Assessing Hydrological Response and Resilience of Watersheds as Strategy for Climatic Change Adaptation in Neotropical Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Physiographic Features and Land Use of Watersheds
2.3. Climatic and Hydrological Data
2.4. Hydrological Model
2.5. Model Calibration and Validation
2.6. Analysis of the “m” Value
2.7. Hydrological Resilience
- Static deviation (s) resulting from inherent characteristics of the watershed that are assumed to be constant over time, based on WYC observations from the cold period. Watersheds with s < 0 exhibit lower than expected water yield before warming based on predictions of the theoretical Budyko’s curve (“m” values from 26 watersheds), while watersheds with s > 0 show water yield higher than expected.
- Dynamic deviation (d) obtained from changes in the watershed over time, considering the WYC of the warm period corrected by the static deviation (s). Dynamic deviation close to zero means high resistance to drought.
3. Results
3.1. Model Calibration and Validation
3.2. The Factors Influencing “m” and Sensitivity Analysis
3.3. Watershed’s Hydrological Resilience
4. Discussion
4.1. Model Calibration and Validation
4.2. “m” Values of Watersheds
4.3. Watershed’s Hydrological Resilience
4.4. Study’s Limitation
4.5. Management Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheldon, K.S. Climate Change in the Tropics: Ecological and Evolutionary Responses at Low Latitudes. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 303–333. [Google Scholar] [CrossRef]
- Marengo, J.A. Água e Mudanças Climáticas. Estud. Avançados 2008, 22, 83–96. [Google Scholar] [CrossRef]
- Creed, I.F.; Spargo, A.T.; Jones, J.A.; Buttle, J.M.; Adams, M.B.; Beall, F.D.; Booth, E.G.; Campbell, J.L.; Clow, D.; Elder, K.; et al. Changing Forest Water Yields in Response to Climate Warming: Results from Long-Term Experimental Watershed Sites across North America. Glob. Change Biol. 2014, 20, 3191–3208. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Wei, X.; Chen, X.; Zhou, P.; Liu, X.; Xiao, Y.; Sun, G.; Scott, D.F.; Zhou, S.; Han, L.; et al. Global Pattern for the Effect of Climate and Land Cover on Water Yield. Nat. Commun. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Nobre, C.A.; Seller, P.J.; Shukla, J. Amazonian Deforestation and Regional Climate Change. J. Clim. 1991, 4, 957–988. [Google Scholar] [CrossRef]
- Fuh, B. On the Calculation of the Evaporation from Land Surface. Chin. J. Atmos. Sci. 1981, 5, 23–31. [Google Scholar] [CrossRef]
- Choudhury, B.J. Evaluation of an Empirical Equation for Annual Evaporation Using Field Observations and Results from a Biophysical Model. J. Hydrol. 1999, 216, 99–110. [Google Scholar] [CrossRef]
- Costa, M.H.; Botta, A.; Cardille, J.A. Effects of Large-Scale Changes in Land Cover on the Discharge of the Tocantins River, Southeastern Amazonia. J. Hydrol. 2003, 283, 206–217. [Google Scholar] [CrossRef]
- Wei, X.; Liu, W.; Zhou, P. Quantifying the Relative Contributions of Forest Change and Climatic Variability to Hydrology in Large Watersheds: A Critical Review of Research Methods. Water 2013, 5, 728–746. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, N.; Harper, R.; Li, Q.; Liu, K.; Wei, X.; Ning, D.; Hou, Y.; Liu, S. A Global Review on Hydrological Responses to Forest Change across Multiple Spatial Scales: Importance of Scale, Climate, Forest Type and Hydrological Regime. J. Hydrol. 2017, 546, 44–59. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of Mean Annual Evapotranspiration to Vegetation Changes at Catchment Scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, X. The Cumulative Effects of Forest Disturbance on Streamflow in a Large Watershed in the Central Interior of British Columbia, Canada. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 2855–2895. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U.; et al. A Decade of Predictions in Ungauged Basins (PUB)—A Review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V. Global Pattern of Trends in Streamflow and Water Availability in a Changing Climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef]
- Domingues, L.M.; de Abreu, R.C.; da Rocha, H.R. Hydrologic Impact of Climate Change in the Jaguari River in the Cantareira Reservoir System. Water 2022, 14, 1286. [Google Scholar] [CrossRef]
- Budyko, M.I. The Heat Balance of the Earth’s Surface; U.S. Department of Commerce. National Weather Service: Washington, DC, USA, 1958. [Google Scholar]
- Budyko, M.I. Climate and Life; Academic: San Diego, CA, USA, 1974. [Google Scholar]
- Greve, P.; Gudmundsson, L.; Orlowsky, B.; Seneviratne, S.I. A Two-Parameter Budyko Function to Represent Conditions under Which Evapotranspiration Exceeds Precipitation. Hydrol. Earth Syst. Sci. 2016, 20, 2195–2205. [Google Scholar] [CrossRef]
- Turc, L. Le Bilan d’eau Des Sols: Relations Entre Les Précipitations, l’évaporation et l’écoulement. J. Hydraul. 1955, 3, 36–44. [Google Scholar]
- Pike, J.G. The Estimation of Annual Run-off from Meteorological Data in a Tropical Climate. J. Hydrol. 1964, 2, 116–123. [Google Scholar] [CrossRef]
- Gerten, D.; Lucht, W.; Schaphoff, S.; Cramer, W.; Hickler, T.; Wagner, W. Hydrologic Resilience of the Terrestrial Biosphere. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Helman, D.; Lensky, I.M.; Yakir, D.; Osem, Y. Forests Growing under Dry Conditions Have Higher Hydrological Resilience to Drought than Do More Humid Forests. Glob. Change Biol. 2017, 23, 2801–2817. [Google Scholar] [CrossRef]
- Frauendorf, T.C.; MacKenzie, R.A.; Tingley, R.W.; Frazier, A.G.; Riney, M.H.; El-Sabaawi, R.W. Evaluating Ecosystem Effects of Climate Change on Tropical Island Streams Using High Spatial and Temporal Resolution Sampling Regimes. Glob. Change Biol. 2019, 25, 1344–1357. [Google Scholar] [CrossRef]
- Tiezzi, R.O.; Barbosa, P.S.F.; Lopes, J.E.G.; Francato, A.L.; Zambon, R.C.; Silveira, A.; Menezes, P.H.B.J.; Isidoro, J.M.G.P. Trends of Streamflow under Climate Change for 26 Brazilian Basins. Water Policy 2019, 21, 206–220. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Teixeira, A.A. Agência Nacional de Águas (ANA)-Catálogo de Metadados. Available online: https://metadados.snirh.gov.br/geonetwork/srv/por/catalog.search#/home (accessed on 15 August 2024).
- USGS (U.S. Geological Survey). “SRTM Topography.” SRTM Documentation, 2.1. Available online: https://earthexplorer.usgs.gov/ (accessed on 15 August 2024).
- Hengl, T.; De Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Rennó, C.D.; Nobre, A.D.; Cuartas, L.A.; Soares, J.V.; Hodnett, M.G.; Tomasella, J.; Waterloo, M.J. HAND, a New Terrain Descriptor Using SRTM-DEM: Mapping Terra-Firme Rainforest Environments in Amazonia. Remote Sens. Environ. 2008, 112, 3469–3481. [Google Scholar] [CrossRef]
- Azevedo, C.B.; Enrique, M.T.; Miguel, A.L.U.; Jose, M.L.P. MapBiomas Brasil-Collection 4.1. Available online: https://brasil.mapbiomas.org/colecoes-mapbiomas-1 (accessed on 15 August 2024).
- INPE (Instituto Nacional de Pesquisas Espaciais). INPE-Catálogo de Imagens. Available online: http://www.dgi.inpe.br/catalogo/explore (accessed on 15 August 2024).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Scientific Data 2015, 2, 1–21. [Google Scholar] [CrossRef]
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily Gridded Meteorological Variables in Brazil (1980–2013). Int. J. Climatol. 2015, 36, 2644–2659. [Google Scholar] [CrossRef]
- Deo, R.C.; Şahin, M. Application of the Artificial Neural Network Model for Prediction of Monthly Standardized Precipitation and Evapotranspiration Index Using Hydrometeorological Parameters and Climate Indices in Eastern Australia. Atmos. Res. 2015, 161, 65–81. [Google Scholar] [CrossRef]
- Migue, F.E.; Maughan, M.; Bollero, G.A.; Long, S.P. Modeling Spatial and Dynamic Variation in Growth, Yield, and Yield Stability of the Bioenergy Crops Miscanthus × Giganteus and Panicum Virgatum across the Conterminous United States. GCB Bioenergy 2012, 4, 509–520. [Google Scholar] [CrossRef]
- Singh, A.K.; Tripathy, R.; Chopra, U.K. Evaluation of CERES-Wheat and CropSyst Models for Water–Nitrogen Interactions in Wheat Crop. Agric. Water Manag. 2008, 95, 776–786. [Google Scholar] [CrossRef]
- Yang, D.; Sun, F.; Liu, Z.; Cong, Z.; Ni, G.; Lei, Z. Analyzing Spatial and Temporal Variability of Annual Water-Energy Balance in Nonhumid Regions of China Using the Budyko Hypothesis. Water Resour. Res. 2007, 43, 4426. [Google Scholar] [CrossRef]
- Potter, N.J.; Zhang, L.; Milly, P.C.D.; McMahon, T.A.; Jakeman, A.J. Effects of Rainfall Seasonality and Soil Moisture Capacity on Mean Annual Water Balance for Australian Catchments. Water Resour. Res. 2005, 41, 1–11. [Google Scholar] [CrossRef]
- Li, D.; Pan, M.; Cong, Z.; Zhang, L.; Wood, E. Vegetation Control on Water and Energy Balance within the Budyko Framework. Water Resour. Res. 2013, 49, 969–976. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Scanlon, B.R.; Zhang, L.; Pan, M. Local and Global Factors Controlling Water-Energy Balances within the Budyko Framework. Geophys. Res. Lett. 2013, 40, 6123–6129. [Google Scholar] [CrossRef]
- Zengin, H.; Özcan, M.; Değermenci, A.; Bosque, T.Ç.-R. Undefined Effects of Some Watershed Characteristics on Water Yield in the West Black Sea Region of Northern Turkey. Bosque 2017, 38, 479–486. [Google Scholar] [CrossRef]
- Shao, Q.; Traylen, A.; Zhang, L. Nonparametric Method for Estimating the Effects of Climatic and Catchment Characteristics on Mean Annual Evapotranspiration. Water Resour. Res. 2012, 48, 3517. [Google Scholar] [CrossRef]
- Fan, M.; Shibata, H.; Chen, L. Spatial Priority Conservation Areas for Water Yield Ecosystem Service under Climate Changes in Teshio Watershed, Northernmost Japan. J. Water Clim. Change 2020, 11, 106–129. [Google Scholar] [CrossRef]
- Caldwell, P.V.; Miniat, C.F.; Elliott, K.J.; Swank, W.T.; Brantley, S.T.; Laseter, S.H. Declining Water Yield from Forested Mountain Watersheds in Response to Climate Change and Forest Mesophication. Glob. Change Biol. 2016, 22, 2997–3012. [Google Scholar] [CrossRef]
- Choto, M.; Fetene, A. Impacts of Land Use/Land Cover Change on Stream Flow and Sediment Yield of Gojeb Watershed, Omo-Gibe Basin, Ethiopia. Remote Sens. Appl. 2019, 14, 84–99. [Google Scholar] [CrossRef]
- Yildiz, O. An Investigation of the Effect of Drainage Density on Hydrologic Response. Turk. J. Eng. Environ. Sci. 2004, 28, 85–94. [Google Scholar]
- Abatzoglou, J.T.; Ficklin, D.L. Climatic and Physiographic Controls of Spatial Variability in Surface Water Balance over the Contiguous United States Using the Budyko Relationship. Water Resour. Res. 2017, 53, 7630–7643. [Google Scholar] [CrossRef]
- Liang, W.; Bai, D.; Wang, F.; Fu, B.; Yan, J.; Wang, S.; Yang, Y.; Long, D.; Feng, M. Quantifying the Impacts of Climate Change and Ecological Restoration on Streamflow Changes Based on a Budyko Hydrological Model in China’s Loess Plateau. Water Resour. Res. 2015, 51, 6500–6519. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, H.; Yang, D.; Jayawardena, A.W. Quantifying the Effect of Vegetation Change on the Regional Water Balance within the Budyko Framework. Geophys. Res. Lett. 2016, 43, 1140–1148. [Google Scholar] [CrossRef]
- Silva, J.R.I.; Souza, R.M.S.; Santos, W.A.; de Almeida, A.Q.; de Souza, E.S.; Antonino, A.C.D. Aplicação Do Método de Budyko Para Modelagem Do Balanço Hídrico No Semiárido Brasileiro. Sci. Plena 2017, 13, 10. [Google Scholar] [CrossRef]
- Wei, X.; Li, Q.; Zhang, M.; Giles-Hansen, K.; Liu, W.; Fan, H.; Wang, Y.; Zhou, G.; Piao, S.; Liu, S. Vegetation Cover—Another Dominant Factor in Determining Global Water Resources in Forested Regions. Glob. Change Biol. 2018, 24, 786–795. [Google Scholar] [CrossRef]
- Xing, W.; Wang, W.; Zou, S.; Deng, C. Projection of Future Runoff Change Using Climate Elasticity Method Derived from Budyko Framework in Major Basins across China. Glob. Planet. Change 2018, 162, 120–135. [Google Scholar] [CrossRef]
- Liu, J.; Xue, B.; Yinglan, A.; Sun, W.; Guo, Q. Water Balance Changes in Response to Climate Change in the Upper Hailar River Basin, China. Hydrol. Res. 2020, 51, 1023–1035. [Google Scholar] [CrossRef]
- Aber, J.D.; Ollinger, S.V.; Federer, C.A.; Reich, P.B.; Goulden, M.L.; Kicklighter, D.W.; Melillo, J.M.; Lathrop, R.G. Predicting the Effects of Climate Change on Water Yield and Forest Production in the Northeastern United States. Clim. Res. 1995, 05, 207–222. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological Responses to Recent Climate Change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.P.; Field, C.B.; Ackerly, D.D. The Velocity of Climate Change. Nature 2009, 462, 1052–1055. [Google Scholar] [CrossRef]
- Ewers, B.E.; Gower, S.T.; Bond-Lamberty, B.; Wang, C.K. Effects of Stand Age and Tree Species on Canopy Transpiration and Average Stomatal Conductance of Boreal Forests. Plant Cell Environ. 2005, 28, 660–678. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A Review of Paired Catchment Studies for Determining Changes in Water Yield Resulting from Alterations in Vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Ford, C.R.; Hubbard, R.M.; Vose, J.M. Quantifying Structural and Physiological Controls on Variation in Canopy Transpiration among Planted Pine and Hardwood Species in the Southern Appalachians. Ecohydrology 2011, 4, 183–195. [Google Scholar] [CrossRef]
- Swank, W.T.; Vose, J.M.; Elliott, K.J. Long-Term Hydrologic and Water Quality Responses Following Commercial Clearcutting of Mixed Hardwoods on a Southern Appalachian Catchment. For. Ecol. Manag. 2001, 143, 163–178. [Google Scholar] [CrossRef]
- Polgar, C.A.; Primack, R.B. Leaf-out Phenology of Temperate Woody Plants: From Trees to Ecosystems. New Phytol. 2011, 191, 926–941. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Singh, V.P.; Song, C.; Zhang, Y.; Sun, P.; Gu, X. Hydrological Effects of Climate Variability and Vegetation Dynamics on Annual Fluvial Water Balance in Global Large River Basins. Hydrol. Earth Syst. Sci. 2018, 22, 4047–4060. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B.; Manning, A.D. Biodiversity, Ecosystem Function, and Resilience: Ten Guiding Principles for Commodity Production Landscapes. Front. Ecol. Environ. 2006, 4, 80–86. [Google Scholar] [CrossRef]
- Filoso, S.; Bezerra, M.O.; Weiss, K.C.B.; Palmer, M.A. Impacts of Forest Restoration on Water Yield: A Systematic Review. PLoS ONE 2017, 12, e0183210. [Google Scholar] [CrossRef]
- Li, Q.; Wei, X.; Zhang, M.; Liu, W.; Fan, H.; Zhou, G.; Giles-Hansen, K.; Liu, S.; Wang, Y. Forest Cover Change and Water Yield in Large Forested Watersheds: A Global Synthetic Assessment. Ecohydrology 2017, 10, e1838. [Google Scholar] [CrossRef]
- Ellison, D.; Futter, M.N.; Bishop, K. On the Forest Cover–Water Yield Debate: From Demand- to Supply-Side Thinking. Glob. Change Biol. 2012, 18, 806–820. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.J.; He, C.S.; Sun, G.; Gao, G.Y. A Comparative Analysis of Forest Cover and Catchment Water Yield Relationships in Northern China. For. Ecol. Manag. 2011, 262, 1189–1198. [Google Scholar] [CrossRef]
- Ceballos-Barbancho, A.; Morán-Tejeda, E.; Luengo-Ugidos, M.Á.; Llorente-Pinto, J.M. Water Resources and Environmental Change in a Mediterranean Environment: The South-West Sector of the Duero River Basin (Spain). J. Hydrol. 2008, 351, 126–138. [Google Scholar] [CrossRef]
- Buttle, J.M.; Metcalfe, R.A. Boreal Forest Disturbance and Streamflow Response, Northeastern Ontario. Can. J. Fish Aquat. Sci. 2011, 57, 5–18. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, X.; Luo, Y.; Zhang, M.; Li, Y.; Qiao, Y.; Liu, H.; Wang, C.; Zhou, C.; Wei, X.; et al. Forest Recovery and River Discharge at the Regional Scale of Guangdong Province, China. Water Resour. Res. 2010, 46, 9503. [Google Scholar] [CrossRef]
- Peng, S.S.; Piao, S.; Zeng, Z.; Ciais, P.; Zhou, L.; Li, L.Z.X.; Myneni, R.B.; Yin, Y.; Zeng, H. Afforestation in China Cools Local Land Surface Temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915–2919. [Google Scholar] [CrossRef]
Watershed | Area | Stream Density | Clay | Silt | Sand | Elevation | Slope | HAND | Land Use | NDVI | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Mean | Min | Mean | Mean | Agriculture | Urban | Forest | Others | |||||||
km² | km km−2 | % | m | % | cm | % | |||||||||
W 1 | 3344 | 2.5 | 35 | 17 | 48 | 1004 | 765 | 526 | 3 | 54 | 52 | 1 | 44 | 3 | 0.44 |
W 2 | 66 | 1.7 | 33 | 14 | 53 | 1052 | 853 | 656 | 7 | 142 | 70 | 1 | 28 | 1 | 0.47 |
W 3 | 471 | 2.2 | 21 | 12 | 67 | 514 | 433 | 351 | 3 | 41 | 96 | 1 | 3 | 0 | 0.45 |
W 4 | 1457 | 2.0 | 37 | 16 | 48 | 1028 | 756 | 483 | 4 | 78 | 56 | 5 | 34 | 5 | 0.45 |
W 5 | 188 | 2.4 | 34 | 16 | 51 | 765 | 615 | 465 | 5 | 73 | 76 | 1 | 21 | 2 | 0.48 |
W 6 | 31 | 3.8 | 33 | 14 | 53 | 1006 | 778 | 551 | 8 | 122 | 85 | 9 | 5 | 1 | 0.45 |
W 7 | 14,184 | 1.8 | 37 | 24 | 39 | 1850 | 915 | 749 | 12 | 156 | 18 | 0 | 81 | 1 | 0.43 |
W 8 | 6262 | 2.3 | 32 | 17 | 52 | 1289 | 879 | 468 | 4 | 81 | 60 | 5 | 23 | 12 | 0.44 |
W 9 | 2,004 | 2.2 | 32 | 17 | 52 | 1218 | 862 | 485 | 6 | 62 | 54 | 12 | 33 | 1 | 0.46 |
W 10 | 1520 | 2.1 | 33 | 20 | 47 | 1131 | 868 | 604 | 6 | 60 | 43 | 0 | 53 | 4 | 0.43 |
W 11 | 927 | 1.9 | 32 | 17 | 52 | 1555 | 1058 | 564 | 9 | 120 | 72 | 2 | 25 | 1 | 0.40 |
W 12 | 3653 | 2.4 | 33 | 14 | 53 | 705 | 527 | 347 | 4 | 54 | 87 | 1 | 11 | 1 | 0.48 |
W 13 | 387 | 1.7 | 28 | 15 | 58 | 1555 | 1147 | 742 | 9 | 131 | 76 | 0 | 24 | 0 | 0.40 |
W 14 | 269 | 1.5 | 39 | 18 | 44 | 871 | 702 | 532 | 3 | 83 | 84 | 6 | 9 | 1 | 0.45 |
W 15 | 582 | 2.7 | 28 | 15 | 58 | 766 | 625 | 485 | 4 | 40 | 90 | 2 | 8 | 0 | 0.48 |
W 16 | 275 | 1.4 | 32 | 17 | 52 | 1288 | 1002 | 715 | 7 | 159 | 57 | 1 | 41 | 1 | 0.44 |
W 17 | 1586 | 1.8 | 39 | 18 | 44 | 1074 | 780 | 486 | 5 | 72 | 70 | 4 | 25 | 1 | 0.47 |
W 18 | 17,326 | 2.1 | 37 | 17 | 47 | 1721 | 1097 | 473 | 5 | 76 | 77 | 2 | 18 | 3 | 0.44 |
W 19 | 704 | 2.0 | 32 | 17 | 52 | 524 | 415 | 305 | 4 | 42 | 92 | 3 | 5 | 0 | 0.44 |
W 20 | 438 | 1.5 | 36 | 23 | 41 | 1335 | 753 | 182 | 11 | 157 | 15 | 0 | 85 | 0 | 0.47 |
W 21 | 443 | 1.8 | 33 | 14 | 53 | 1058 | 798 | 539 | 5 | 78 | 70 | 4 | 25 | 1 | 0.46 |
W 22 | 450 | 1.5 | 32 | 17 | 52 | 1273 | 1027 | 780 | 5 | 98 | 63 | 1 | 31 | 5 | 0.46 |
W 23 | 79 | 2.1 | 18 | 12 | 70 | 489 | 420 | 350 | 3 | 38 | 94 | 0 | 6 | 0 | 0.48 |
W 24 | 850 | 2.1 | 31 | 14 | 55 | 697 | 559 | 420 | 4 | 60 | 76 | 1 | 22 | 1 | 0.48 |
W 25 | 4295 | 2.1 | 32 | 17 | 52 | 1226 | 859 | 485 | 5 | 59 | 62 | 7 | 30 | 1 | 0.46 |
W 26 | 45 | 2.2 | 33 | 14 | 53 | 541 | 476 | 411 | 3 | 51 | 87 | 0 | 12 | 1 | 0.46 |
Physiographic Features | Coefficients Estimate | Standard Error | Significance Level | Determination Coefficient |
---|---|---|---|---|
Mean elevation (A) | 0.0009774 | 0.1190814 | p < 0.01 | R² = 0.9791 |
Stream density (B) | 1.0959935 | 0.0003056 | p < 0.001 |
Watershed | Land Use | Cool Period | Warm Period | ΔT (°C) | P (mm y−1) | PET (mm y−1) | R (mm y−1) | R/P | P/PET | m | s | d | e |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W 1 | Forest | 1988–1992 | 2005–2009 | 0.4 | 1386 | 1268 | 407 | 0.29 | 1.09 | 2.94 | 0.06 | −0.02 | 8.05 |
W 2 | Agriculture | 1990–1994 | 2006–2011 | 0.1 | 1424 | 1270 | 506 | 0.36 | 1.12 | 2.48 | 0.03 | −0.04 | 2.98 |
W 3 | Agriculture | 1983–1992 | 1997–2006 | 1.0 | 1273 | 1435 | 233 | 0.18 | 0.89 | 3.40 | 0.08 | −0.03 | 3.45 |
W 4 | Forest | 1992–1996 | 1998–2008 | 0.7 | 1432 | 1293 | 543 | 0.38 | 1.11 | 2.29 | 0.03 | 0.00 | 7.26 |
W 5 | Agriculture | 1991–1998 | 2007–2013 | 0.9 | 1394 | 1314 | 419 | 0.30 | 1.06 | 2.75 | 0.03 | 0.05 | 2.04 |
W 6 | Agriculture | 1989–1993 | 1995–2000 | 0.3 | 1432 | 1384 | 387 | 0.27 | 1.03 | 3.02 | 0.02 | 0.01 | 4.50 |
W 7 | Forest | 1989–1996 | 1999–2007 | 0.1 | 1533 | 1059 | 633 | 0.41 | 1.45 | 2.85 | 0.06 | 0.11 | 3.85 |
W 8 | Agriculture | 1988–1993 | 1995–2000 | 0.6 | 1563 | 1311 | 583 | 0.37 | 1.19 | 2.58 | 0.05 | 0.03 | 1.20 |
W 9 | Agriculture | 1986–1991 | 2005–2012 | 0.3 | 1384 | 1174 | 381 | 0.28 | 1.18 | 3.63 | 0.13 | −0.07 | 3.56 |
W 10 | Forest | 1987–1993 | 2007–2014 | 0.1 | 1372 | 1165 | 425 | 0.31 | 1.18 | 3.15 | 0.08 | 0.02 | 3.44 |
W 11 | Agriculture | 1984–1995 | 2003–2012 | 0.2 | 1523 | 1160 | 519 | 0.34 | 1.31 | 3.37 | 0.15 | −0.09 | 3.75 |
W 12 | Agriculture | 1991–1995 | 2004–2009 | 0.9 | 1284 | 1407 | 322 | 0.25 | 0.91 | 2.79 | 0.08 | −0.09 | 1.93 |
W 13 | Agriculture | 1988–1999 | 2000–2007 | 0.8 | 1550 | 1134 | 576 | 0.37 | 1.37 | 3.12 | 0.14 | −0.06 | 2.48 |
W 14 | Agriculture | 1981–1985 | 1986–1993 | 0.6 | 1589 | 1333 | 495 | 0.31 | 1.19 | 3.17 | 0.11 | −0.06 | 3.02 |
W 15 | Agriculture | 1980–1987 | 2000–2009 | 1.3 | 1368 | 1394 | 305 | 0.22 | 0.98 | 3.38 | 0.14 | −0.12 | 2.37 |
W 16 | Forest | 1989–1996 | 2011–2016 | 0.3 | 1612 | 1346 | 534 | 0.33 | 1.20 | 3.00 | 0.06 | 0.05 | 1.07 |
W 17 | Agriculture | 1989–1994 | 1998–2003 | 0.8 | 1426 | 1271 | 474 | 0.33 | 1.12 | 2.75 | 0.00 | 0.03 | 5.27 |
W 18 | Agriculture | 1981–1997 | 2004–2011 | 1.0 | 1461 | 1238 | 439 | 0.30 | 1.18 | 3.24 | 0.09 | −0.05 | 4.88 |
W 19 | Agriculture | 1986–1993 | 2001–2007 | 0.9 | 1296 | 1418 | 243 | 0.19 | 0.91 | 3.49 | 0.03 | 0.06 | 0.94 |
W 20 | Forest | 1980–1988 | 1989–1994 | 0.1 | 1383 | 1077 | 767 | 0.55 | 1.28 | 1.79 | −0.02 | −0.02 | 4.25 |
W 21 | Agriculture | 1980–1986 | 1987–2013 | 0.3 | 1420 | 1272 | 526 | 0.37 | 1.12 | 2.38 | 0.04 | −0.02 | 1.68 |
W 22 | Agriculture | 1985–1997 | 2003–2009 | 1.1 | 1593 | 1279 | 568 | 0.36 | 1.25 | 2.92 | −0.04 | 0.16 | 5.57 |
W 23 | Agriculture | 1984–1991 | 2002–2006 | 1.4 | 1235 | 1476 | 250 | 0.20 | 0.84 | 2.98 | 0.05 | −0.04 | 7.49 |
W 24 | Agriculture | 1989–1995 | 2007–2015 | 0.1 | 1364 | 1345 | 387 | 0.28 | 1.01 | 2.78 | 0.06 | −0.09 | 2.51 |
W 25 | Agriculture | 1987–1991 | 2004–2008 | 0.2 | 1330 | 1169 | 404 | 0.30 | 1.14 | 3.10 | 0.08 | −0.01 | 4.70 |
W 26 | Agriculture | 1994–2000 | 2002–2009 | 0.8 | 1338 | 1490 | 256 | 0.19 | 0.90 | 3.35 | 0.08 | −0.03 | 3.15 |
Quadrant | Watershed Resilience | Water Availability | Main Purpose of Increased Forest Cover | Limitations of Increased Forest Cover |
---|---|---|---|---|
I | Low | Low | -Improve resilience and physiographic features | -Restricted (However, could be increase diluted over time) |
II | High | Low | -Improve physiographic features | -Allows increase of <30% in the watershed area |
III | Low | High | -Improve resilience | -Allows increase of >30% in the watershed area |
IV | High | High | -Improve flow regulation and water quality | -Not restricted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogasawara, M.E.K.; Mattos, E.M.; Rocha, H.R.; Wei, X.; Ferraz, S.F.B. Assessing Hydrological Response and Resilience of Watersheds as Strategy for Climatic Change Adaptation in Neotropical Region. Sustainability 2024, 16, 8910. https://doi.org/10.3390/su16208910
Ogasawara MEK, Mattos EM, Rocha HR, Wei X, Ferraz SFB. Assessing Hydrological Response and Resilience of Watersheds as Strategy for Climatic Change Adaptation in Neotropical Region. Sustainability. 2024; 16(20):8910. https://doi.org/10.3390/su16208910
Chicago/Turabian StyleOgasawara, Matheus E. K., Eduardo M. Mattos, Humberto R. Rocha, Xiaohua Wei, and Silvio F. B. Ferraz. 2024. "Assessing Hydrological Response and Resilience of Watersheds as Strategy for Climatic Change Adaptation in Neotropical Region" Sustainability 16, no. 20: 8910. https://doi.org/10.3390/su16208910
APA StyleOgasawara, M. E. K., Mattos, E. M., Rocha, H. R., Wei, X., & Ferraz, S. F. B. (2024). Assessing Hydrological Response and Resilience of Watersheds as Strategy for Climatic Change Adaptation in Neotropical Region. Sustainability, 16(20), 8910. https://doi.org/10.3390/su16208910