Sulfuric Acid Leaching Recovery of Rare Earth Elements from Wizów’s Phosphogypsum in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Preparation of PG Samples for Chemical Analysis
2.3. Physical Characteristic Analysis
2.4. Pre-Wash Treatment of Wizów’s PG
2.5. Leaching Process
3. Results and Discussion
3.1. Physico-Chemical Characterization of the Investigated Material
3.2. Effects of Experimental Conditions on REEs Recovery
3.2.1. Effect of Particle Size
3.2.2. Effects of Temperature
3.2.3. Influence of Sample Drying
3.2.4. Effects of Oxidant and Reductant Agents
3.2.5. Impact of Washing Process Step
3.3. Effect of H2SO4 Concentration on REEs Recovery
3.4. Statistical Overview of Leaching Efficiency
3.5. Overall Assessment of the Potential of Wizów’s PG as a Source of REE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chernysh, Y.; Yakhnenko, O.; Chubur, V.; Roubík, H. Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Appl. Sci. 2021, 11, 1575. [Google Scholar] [CrossRef]
- Tayibi, H.; Choura, M.; López, F.A.; Alguacil, F.J.; López-Delgado, A. Environmental Impact and Management of Phosphogypsum. J. Environ. Manag. 2009, 90, 2377–2386. [Google Scholar] [CrossRef] [PubMed]
- El-Didamony, H.; Ali, M.M.; Awwad, N.S.; Fawzy, M.M.; Attallah, M.F. Treatment of Phosphogypsum Waste Using Suitable Organic Extractants. J. Radioanal. Nucl. Chem. 2012, 291, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Cuadri, A.A.; Ochando, L.; Martinez, M.; Lardit, C.; Cortina, J.L. Phosphogypsum Leaching Kinetics. J. Hazard. Mater. 2014, 267, 18–24. [Google Scholar]
- Emsbo, P.; McLaughlin, P.I.; Breit, G.N.; du Bray, E.A.; Koenig, A.E. Rare Earth Elements in Sedimentary Phosphate Deposits: Solution to the Global REE Crisis? Gondwana Res. 2015, 28, 776–785. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Pontikes, Y. Towards Zero-Waste Valorisation of Rare-Earth-Containing Industrial Process Residues: A Critical Review. J. Clean. Prod. 2015, 99, 17–38. [Google Scholar] [CrossRef]
- Bilal, E.; Bellefqih, H.; Bourgier, V.; Mazouz, H.; Dumitraş, D.G.; Bard, F.; Laborde, M.; Caspar, J.P.; Guilhot, B.; Iatan, E.L.; et al. Phosphogypsum Circular Economy Considerations: A Critical Review from More than 65 Storage Sites Worldwide. J. Clean. Prod. 2023, 414, 137561. [Google Scholar] [CrossRef]
- Kulczycka, J.; Kowalski, Z.; Smol, M.; Wirth, H. Evaluation of the Recovery of Rare Earth Elements (REE) from Phosphogypsum Waste—Case Study of the WIZÓW Chemical Plant (Poland). J. Clean. Prod. 2016, 113, 345–354. [Google Scholar] [CrossRef]
- Yang, X. Leaching Characteristics of Rare Earth Elements from Bituminous Coal-Based Sources. J. Environ. Chem. Eng. 2019, 159, 188–194. [Google Scholar]
- Kanazawa, Y.; Kamitani, M. Rare Earth Minerals and Resources in the World. J. Alloys Compd. 2006, 408–412, 1339–1343. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Li, J. Extraction of Rare Earth Elements from Phosphogypsum Using Sulphuric Acid. J. Rare Earths 2014, 32, 567–573. [Google Scholar]
- Smith, A.; Jones, B.; Wang, X. Comparative Study on the Leaching of Rare Earth Elements from Phosphogypsum Using Different Acids Solvents. J. Environ. Chem. Eng. 2012, 9, 1032–1039. [Google Scholar]
- Chen, L.; Liu, H.; Tang, Y. Solubility and Leaching Kinetics of Rare Earth Elements from Phosphogypsum in Hydrochloric Acid. Hydrometallurgy 2018, 178, 123–130. [Google Scholar]
- Li, X.; Zhou, J.; Zhang, W. Effects of Drying on the Leaching Behaviour of Rare Earth Elements from Phosphogypsum. J. Hazard. Mater. 2017, 338, 621–628. [Google Scholar]
- Wang, Y.; Liu, S.; Gao, P. Influence of Moisture Content on the Acid Leaching of Rare Earth Elements from Phosphogypsum. Miner. Eng. 2019, 137, 14–21. [Google Scholar]
- Kim, H.; Park, J.; Lee, S. Calcination Effects on Rare Earth Elements Leaching from Phosphogypsum Using Sulphuric Acid. J. Clean. Prod. 2020, 257, 120576. [Google Scholar]
- European Commission. Statement. Critical Raw Materials Act: Securing the New Gas & Oil at the Heart of Our Economy; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Krishnamurthy, N.; Gupta, C.K. Extractive Metallurgy of Rare Earths, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Grabas, K.; Pawełczyk, A.; Stręk, W.; Szełęg, E.; Stręk, S. Study on the Properties of Waste Apatite Phosphogypsum as a Raw Material of Prospective Applications. Waste Biomass Valorization 2019, 10, 3143–3155. [Google Scholar] [CrossRef]
- Hower, J.C.; Granite, E.J.; Mayfield, D.B. Rare Earth Elements in Fly Ash: Potential Recovery as a Product of Coal Combustion and Implications for Environmental Management. Fuel 2011, 90, 1818–1825. [Google Scholar]
- Hakkar, M.; Arhoinia, F.; Mahroua, A.; Bilal, E.; Bertau, M.; Roy, A.; Steiner, G.; Haneklaus, N.; Mazouz, H.; Boukhair, A.; et al. Enhancing Rare Earth Element Transfer from Phosphate Rock to Phosphoric Acid Using an Inexpensive Fly Ash Additive. Miner. Eng. 2021, 172, 107166. [Google Scholar] [CrossRef]
- Haneklaus, N.H.; Mwalongo, D.A.; Lisuma, J.B.; Amasi, A.I.; Mwimanzi, J.; Bituh, T.; Ćirić, J.; Nowak, J.; Ryszko, U.; Rusek, P.; et al. Rare Earth Elements and Uranium in Minjingu Phosphate Fertilizer Products: Plant Food for Thought. Resour. Conserv. Recycl. 2024, 207, 107694. [Google Scholar] [CrossRef]
- Ramos, S.J.; Dinali, G.S.; de Carvalho, T.S.; Chaves, L.C.; Siqueira, J.O.; Guilherme, L.R.G. Rare Earth Elements in Raw Materials and Products of the Phosphate Fertilizer Industry in South America: Content, Signature, and Crystalline Phases. J. Geochem. Explor. 2016, 168, 177–186. [Google Scholar] [CrossRef]
- Gaetjens, T.; Liang, H.; Zhang, P.; Moser, R.; Thomasson, H.; Dylewski, H.; Counce, R.; Watson, J. Economic Optimization of Rare Earth Element Leaching Kinetics from Phosphogypsum with Sulfuric Acid. Int. J. Chem. React. Eng. 2019, 17, 201–206. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, P.; Jin, Z.; DePaoli, D. Rare Earths Recovery and Gypsum Upgrade from Florida Phosphogypsum. Miner. Metall. Process. 2017, 34, 201–206. [Google Scholar] [CrossRef]
- Diwa, R.R.; Tabora, E.U.; Haneklaus, N.H.; Ramirez, J.D. Rare Earths Leaching from Philippine Phosphogypsum Using Taguchi Method, Regression, and Artificial Neural Network Analysis. J. Mater. Cycles Waste Manag. 2023, 25, 3316–3330. [Google Scholar] [CrossRef]
- Lokshin, E.P.; Tareeva, O.A.; Elizarova, I.R. Agitation Leaching of Rare Earth Elements from Phosphogypsum by Weak Sulfuric Solutions. Theor. Found. Chem. Eng. 2016, 50, 857–862. [Google Scholar] [CrossRef]
- Lokshin, E.P.; Tareeva, O.A.; Elizarova, I.R. Sorption of Rare-Earth Elements from Phosphogypsum Sulfuric Acid Leaching Solutions. Theor. Found. Chem. Eng. 2015, 49, 773–778. [Google Scholar] [CrossRef]
- Lútke, S.F.; Oliveira, M.L.S.; Waechter, S.R.; Silva, L.F.O.; Cadaval Jr, T.R.S.; Duarte, F.A.; Dotto, G.L. Leaching of Rare Earth Elements from Phosphogypsum. Chemosphere 2022, 301, 134661. [Google Scholar] [CrossRef]
- ASTM D2216-19; Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International: West Conshohocken, PA, USA, 2019.
- WO2020067856; Mazouz, H.; Boulif, R.; Bilal, E. Method for Purifying and for Concentrating Rare Earths from Phosphogypsum. Chemical & Material Sciences, Engineering & Computer Science: Tokyo, Japan, 2 April 2020. [Google Scholar]
- Maina, L.; Kiegiel, K.; Chajduk, E.; Zakrzewska-Kołtuniewicz, G. Chemical and Radiochemical Characterization of Phosphogypsum from Poland. Nukleonika 2024, 69, 113–117. [Google Scholar] [CrossRef]
- Zhang, J.; Saito, F. The High Increase in LREEs Leaching Efficiency from Lower Concentrations to Higher Concentrations Can Be Attributed to the High Solubility of LREEs(OH)3 in Strong Acids. Chem. Geol. 1998, 147, 183–190. [Google Scholar]
- Nuclear Energy Agency. NEA Small Modular Reactor Dashboard (No. 7650); Nuclear Energy Agency: Paris, France, 2023. [Google Scholar]
- Wang, Y.; Weng, Y.; Chen, B. Enhancing Compressive Strength of Phosphogypsum-Based Geopolymer Cement with Five Alkaline Activator Combinations. J. Build. Eng. 2024, 95, 110352. [Google Scholar] [CrossRef]
Sieve Fractions | |||
---|---|---|---|
Sieve Size Range (µM) | Nominal Aperture Size (µM) | Wt (g) | Percentage of Particles (%) |
800–630 | 630 | 50–250 | 1–5 |
630–400 | 400 | 250–500 | 5–10 |
400–200 | 200 | 500–1250 | 10–25 |
≤200 | 2500–3750 | 50–75 | |
Total | 5000 |
Heavy Rare Earth Elements (HREEs) [mg/kg] | ||||||||||||||||||||||
Dy | Tb | Er | Tm | Yb | Ho | Gd | Lu | |||||||||||||||
41.92–45.9 | 10.23–11.23 | 15.45–16.95 | 1.21–1.32 | 5.46–5.99 | 6.26–6.87 | 117.2–128.6 | 0.54–0.61 | |||||||||||||||
Light Rare Earth Elements (LREEs) [mg/kg] | ||||||||||||||||||||||
La | Ce | Pr | Nd | Eu | Sm | Pm | ||||||||||||||||
1408–1545 | 2036–2234 | 220.0–220.5 | 685.9–752.5 | 26.98–29.58 | 97.4–106.8 | n.d. | ||||||||||||||||
Scandium and Yttrium [mg/kg] | ||||||||||||||||||||||
Sc | Y | |||||||||||||||||||||
n.d. | n.d. | |||||||||||||||||||||
Other Elements [mg/kg] | ||||||||||||||||||||||
Ag | As | Ba | Be | Cd | Co | |||||||||||||||||
0.16–0.67 | 4.76–5.23 | 476.3–522.5 | 0.27–0.31 | 0.06–0.08 | 3.35–3.69 | |||||||||||||||||
Cu | Fe | Mn | Mo | Ni | Pb | |||||||||||||||||
19.77–21.69 | 1024–1124 | 22.96–25.18 | 2.14–2.36 | 12.54–13.75 | 3.36–3.72 | |||||||||||||||||
Sb | Se | Th | Tl | U | V | Zn | ||||||||||||||||
0.12–0.15 | 6.46–7.10 | 9.92–10.88 | 0.01–0.02 | 0.67–0.72 | 12.27–13.46 | 14.57–15.99 |
Component | Unit | Raw PG |
---|---|---|
P total | mg P kg−1 | 0.42 |
P available | mg P kg−1 | 0.17 |
K | mass% | 0.041 |
Na | mass% | 0.101 |
F | mass% | 0.34 |
CaO | mass% | 29.1 |
SO3 | mass% | 42.11 |
Al2O3 | mass% | 0.21 |
Fe2O3 | mass% | 0.0.93 |
SiO2 | mass% | 0.5 |
Sr | mass% | 1.450 |
Cu | mg Cu kg−1 | 61.05 |
Zn | mg Zn kg−1 | 9.4 |
Ni | mg Ni kg−1 | 1.5 |
Ba | mass% | 0.0 |
REE | mass% Ln | 0.4398 |
La | mass% | 0.1247 |
Ce | mass% | 0.1890 |
Pr | mass% | 0.0324 |
Nd | mass% | 0.0595 |
Y | mass% | 0.0192 |
Sm | mass% | 0.0051 |
Gd | mass% | 0.0048 |
Dy | mass% | 0.0022 |
Eu | mass% | 0.0023 |
Er | mass% | 0.0004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maina, L.; Kiegiel, K.; Samczyński, Z.; Haneklaus, N.; Zakrzewska-Kołtuniewicz, G. Sulfuric Acid Leaching Recovery of Rare Earth Elements from Wizów’s Phosphogypsum in Poland. Sustainability 2024, 16, 9059. https://doi.org/10.3390/su16209059
Maina L, Kiegiel K, Samczyński Z, Haneklaus N, Zakrzewska-Kołtuniewicz G. Sulfuric Acid Leaching Recovery of Rare Earth Elements from Wizów’s Phosphogypsum in Poland. Sustainability. 2024; 16(20):9059. https://doi.org/10.3390/su16209059
Chicago/Turabian StyleMaina, Linda, Katarzyna Kiegiel, Zbigniew Samczyński, Nils Haneklaus, and Grażyna Zakrzewska-Kołtuniewicz. 2024. "Sulfuric Acid Leaching Recovery of Rare Earth Elements from Wizów’s Phosphogypsum in Poland" Sustainability 16, no. 20: 9059. https://doi.org/10.3390/su16209059
APA StyleMaina, L., Kiegiel, K., Samczyński, Z., Haneklaus, N., & Zakrzewska-Kołtuniewicz, G. (2024). Sulfuric Acid Leaching Recovery of Rare Earth Elements from Wizów’s Phosphogypsum in Poland. Sustainability, 16(20), 9059. https://doi.org/10.3390/su16209059