Stand Characteristics, Leaf Traits and Growth of Threatened Conifer Pilgerodendron uviferum (Cupressaceae) in Southern Patagonia, Argentina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Study Area
2.2. Environmental and Stand Characteristics
2.3. Leaf Traits, Leaf Nutrient Reabsorption and Tree Diameter Growth
2.4. Statistical Analyses
3. Results
3.1. Forest Structure Characteristics
3.2. The Leaf Traits, Leaf Nutrient Reabsorption and Tree Diameter Growth of Pilgerodendrum univerum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rovere, A.E.; Premoli, A.C.; Newton, A.C. Estado de conservación del ciprés de las Guaitecas (Pilgerodendron uviferum (Don) Florín) en Argentina. Bosque 2002, 23, 11–19. [Google Scholar] [CrossRef]
- Premoli, A.C.; Souto, C.P.; Rovere, A.E.; Allnutt, T.R.; Newton, A.C. Patterns of isozyme variation as indicators of biogeographic history in Pilgerodendron uviferum (D. Don) Florín. Divers. Distrib. 2002, 8, 57–66. [Google Scholar] [CrossRef]
- Bannister, J.R.; Donoso, P.J.; Bauhus, J. Persistence of the slow growing conifer Pilgerodendron uviferum in old-growth and fire-disturbed southern bog forests. Ecosystems 2012, 15, 1158–1172. [Google Scholar] [CrossRef]
- Peri, P.L.; Monelos, L.; Díaz, B.; Mattenet, F.; Huertas, L.; Bahamonde, H.; Rosas, Y.M.; Lencinas, M.V.; Cellini, J.M.; Martínez Pastur, G. Estado y Usos de los Bosques Nativos de Lenga, Siempreverdes y Mixtos en Santa Cruz: Base Para su Conservación y Manejo; Instituto Nacional de Tecnología Agropecuaria: Buenos Aires, Argentina, 2019. [Google Scholar]
- Grandcolas, P.; Nattier, R.; Trewick, S. Relict species: A relict concept? Trends Ecol. Evol. 2014, 29, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Hampe, A.; Jump, A.S. Climate relicts: Past, present, future. Annual review of ecology. Evol. Syst. 2011, 42, 313–333. [Google Scholar] [CrossRef]
- Kreps, G.; Martínez Pastur, G.; Peri, P.L. Cambio Climático en Patagonia Sur: Escenarios Futuros en el Manejo de los Recursos Naturales; Instituto Nacional de Tecnología Agropecuaria: Buenos Aires, Argentina, 2012; ISBN 978-987-679-137-3. [Google Scholar]
- Vettese, E.S.; Villalba, R.; Orellana Ibáñez, I.A.; Peri, P.L. Tree-Growth variations of Nothofagus antarctica related to climate and land use changes in Southern Patagonia, Argentina. In Latin American Dendroecology—Combining Tree-Ring Sciences and Ecology in a Mega Diverse Territory; Pompa-García, M., Camarero, J.J., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 331–354. [Google Scholar]
- Bond, W.J. The tortoise and the hare: Ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 1989, 36, 227–249. [Google Scholar] [CrossRef]
- Coomes, D.A.; Allen, R.B.; Bentley, W.A.; Burrows, L.E.; Canham, C.D.; Fagan, L.; Forsyth, D.M.; Gaxiola-Alcantar, A.; Parfitt, R.L.; Ruscoe, W.A.; et al. The hare, the tortoise and the crocodile: The ecology of angiosperm dominance, conifer persistence and fern filtering. J. Ecol. 2005, 93, 918–935. [Google Scholar] [CrossRef]
- Gaxiola, A.; McNeill, S.M.; Coomes, D.A. What drives retrogressive succession? Plant strategies to tolerate infertile and poorly drained soils. Funct. Ecol. 2010, 4, 714–722. [Google Scholar] [CrossRef]
- Killingbeck, K.T. Nutrients in senescent leaves: Keys to the search for potential resorption and resorption proficiency. Ecology 1996, 77, 1716–1727. [Google Scholar] [CrossRef]
- Aerts, R.; Chapin, F.S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Adv. Ecol. Res. 2000, 30, 1–67. [Google Scholar]
- Peri, P.L.; Lencinas, M.V.; Bousson, J.; Lasagno, R.; Soler, R.; Bahamonde, H.; Martínez Pastur, G. Biodiversity and ecological long-term plots in Southern Patagonia to support sustainable land management: The case of PEBANPA network. J. Nat. Conserv. 2016, 34, 51–64. [Google Scholar] [CrossRef]
- Levy, E.G.; Madden, E.A. The point method of pasture analyses. N. Z. J. Agric. 1933, 46, 267–379. [Google Scholar]
- Sparks, D.L. Methods of Soil Analysis, Part 3, Chemical Methods and Processes; American Society of Agronomy Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Wang, D.; Anderson, D.W. Direct measurement of organic carbon content in soils by the LECO CR-12 carbon analyzer. Com. Soil Sci. Plant Anal. 1998, 29, 15–21. [Google Scholar] [CrossRef]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Cruz, G.; Lara, A. Tipificación, Cambio de Estructura y Normas de Manejo para Ciprés de las Guaitecas (Pilgerodendron uviferum D. Don Florin) en la Isla Grande de Chiloé. Ph.D. Thesis, Universidad de Chile, Santiago, Chile, 1981. [Google Scholar]
- Bannister, J.R.; Lara, A.; Le Quesne, C. Estructura y dinámica de bosques de Pilgerodendron uviferum afectados por incendios en la Cordillera de la Costa de la Isla Grande de Chiloé. Bosque 2008, 29, 33–43. [Google Scholar] [CrossRef]
- Bahamonde, H.; Martínez Pastur, G.; Lencinas, M.V.; Soler, R.; Rosas, Y.M.; Ladd, B.; Duarte-Gaurdia, S.; Peri, P.L. The relative importance of soil properties and regional climate as drivers of productivity in southern Patagonia’s Nothofagus antarctica forests. Ann. For. Sci. 2018, 75, 45. [Google Scholar] [CrossRef]
- Allnutt, T.R.; Newton, A.C.; Premoli, A.; Lara, A. Genetic variation in the threatened South American conifer Pilgerodendron uviferum (Cupressaceae), detected using RAPD markers. Biol. Conserv. 2002, 114, 245–253. [Google Scholar] [CrossRef]
- Lambers, H.; Chapin, F.S., III; Pons, T.L. Plant Physiological Ecology; Springer: New York, NY, USA, 1998. [Google Scholar]
- Ordonez, J.C.; van Bodegom, P.M.; Witte, J.-P.M.; Wright, I.J.; Reich, P.B.; Aerts, R. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 2009, 18, 137–149. [Google Scholar] [CrossRef]
- Huxman, T.E.; Barron-Gafford, G.; Gerst, K.L.; Angert, A.L.; Tyler, A.P.; Venable, D.L. Photosynthetic resource-use efficiency and demographic variability in desert winter annual plants. Ecology 2008, 89, 1554–1563. [Google Scholar] [CrossRef]
- Frangi, J.L.; Barrera, M.D.; Richter, L.L.; Lugo, A.E. Nutrient cycling in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fuego, Argentina. For. Ecol. Manag. 2005, 217, 80–94. [Google Scholar] [CrossRef]
- Peri, P.L.; Gargaglione, V.; Martínez Pastur, G. Dynamics of above and below-ground biomass and nutrient accumulation in an age sequence of Nothofagus antarctica forest of Southern Patagonia. For. Ecol. Manag. 2006, 233, 85–99. [Google Scholar] [CrossRef]
- Peri, P.L.; Gargaglione, V.; Martínez Pastur, G. Above and below-ground nutrients storage and biomass accumulation in marginal Nothofagus antarctica forests in Southern Patagonia. For. Ecol. Manag. 2008, 255, 2502–2511. [Google Scholar] [CrossRef]
- Pérez, C.A.; Armesto, J.J.; Torrealba, C.; Carmona, M.R. Litterfall dynamics and nitrogen use efficiency in two evergreen temperate rainforests of southern Chile. Austral Ecol. 2003, 28, 591–600. [Google Scholar] [CrossRef]
- Vitousek, P.M. Nutrient cycling and nutrient use efficiency. Am. Nat. 1982, 4, 553–572. [Google Scholar] [CrossRef]
- Vergutz, L.; Manzoni, S.; Porporato, A.; Ferreira Novais, R.; Jackson, R.B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 2012, 82, 205–220. [Google Scholar] [CrossRef]
- Buamscha, G.; Gobbi, M.; Mazzarino, M.J.; Laos, F. Indicators of nitrogen conservation in Austrocedrus chilensis forests along a moisture gradient in Argentina. For. Ecol. Manag. 1998, 112, 253–261. [Google Scholar] [CrossRef]
- Lara, A.; Donoso, C.; Escobar, B.; Rovere, A.; Premoli, A.; Soto, D.P.; Bannister, J.R. Pilgerodendron uviferum (D. Don) Florin. In Las Especies Arbóreas de los Bosques Templados de Chile y Argentina, Autoecología; Donoso, C., Ed.; Marisa Cuneo Ediciones: Valdivia, Chile, 2006; pp. 82–91. [Google Scholar]
- Esse, C.; Correa-Araneda, F.; Acuña, C.; Santander-Massa, R.; De Los Ríos-Escalante, P.; Saavedra, P.; Jaque-Jaramillo, X.; Moreno, R.; Massyel García-Meneses, P.; Soto, D.P. Structure, diversity, and environmental determinants of high-atitude threatened conifer forests. Forests 2021, 12, 775. [Google Scholar] [CrossRef]
Climate | Relict PU1 | Relict PU2 | Relict PU3 | Relict PU4 |
---|---|---|---|---|
MAT (°C) | 8.3 ± 0.83 | 8.2 ± 0.74 | 8.4 ± 0.91 | 7.1 ± 0.65 |
MAP (mm/yr) | 633 ± 58.8 | 635 ± 63.4 | 421 ± 39.9 | 469 ± 51.3 |
Variables at the stand level | ||||
Total stand density (trees/ha) | 10,553 ± 3612 a | 12,833 ± 1069 a | 325 ± 54 c | 1533 ± 238 b |
Total stand basal area (m2/ha) | 50.1 ± 17.4 a | 68.2 ± 11.7 a | 0.51 ± 0.06 b | 44.0 ± 14.4 ab |
Stand canopy cover (%) | 65.9 ± 25.6 a | 87.3 ± 8.7 a | 3.8 ± 0.2 c | 31.3 ± 21.1 b |
Variables of Pilgerodendrum uviferum | ||||
Stand density (trees/ha) | 8667 ± 3150 a | 10,900 ± 656 a | 325 ± 54 b | 433 ± 62 b |
Age (years) | 124 ± 18 a | 115 ± 15 a | 106 ± 11 b | 82 ± 9 b |
DBH (cm) | 5.7 ± 2.1 a | 4.5 ± 2.9 a | 3.5 ± 2.8 ab | 2.9 ± 1.5 b |
Dominant height (m) | 6.2 ± 0.9 a | 6.6 ± 0.5 a | 3.5 ± 0.2 b | 3.7 ± 0.3 b |
Female trees (%) | 37.2 ± 3.82 c | 19.3 ± 2.18 d | 69.2 ± 1.86 b | 80.1 ± 2.13 a |
Seedling density (individuals/ha) | 3773 ± 802 b | 1300 ± 212 c | 6125 ± 754 a | 1900 ± 125 c |
Sapling density (individuals/ha) | 3167 ± 1214 a | 1950 ± 314 a | 520 ± 85 b | 400 ± 54 b |
Variables of understory | ||||
Plant diversity (N°) | 50 ± 7 a | 58 ± 4 a | 42 ± 9 ab | 36 ± 6 b |
Vegetation cover (%) | 165 ± 21 b | 189 ± 12 ab | 142 ± 15 b | 202 ± 15 a |
Relict | Clay (%) | Silt (%) | Sand (%) | pH | Organic Carbon (%) | N (%) | P (ppm) | K (cmol Kg−1) | Mg (cmol Kg−1) | Ca (cmol Kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
PU1 | 20.1 | 47.8 | 32.1 | 5.6 ± 0.6 ab | 10.2 ± 1.4 a | 1.89 ± 0.1 ab | 10.1 ± 1.1 b | 0.2 ± 0.03 c | 4.0 ± 0.4 c | 134.2 ± 14.4 a |
PU2 | 18.1 | 31.2 | 50.7 | 6.5 ± 0.7 a | 10.5 ± 1.8 a | 1.85 ± 0.2 ab | 7.2 ± 0.8 c | 0.2 ± 0.04 c | 4.8 ± 0.6 c | 144.1 ± 15.2 a |
PU3 | 20.4 | 38.5 | 41.1 | 6.0 ± 0.5 a | 10.4 ± 1.1 a | 2.10 ± 0.3 a | 6.0 ± 0.7 c | 1.3 ± 0.12 a | 20.1 ± 1.8 a | 88.8 ± 9.1 b |
PU4 | 26.2 | 10.0 | 63.8 | 4.9 ± 0.4 b | 9.1 ± 0.9 a | 1.68 ± 0.2 b | 34.3 ± 2.8 a | 0.9 ± 0.1 b | 6.8 ± 0.8 b | 96.3 ± 10.3 b |
Stand | SLA | C | N | P | K | Mg | S | Ca | |
---|---|---|---|---|---|---|---|---|---|
PU1 | Mature tree | 0.032 ± 0.002 ab | 46.5 ± 5.4 a | 0.92 ± 0.11 a | 0.09 ± 0.01 a | 0.47 ± 0.06 a | 0.04 ± 0.007 b | 0.13 ± 0.02 a | 1.94 ± 0.2 b |
Sapling | 0.030 ± 0.001 AB | 45.6 ± 4.8 A | 1.02 ± 0.09 A | 0.17 ± 0.02 A | 0.58 ± 0.05 A | 0.10 ± 0.011 A | 0.19 ± 0.03 A | 1.85 ± 0.5 B | |
PU2 | Mature tree | 0.034 ± 0.003 a | 48.5 ± 6.2 a | 0.83 ± 0.08 ab | 0.08 ± 0.01 ab | 0.49 ± 0.07 a | 0.08 ± 0.009 a | 0.14 ± 0.02 a | 1.73 ± 0.3 bc |
Sapling | 0.033 ± 0.001 A | 45.2 ± 3.4 A | 0.88 ± 0.07 AB | 0.12 ± 0.02 AB | 0.53 ± 0.03 AB | 0.11 ± 0.024 A | 0.18 ± 0.04 A | 1.68 ± 0.2 C | |
PU3 | Mature tree | 0.029 ± 0.002 b | 49.4 ± 7.1 a | 0.75 ± 0.05 b | 0.06 ± 0.005 b | 0.24 ± 0.04 b | 0.07 ± 0.009 ab | 0.07 ± 0.01 b | 2.86 ± 0.4 a |
Sapling | 0.028 ± 0.001 B | 47.7 ± 4.4 A | 0.79 ± 0.09 B | 0.09 ± 0.009 B | 0.38 ± 0.01 B | 0.04 ± 0.008 B | 0.11 ± 0.03 B | 2.04 ± 0.1 A | |
PU4 | Mature tree | 0.035 ± 0.003 a | 46.9 ± 3.7 a | 0.95 ± 0.07 a | 0.11 ± 0.05 a | 0.48 ± 0.06 a | 0.10 ± 0.04 a | 0.16 ± 0.02 a | 1.58 ± 0.3 c |
Sapling | 0.033 ± 0.002 A | 44.9 ± 2.9 A | 1.14 ± 0.12 A | 0.19 ± 0.04 A | 0.66 ± 0.05 A | 0.12 ± 0.03 A | 0.25 ± 0.04 A | 1.37 ± 0.2 D |
Relict | Mean DBH Growth (mm/yr) | Maximum DBH Growth (mm/yr) | Minimum DBH Growth (mm/yr) |
---|---|---|---|
PU1 | 0.46 ± 0.05 a | 1.25 ± 0.13 a | 0.18 ± 0.04 a |
PU2 | 0.39 ± 0.04 ab | 0.85 ± 0.09 b | 0.15 ± 0.03 ab |
PU3 | 0.33 ± 0.02 b | 0.46 ± 0.04 d | 0.08 ± 0.01 b |
PU4 | 0.35 ± 0.03 b | 0.67 ± 0.05 c | 0.11 ± 0.02 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peri, P.L.; Bahamonde, H.; Toledo, S.; Martínez Pastur, G. Stand Characteristics, Leaf Traits and Growth of Threatened Conifer Pilgerodendron uviferum (Cupressaceae) in Southern Patagonia, Argentina. Sustainability 2024, 16, 9026. https://doi.org/10.3390/su16209026
Peri PL, Bahamonde H, Toledo S, Martínez Pastur G. Stand Characteristics, Leaf Traits and Growth of Threatened Conifer Pilgerodendron uviferum (Cupressaceae) in Southern Patagonia, Argentina. Sustainability. 2024; 16(20):9026. https://doi.org/10.3390/su16209026
Chicago/Turabian StylePeri, Pablo L., Hector Bahamonde, Santiago Toledo, and Guillermo Martínez Pastur. 2024. "Stand Characteristics, Leaf Traits and Growth of Threatened Conifer Pilgerodendron uviferum (Cupressaceae) in Southern Patagonia, Argentina" Sustainability 16, no. 20: 9026. https://doi.org/10.3390/su16209026
APA StylePeri, P. L., Bahamonde, H., Toledo, S., & Martínez Pastur, G. (2024). Stand Characteristics, Leaf Traits and Growth of Threatened Conifer Pilgerodendron uviferum (Cupressaceae) in Southern Patagonia, Argentina. Sustainability, 16(20), 9026. https://doi.org/10.3390/su16209026