Resilient Coastal Protection Infrastructures: Probabilistic Sensitivity Analysis of Wave Overtopping Using Gaussian Process Surrogate Models
Abstract
1. Introduction
2. Wave Overtopping Processes
3. Database
4. Method
4.1. Probabilistic Sensitivity Analysis
4.1.1. Function Decomposition for Main Effects and Interactions
4.1.2. Variance-Based Methods
4.2. Emulator-Based Sensitivity Analysis
4.2.1. Gaussian Process Emulators
4.2.2. Analysis of Main Effects and Interactions
5. Results
5.1. Data Preparation and Initial Examination of the CLASH Dataset
- Database cleaning and the selection of a highly reliable subset.
- Perform an exploratory analysis of the subset.
- Fit a Gaussian process regression model for the selected subset of the dataset.
- Compute the SA measures, including the variance-based indexes and the main effects.
- Illustrate the corresponding SA plots.
- Interpret the SA results, perform an uncertainty analysis, and draw conclusions about the most influencing input parameters affecting the wave overtopping.
5.2. GP-Based Sensitivity Analysis for the Wave Overtopping Dataset
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. Fact Sheet: People and Oceans. 2007. Available online: https://sustainabledevelopment.un.org/content/documents/Ocean_Factsheet_People.pdf (accessed on 4 September 2024).
- Lee, J.Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. Future global climate: Scenario-based projections and near-term information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; pp. 553–672. [Google Scholar]
- Fanous, M.; Eden, J.M.; Remesan, R.; Daneshkhah, A. Challenges and prospects of climate change impact assessment on mangrove environments through mathematical models. Environ. Model. Softw. 2023, 162, 105658. [Google Scholar] [CrossRef]
- United Nations. The Climate Crisis—A Race We Can Win. 2020. Available online: https://www.un.org/en/un75/climate-crisis-race-we-can-win (accessed on 4 September 2024).
- Jevrejeva, S.; Jackson, L.; Grinsted, A.; Lincke, D.; Marzeion, B. Flood damage costs under the sea level rise with warming of 1.5 °C and 2 °C. Environ. Res. Lett. 2018, 13, 074014. [Google Scholar] [CrossRef]
- Donnelly, J.; Abolfathi, S.; Daneshkhah, A. A physics-informed neural network surrogate model for tidal simulations. In Proceedings of the 5th ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Science and Engineering, Athens, Greece, 12–14 June 2023; pp. 836–844. [Google Scholar]
- Liu, N.; Salauddin, M.; Yeganeh-Bakhtiari, A.; Pearson, J.; Abolfathi, S. The impact of eco-retrofitting on coastal resilience enhancement—A physical modelling study. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Mohali, India, 23–24 June 2022; IOP Publishing: Bristol, UK, 2022; Volume 1072, p. 012005. [Google Scholar]
- Gallien, T.; Sanders, B.; Flick, R. Urban coastal flood prediction: Integrating wave overtopping, flood defenses and drainage. Coast. Eng. 2014, 91, 18–28. [Google Scholar] [CrossRef]
- Xie, D.; Zou, Q.P.; Mignone, A.; MacRae, J.D. Coastal flooding from wave overtopping and sea level rise adaptation in the northeastern USA. Coast. Eng. 2019, 150, 39–58. [Google Scholar] [CrossRef]
- Lynett, P.J.; Melby, J.A.; Kim, D.H. An application of Boussinesq modelling to hurricane wave overtopping and inundation. Ocean Eng. 2010, 37, 135–153. [Google Scholar] [CrossRef]
- Gallien, T. Validated coastal flood modelling at Imperial Beach, California: Comparing total water level, empirical and numerical overtopping methodologies. Coast. Eng. 2016, 111, 95–104. [Google Scholar] [CrossRef]
- Abolfathi, S.; Pearson, J. Numerical Modelling of Wave Runup & Overtopping under Influence of Complex Geometries. Coast. Eng. Proc. 2018, 1, 44. [Google Scholar]
- Torabbeigi, M.; Akbari, H.; Adibzade, M.; Abolfathi, S. modelling wave dynamics with coastal vegetation using a smoothed particle hydrodynamics porous flow model. Ocean Eng. 2024, 311, 118756. [Google Scholar] [CrossRef]
- Pillai, K.; Etemad-Shahidi, A.; Lemckert, C. Wave overtopping at berm breakwaters: Experimental study and development of prediction formula. Coast. Eng. 2017, 130, 85–102. [Google Scholar] [CrossRef]
- De Chowdhury, S.; Anand, K.; Sannasiraj, S.; Sundar, V. Nonlinear wave interaction with curved front seawalls. Ocean Eng. 2017, 140, 84–96. [Google Scholar] [CrossRef]
- Salauddin, M.; Pearson, J. Wave overtopping and toe scouring at a plain vertical seawall with shingle foreshore: A physical model study. Ocean Eng. 2019, 171, 286–299. [Google Scholar] [CrossRef]
- Battjes, J.A. Surf similarity. In Coastal Engineering 1974; American Society of Civil Engineers: Reston, VA, USA, 1974; pp. 466–480. [Google Scholar]
- Besley, P.; Stewart, T.; Allsop, N. Overtopping of vertical structures: New prediction methods to account for shallow water conditions. In Proceedings of the Coastlines, Structures and Breakwaters, London, UK, 19–20 March 1998; pp. 46–57. [Google Scholar]
- Goda, Y. Derivation of unified wave overtopping formulas for seawalls with smooth, impermeable surfaces based on selected CLASH datasets. Coast. Eng. 2009, 56, 385–399. [Google Scholar] [CrossRef]
- Van der Meer, J.; Sigurdarson, S. Geometrical design of berm breakwaters. Coast. Eng. Proc. 2014, 1, 25. [Google Scholar] [CrossRef]
- Sigurdarson, S.; Van der Meer, J. Design and Construction of Berm Breakwaters; World Scientific: Singapore, 2016; Volume 40. [Google Scholar]
- Allsop, W.; Bruce, T.; Pearson, J.; Besley, P. Wave overtopping at vertical and steep seawalls. In Proceedings of the Institution of Civil Engineers-Maritime Engineering; Thomas Telford Ltd.: London, UK, 2005; Volume 158, pp. 103–114. [Google Scholar]
- Pullen, T.; Allsop, N.; Pearson, J.; Bruce, T. Violent wave overtopping discharges and the safe use of seawalls. In Proceedings of the Defra Flood & Coastal Management Conference, York, UK, 29 June–1 July 2004; Flood Management Division, Department for Environment Food and Rural Affairs: London, UK, 2004. [Google Scholar]
- van der Meer, J.W.; Verhaeghe, H.; Steendam, G.J. The new wave overtopping database for coastal structures. Coast. Eng. 2009, 56, 108–120. [Google Scholar] [CrossRef]
- De Rouck, J.; Van der Meer, J.; Allsop, N.; Franco, L.; Verhaeghe, H. Wave overtopping at coastal structures: Development of a database towards up-graded prediction methods. In Coastal Engineering 2002: Solving Coastal Conundrums; World Scientific: Singapore, 2003; pp. 2140–2152. [Google Scholar]
- Van der Meer, J. Technical Report Wave Run-Up and Wave Overtopping at Dikes. TAW Report (Incorporated in the EurOtop Manual). 2002. Available online: http://www.overtopping-manual.com/assets/downloads/TRRunupOvertopping.pdf (accessed on 31 May 2002).
- Van der Meer, J.; Allsop, N.; Bruce, T.; De Rouck, J.; Kortenhaus, A.; Pullen, T.; Schüttrumpf, H.; Troch, P.; Zanuttigh, B. Manual on Wave Overtopping of Sea Defences and Related Structures: An Overtopping Manual Largely Based on European Research, But for Worldwide Application; EurOtop: London, UK, 2016; p. 264. [Google Scholar]
- Steendam, G.J.; Van Der Meer, J.W.; Verhaeghe, H.; Besley, P.; Franco, L.; Van Gent, M.R. The international database on wave overtopping. In Coastal Engineering 2004: (In 4 Volumes); World Scientific: Singapore, 2005; pp. 4301–4313. [Google Scholar]
- Sobol, I.M. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414. [Google Scholar]
- Saltelli, A.; Tarantola, S.; Chan, K.S. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 1999, 41, 39–56. [Google Scholar] [CrossRef]
- Sudret, B. Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2008, 93, 964–979. [Google Scholar] [CrossRef]
- Oakley, J.E.; O’Hagan, A. Probabilistic sensitivity analysis of complex models: A Bayesian approach. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2004, 66, 751–769. [Google Scholar] [CrossRef]
- Daneshkhah, A.; Bedford, T. Probabilistic sensitivity analysis of system availability using Gaussian processes. Reliab. Eng. Syst. Saf. 2013, 112, 82–93. [Google Scholar] [CrossRef]
- Homma, T.; Saltelli, A. Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 1996, 52, 1–17. [Google Scholar] [CrossRef]
- Sacks, J.; Welch, W.J.; Mitchell, T.J.; Wynn, H.P. Design and analysis of computer experiments. Stat. Sci. 1989, 4, 409–435. [Google Scholar] [CrossRef]
- Kennedy, M.C.; O’Hagan, A. Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2001, 63, 425–464. [Google Scholar] [CrossRef]
- O’Hagan, A.; Bernardo, J.M.; Berger, J.O.; Dawid, A.P. Uncertainty Analysis and other Inference Tools for Complex Computer Codes; Smith, A.F.M., Dyy, M.C., Oakley, J.E., Eds.; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Erdik, T.; Savci, M.; Şen, Z. Artificial neural networks for predicting maximum wave runup on rubble mound structures. Expert Syst. Appl. 2009, 36, 6403–6408. [Google Scholar] [CrossRef]
- van Gent, M.R.; van den Boogaard, H.F.; Pozueta, B.; Medina, J.R. Neural network modelling of wave overtopping at coastal structures. Coast. Eng. 2007, 54, 586–593. [Google Scholar] [CrossRef]
- Taddy, M.A.; Lee, H.K.; Gray, G.A.; Griffin, J.D. Bayesian guided pattern search for robust local optimization. Technometrics 2009, 51, 389–401. [Google Scholar] [CrossRef]
- Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 2016, 79, 214–232. [Google Scholar] [CrossRef]
- Kennedy, M.; Petropoulos, G. GEM-SA: The Gaussian Emulation Machine for Sensitivity Analysis. In Sensitivity Analysis in Earth Observation Modelling; Elsevier: Amsterdam, The Netherlands, 2017; pp. 341–361. [Google Scholar]
- Quinonero-Candela, J.; Rasmussen, C.E. A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 2005, 6, 1939–1959. [Google Scholar]
Parameter | Range | Parameter | Range | Description |
Structural parameters | Hydrodynamic parameters | |||
(0, 100) | (0.003, 5.920) | |||
(6, 1000) | [0.545, 15] | |||
(0.029, 9.32) | (0.454, 12.5) | = | ||
(0.025, 7.78) | (0.495, 13.636) | = | ||
(0, 10) | (0, 80) | |||
(0.35, 1) | (0.003, 3.8) | =4 | ||
(0, 7) | (0.545, 16.4) | |||
(−5, 9.706) | (0.454, 11.881) | |||
(−1.533, 8.144) | (0.495, 10.64) | |||
(−1.533, 12.821) | (0, ) | |||
(0, 8.345) | (0, 81) | |||
(0, 8) | ||||
(−0.208, 1.175) | General parameters | |||
(0, 0.125) | (1, 4) | |||
(0, 8) | (1, 4) | |||
(0, 7.87) | ||||
(0, 5.6) |
Parameters | Variance (%) | Total Effect |
---|---|---|
Signif wave height () | 10.93 | 11.22 |
Peak period in the deep () | 5.53 | 5.83 |
Mean period m2/m0, deep () | 0.79 | 0.89 |
Mean period, deep () | 7.63 | 7.77 |
Off-shore Water depth, () | 1.93 | 2.04 |
Slope of foreshore (m) | 1.28 | 1.38 |
Angle of wave attack () | 0.85 | 0.96 |
Water depth at toe (h) | 1.59 | 1.69 |
Signif wave height at toe () | 8.11 | 8.22 |
Peak period, toe () | 15.75 | 15.86 |
Mean wave period, toe () | 8.48 | 8.59 |
Spectral wave period at toe () | 4.06 | 4.17 |
Water depth on toe () | 1.27 | 1.40 |
Toe width () | 0.95 | 1.06 |
Roughness/perm factor () | 0.06 | 0.17 |
Cot downward slope, berm () | 4.01 | 4.30 |
Cot upward slope, berm () | 0.65 | 0.68 |
Cot slope, excl berm () | 16.91 | 17.02 |
Cot slope, incl berm () | 1.07 | 1.37 |
Crest freeboard () | 0.74 | 1.04 |
Width of berm (B) | 2.15 | 2.22 |
Water depth on berm () | 2.51 | 2.65 |
tan of slope of berm () | 0.32 | 0.43 |
Width of horizontally schematised berm () | 1.50 | 1.62 |
Width of crest () | 0.39 | 0.50 |
Armour crest freeboard () | 0.20 | 0.31 |
Total variance (%) | 99.64 | |
Estimated mean output | 0.00779018 | |
Estimated variance output |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kent, P.; Abolfathi, S.; Al Ali, H.; Sedighi, T.; Chatrabgoun, O.; Daneshkhah, A. Resilient Coastal Protection Infrastructures: Probabilistic Sensitivity Analysis of Wave Overtopping Using Gaussian Process Surrogate Models. Sustainability 2024, 16, 9110. https://doi.org/10.3390/su16209110
Kent P, Abolfathi S, Al Ali H, Sedighi T, Chatrabgoun O, Daneshkhah A. Resilient Coastal Protection Infrastructures: Probabilistic Sensitivity Analysis of Wave Overtopping Using Gaussian Process Surrogate Models. Sustainability. 2024; 16(20):9110. https://doi.org/10.3390/su16209110
Chicago/Turabian StyleKent, Paul, Soroush Abolfathi, Hannah Al Ali, Tabassom Sedighi, Omid Chatrabgoun, and Alireza Daneshkhah. 2024. "Resilient Coastal Protection Infrastructures: Probabilistic Sensitivity Analysis of Wave Overtopping Using Gaussian Process Surrogate Models" Sustainability 16, no. 20: 9110. https://doi.org/10.3390/su16209110
APA StyleKent, P., Abolfathi, S., Al Ali, H., Sedighi, T., Chatrabgoun, O., & Daneshkhah, A. (2024). Resilient Coastal Protection Infrastructures: Probabilistic Sensitivity Analysis of Wave Overtopping Using Gaussian Process Surrogate Models. Sustainability, 16(20), 9110. https://doi.org/10.3390/su16209110