | Enhanced activities of SOD, POD and CAT | Guo et al. [72] |
C. annuum | 0.1 mM | Activated activities SOD, POD, CAT, and lipoxygenase (LOX), accompanied by the buildup of glutathione and ascorbic acid. | Kaya et al. [73] |
O. sativa | 10 μM | Increase in the activities of SOD, CAT, APOX, GR and non-enzymatic antioxidant capacities. | Bari et al. [42] |
A. sativum | 10−4, 10−3 and 10−2 M | Reduced activities (SOD, APOX, and CAT) in a dose-dependent | Sepehri and Gharehbaghli [74] |
Bioremediation Method | Pros | Cons |
---|---|---|
In situ | Minimizes disturbance to the site and surrounding environment; | Limited to the effectiveness of native microbial populations; |
Generally lower costs due to reduced excavation and transportation; | May require long remediation times; | |
Allows for natural processes to occur, which can enhance treatment effectiveness; | Effectiveness can be influenced by environmental conditions (e.g., pH, temperature) and contaminant availability; | |
Ex situ | Allows for controlled conditions, enhancing treatment efficiency; | Higher costs due to excavation and transport of contaminated materials; |
Facilitates monitoring and optimization of microbial processes; | Potential for secondary contamination during the transport and treatment process; | |
Can treat a wider range of contaminants effectively. | May not address site-specific conditions and challenges. |
Methods | Principles |
---|---|
Natural attenuation (in situ) | These are naturally occurring microorganisms found in the soil or substrates that have the capability for biodegradation. |
Bioaugmentation (in situ) | Introduction of external microorganisms capable of breaking down contaminants that the native microbiota cannot easily degrade. |
Biostimulation (in situ) | Introducing surfactants or nutrients to enhance the activity of native microorganisms or improve the bioavailability of the pollutant, thereby accelerating its degradation. |
Bioleaching (in situ) | Certain microorganisms, like T. thiooxidans and Thiobacillus ferrooxidans, facilitate the solubilization of metals. |
Bioventilation (in situ) | This process involves aerating the soil to eliminate volatile compounds and utilizing oxygen to break down organic contaminants. |
Composting (ex situ) | The breakdown of organic contaminants through aerobic processes involving thermophilic microorganisms. |
Landfarming (ex situ) | The soil is arranged into mounds and periodically overturned using agricultural methods to promote degradation by native microorganisms. |
Phytoremediation (in situ or ex situ) | The use of plants to break down, extract, contain, or immobilize contaminants in soil and water. |
Huayuan | Liuyang | Yueyang | |
---|---|---|---|
Erigeron sumatrensis [112] | |||
pH | 5.69 | 5.5 | 7 |
Soil OM (g/kg) | 30.24 | 21.28 | 41.7 |
Soil Cd (mg/kg) | 8.91 | 0.55 | 0.38 |
Soil Pb (mg/kg) | 245.17 | 311.75 | 65.46 |
Root Cd (mg/kg) | 3.09 | 7.54 | 3.51 |
Steam Cd (mg/kg) | 6 | 11.29 | 9.71 |
Leaf Cd (mg/kg) | 2.85 | 4.01 | 8.48 |
BCF | 0.42 | 13.83 | 9.47 |
TF | 2.21 | 1.53 | 3.31 |
Amaranthus [113] | |||
pH | 6.22 | 7.03 | 6.41 |
Soil OM (g/kg) | 34.75 | 38.65 | 6.84 |
Soil Cd (mg/kg) | 4.19 | 1.64 | 0.2 |
Soil Pb (mg/kg) | 137.21 | 343.39 | 33.06 |
Root Cd (mg/kg) | 3.93 | 0.5 | 0.57 |
Steam Cd (mg/kg) | 3.6 | 0.17 | 0.45 |
Leaf Cd (mg/kg) | 7.98 | 0.46 | 0.6 |
BCF | 0.98 | 0.31 | 3.15 |
TF | 1.03 | 0.3 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farias, J.P.; Okeke, B.C.; Demarco, C.F.; Carlos, F.S.; da Silva, R.F.; da Silva, M.A.; Quadro, M.S.; Pieniz, S.; Andreazza, R. Cadmium Contamination in Aquatic Environments: Detoxification Mechanisms and Phytoremediation Approach. Sustainability 2024, 16, 10072. https://doi.org/10.3390/su162210072
Farias JP, Okeke BC, Demarco CF, Carlos FS, da Silva RF, da Silva MA, Quadro MS, Pieniz S, Andreazza R. Cadmium Contamination in Aquatic Environments: Detoxification Mechanisms and Phytoremediation Approach. Sustainability. 2024; 16(22):10072. https://doi.org/10.3390/su162210072
Chicago/Turabian StyleFarias, Josiane Pinheiro, Benedict C. Okeke, Carolina Faccio Demarco, Filipe Selau Carlos, Rodrigo Ferreira da Silva, Marcos Antonio da Silva, Maurízio Silveira Quadro, Simone Pieniz, and Robson Andreazza. 2024. "Cadmium Contamination in Aquatic Environments: Detoxification Mechanisms and Phytoremediation Approach" Sustainability 16, no. 22: 10072. https://doi.org/10.3390/su162210072
APA StyleFarias, J. P., Okeke, B. C., Demarco, C. F., Carlos, F. S., da Silva, R. F., da Silva, M. A., Quadro, M. S., Pieniz, S., & Andreazza, R. (2024). Cadmium Contamination in Aquatic Environments: Detoxification Mechanisms and Phytoremediation Approach. Sustainability, 16(22), 10072. https://doi.org/10.3390/su162210072