Toward Cross-Species Crop Se Content Prediction Using Random Forest Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Data Collection and Analysis
2.3. Predictive Model Building
2.3.1. Random Forest Model
2.3.2. MLR Model
3. Results and Discussion
3.1. Characterization of Surface Soil Se Content
3.2. Se Content in Soil–Plant Ecosystems
3.3. Modeling Predictions Using Random Forests
3.4. Effect of Soil Elements on Se Uptake by Crops
3.5. Construction of Prediction Model for Se Enrichment Coefficient of Crops
3.6. Development and Utilization of the Random Forest Model in Se-Enriched Crops
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mattioli, S.; Dal Bosco, A.; Duarte JM, M.; D’Amato, R.; Castellini, C.; Beone, G.M.; Fontanella, M.C.; Beghelli, D.; Regni, L.; Businelli, D.; et al. Use of Selenium-enriched olive leaves in the feed of growing rabbits: Effect on oxidative status, mineral profile and Selenium speciation of Longissimus dorsi meat. J. Trace Elem. Med. Biol. 2019, 51, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Liu, L. The indispensable microelement of human bodies-selenium. Heilongjiang Sci. 2014, 5, 16–17. [Google Scholar]
- Proietti, P.; Trabalza Marinucci, M.; Del Pino, A.M.; D’Amato, R.; Regni, L.; Acuti, G.; Chiaradia, E.; Palmerini, C.A. Selenium maintains Ca2+ homeostasis in sheep lymphocytes challenged by oxidative stress. PLoS ONE 2018, 13, e0201523. [Google Scholar] [CrossRef]
- Huang, J.G.; Wang, H.W.; Peng, X.Q.; Yao HY, Y.; Nie, S.P. Research Progress on Interaction between Selenium and Cadmium in Selenium-Rich Agricultural Products. Food Res. Dev. 2024, 45, 194–199. Available online: https://link.cnki.net/urlid/12.1231.TS.20231026.1518.002 (accessed on 1 May 2024).
- D’Amato, R.; Regni, L.; Falcinelli, B.; Mattioli, S.; Benincasa, P.; Dal Bosco, A.; Pacheco, P.; Proietti, P.; Troni, E.; Santi, C.; et al. Current Knowledge on Selenium Biofortification to Improve the Nutraceutical Profile of Food: A Comprehensive Review. J. Agric. Food Chem. 2020, 68, 4075–4097. [Google Scholar] [CrossRef]
- Cai, L.M.; Wang, S.; Wen, H.H.; Luo, J.; Jiang, H.H.; He, M.H.; Mu, G.Z.; Wang, Q.S.; Wang, H.Z. Enrichment spatial distribution characteristics of soil selenium and its influencing factors. Trans. Chin. Soc. Agric. Eng. 2019, 35, 83–90. [Google Scholar] [CrossRef]
- Terry, N.; Zayed, A.M.; De Souza, M.P.; Tarun, A.S. Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef]
- Wang, R.Q.; Zhang, Z.M.; Chao, X.; Feng, H.Y.; Yang, Z.F. A study of the Selenium speciation in paddy soil and status of selenium enriched rice in western part of Ankang City, Shaanxi Province. Geol. China 2022, 49, 398–408. Available online: https://link.cnki.net/urlid/11.1167.P.20201019.1838.020 (accessed on 1 May 2024).
- Li, Y.C.; Liu, J.F.; Li, X.Z.; Zhang, D.; Chen, G.D.; Du YC, Z.; Zhou, W.H. Selenium Occurrence Characteristics and Bioavailability of Soil in the Hinterland of the Hetao Plain. Environ. Sci. 2024, 1–14. [Google Scholar] [CrossRef]
- Huang, X.B.; Pan, Z.P.; Shao, M.Y.; Chen, T. Geochemical characteristics and occurrence forms of soil selenium in sorghum base of Maoba Town, Renhuai City. Hubei Agric. Sci. 2024, 63, 50–54, 66. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Yang, B.; Liu, X.X.; Huang, M.W. Present situation and countermeasures of selenium-rich agricultural product processing industry in Guigang City. S. China Agric. 2023, 17, 220–223, 229. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Zhou, W.J.; Zhou, Y.Z.; Cui, H.J.; Liu, R.; Shang, G.D. Factors controlling accumulation and bioavailability of selenium in paddy soils: A case study in Luxi County, China. Environ. Pollut. 2023, 348, 123196. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.L.; Huo, R.W.; Lu, Y.; Fan, Z.J.; Yue, R.Q.; Ren, A.X.; Li, L.H.; Ding, P.C.; Ren, Y.K.; Gao, Z.Q.; et al. Nitrogen Application Can Optimize Form of Selenium in Soil in Selenium-Rich Areas to Affect Selenium Absorption and Accumulation in Black Wheat. Plants 2023, 12, 4160. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Wang, T.; Shi, Y.J.; Xu, Q.Y.; Zhou, X.; Ke, L.J.; Liang, R.Y.; Fu, C.C.; Zheng, X.Q.; Sun, G.X. Topsoil selenium (Se) under Se-rich farming in China: Current status, cropping impacts and ecological risk assessment. J. Environ. Manag. 2023, 345, 118918. [Google Scholar] [CrossRef]
- Guan, Z.H.; Li, X.G.; Wang, L. Heavy metal enrichment in roadside soils in the eastern Tibetan Plateau. Environ. Sci. Pollut. Res. Int. 2018, 25, 7625–7637. [Google Scholar] [CrossRef]
- Dai, L.C.; Cao, Y.F.; Ke, X.; Zhang, F.W.; Du, Y.G.; Guo, X.W.; Cao, G.M. Response of reference evapotranspiration to meteorological factors in alpine meadows on the Qinghai-Tibet Plateau. Pratacultural Sci. 2018, 35, 2137–2147. [Google Scholar] [CrossRef]
- Nan, W.G.; Dong, Z.B.; Xue, L.; Zhang, Z.; Ha, Y.Q.; Shao, T.J. Distribution Characteristics and Ecological Risk Assessment of Heavy Metals in Roadside Soil of Important Transportation Countries on the Qinghai-Tibet Plateau. Environ. Sci. 2023, 45, 4825–4836. [Google Scholar] [CrossRef]
- Li, W.M.; Sun, Z.; Chen, X.Y. Evaluation and Source of Heavy Metal Pollution in Surface Soils in Typical Alpine Agricultural Areas of Qinghai Province. Rock Miner. Anal. 2023, 42, 598–615. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Yao, Z.; Ma, Q.; Shen, X.; Wang, S.; He, L.Z.; Dai, L.; Han, W.M. Selenium Accumulation of Natural Selenium-Rich Garlic in Alkaline Soil Area of Qinghai Province. J. Shanxi Agric. Sci. 2024, 52, 101–106. [Google Scholar] [CrossRef]
- Chen, Z.W.; Xu, J.; Yang, S.Y.; Hou, Z.L.; Yang, F.; Zhang, F.G.; Yu, L.S. Spatio-temporal distribution and influencing factors of selenium in soil-crop system from the plateau basin region, Northeastern Yunnan. China Environ. Sci. 2023, 43, 781–792. [Google Scholar] [CrossRef]
- Bi, W.D.; Ding, C.F.; Zhou, Z.G.; Wang, X.X. Prediction of cadmium bioconcentration factor for peanuts based on machine-learning methods. J. Agro-Environ. Sci. 2024, 43, 1230–1238. Available online: https://link.cnki.net/urlid/12.1347.S.20240319.1126.004 (accessed on 11 May 2024).
- Pan, Y.X.; Chen, M.; Wang, X.T.; Liu, N. Analysis of influencing factors and bioavailability prediction of soil heavy metals based on RF and MLR. J. Agro-Environ. Sci. 2024, 43, 845–857. Available online: https://kns.cnki.net/kcms2/detail/12.1347.s.20230726.1027.002.html (accessed on 1 May 2024).
- Bagrintseva, V.N.; Nosov, V.V. Potassium nutrition for small grains grown on chestnut soils. Better Crops Plant Food 2012, 96, 29–31. [Google Scholar]
- DZ/T0295-2016; Code for Evaluation of Land Quality Geochemistry. Ministry of Housing and Urban-Rural Development: Beijing, China, 2016.
- Hu, X.G.; Tan, J.Y.; Qin, X.T.; Ma, W.F.; Qin, X.; Luo, H.; Huang, Z.W.; Li, Z.C. Enrichment Characteristics and Influencing Factors of Heavy Metal Elements in Crops from the Primary Cultivated Areas of Tian’e County, Guangxi. Geoscience 2024, 38, 784–792. [Google Scholar] [CrossRef]
- Gou, T.Z.; Song, W.; Yan, H.G. Accumulation of heavy metal in 11 native plants growing in mercury(gold)-mining area of Danzhai County. J. Biol. 2021, 38, 72–76. [Google Scholar] [CrossRef]
- Li, Z.L.; Xie, Q.; Zeng, Z.; Zhang, J.B.; Feng, Y.M.; Lai, Y.P.; Lin, L.L. Enrichment and Migration of Heavy Metals in Mangrove Soil-Plant System from Sea Promenade in Zhanjiang. Trop. Geogr. 2021, 41, 398–409. [Google Scholar] [CrossRef]
- Vilchez-Mendoza, S.; Romero-Gurdián, A.; Avelino, J.; DeClerck, F.; Bommel, P.; Betbeder, J.; Cilas, C.; Bagny, B.L. Assessing the joint effects of landscape, farm features and crop management practices on berry damage in coffee plantations. Agric. Ecosyst. Environ. 2022, 330, 107903. [Google Scholar] [CrossRef]
- Muhammad, S.; Wuyts, K.; Samson, R. Atmospheric net particle accumulation on 96 plant species with contrasting morphological and anatomical leaf characteristics in a common garden experiment. Atmos. Environ. 2019, 202, 328–344. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, H. Optimization of parallel random forest algorithm based on distance weight. J. Intell. Fuzzy Syst. 2020, 39, 1951–1963. [Google Scholar] [CrossRef]
- Cheng, J.L.; Liu, Y.D.; Qin, T.Y.; Wang, Y.H.; Fan, Y.F.; Yao, P.F.; Sun, C.; Bi, Z.Z.; Bai, J.P. Estimation of Chlorophyll Content in Potato Leaves Based on Machine Learning. Spectrosc. Spectr. Anal. 2024, 44, 1117–1127. [Google Scholar]
- Vrigazova, B. The Proportion for Splitting Data into Training and Test Set for the Bootstrap in Classification Problems. Bus. Syst. Res. J. 2021, 12, 228–242. [Google Scholar] [CrossRef]
- Ozsahin, D.U.; Duwa, B.B.; Ozsahin, I.; Uzun, B. Quantitative Forecasting of Malaria Parasite Using Machine Learning Models: MLR, ANN, ANFIS and Random Forest. Diagnostics 2024, 14, 385. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.L.; Liu, C.; Cai, Y.M.; Zhu, B.W.; Wang, C.; Hua, M.; Jin, Y. A preliminary study of element bioconcentration factors within milled rice and wheatmeal in some typical areas of Jiangsu Province. Geol. China 2013, 40, 331–338. Available online: http://geochina.cgs.gov.cn/cn/article/id/20130123 (accessed on 1 May 2024).
- Liang, S.; Zhu, J.X.; Dai, H.M.; Song, Y.H.; Liu, K.; Han, X.M.; Zhai, F.R. Migration and Enrichment of Selenium in Soil-Plant System in Baiquan Area, Heilongjiang Province. Geol. Resour. 2021, 30, 456–464, 478. [Google Scholar] [CrossRef]
- An, R.; Sun, W.G. Formation and Distribution of Selenium Rich Soil in Tailai Basin and Its Relationship to the Geologic Structure. J. Anhui Agric. Sci. 2011, 39, 6488–6490. [Google Scholar]
- Sheshnitsan, S.; Kapitalchuk, M.; Golubkina, N. Peculiarities of selenium bioaccumulation under contrasting landscape and geochemical conditions. Bull. Mosc. State Reg. Univ. Nat. Sci. 2016, 4, 67–77. [Google Scholar] [CrossRef]
- Shao, Y. Distribution Characteristics, Controlling Factors and Ecological Effects of Se in the Geographical Environment of Small Watershed in Guilin Se-Enriched Longevity Area. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2019. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.Y.; Yang, L.Z.; Zhang, Y.Y.; Wang, Y.; Zhou, W.; Wang, M.Y. Bioavailability of Se and Se-Cd coupling effects in soil-potato system: A case study of Se-rich regions in Enshi prefecture. S. China J. Agric. Sci. 2022, 35, 2836–2842. [Google Scholar] [CrossRef]
- Xu, H.Z. Evaluation of the Relationship and Bioavailability of Selenium and Cadmium in Soil-Rice System in High Geochemical Background Area in Guangxi. Master’s Thesis, Guangxi University, Nanning, China, 2021. [Google Scholar] [CrossRef]
- Zhao, W.L.; Hu, B.; Wang, J.W.; Xiao, R.; Liang, D. Combined effects of phosphate and selenite on the uptake and translocation of phosphorus and selenium in pakchoi. Acta Sci. Circumstantiae 2013, 33, 2020–2026. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, D.J.; Jiang, X.J.; Cao, Z.H. Effects of the interactions between selenium and phosphorus on the growth and selenium accumulation in rice (Oryza sativa). Environ. Geochem. Health 2004, 26, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.G.; Shi, Z.W.; Li, J.F.; Zhao, P.; Qin, S.Y.; Nie, Z.J. The Impact of Phosphorus Supply on Selenium Uptake During Hydroponics Experiment of Winter Wheat (Triticum aestivum) in China. Front. Plant Sci. 2018, 9, 373. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C. Effects of Biological Nano Selenium on Growth and Accumulation of Se and Cd in Pak Choi under Cd Stress. Master’s Thesis, East China Jiaotong University, Nanchang, China, 2023. [Google Scholar] [CrossRef]
- Tie, M.; Liu, Y.; Li, H.W.; Chen, Z.L.; Zhang, Y.; Li, B.R.; Han, J.; Xue, S. Uptake of Se and Cd in radish and their effects on growth. Chin. J. Ecol. 2014, 33, 1587–1593. [Google Scholar] [CrossRef]
- Cui, Y.; Ding, Y.S.; Gong, W.M.; Ding, D.W. Study on the correlation between the chemical forms of the heavy metals in soil and the metal uptake by plant. J. Dalian Marit. Univ. 2005, 31, 59–63. [Google Scholar] [CrossRef]
- Hu, B. Effects of Cu-Se Combined Pollution on Copper and Selenium Bioavailability and Releated Mechanism. Master’s Thesis, Northwest A&F University, Xianyang, China, 2013. Available online: https://kns.cnki.net/kcms2/article/abstract?v=Ma1nt2RbXaiyx16S7T0kbBeG9uoyk30T8QcNVxA3g7yBKAQ3iZuMQC45PxgiU26-U9fl_8PMYU_YVIDk8WDuzFtqZPcB3aNQYN1zPWj95r4LlF1OplBqElq9FB_EuEzS-DAwQhA0BuUkwEOM5BwIBw==&uniplatform=NZKPT&language=CHS (accessed on 11 May 2024).
- Yang, C.L.; Zhang, Q.H.; Lu, Q.H.; Cheng, J.Z.; Luo, G.F.; Li, D.S. Characteristics and dietary exposure risk of Cd, Cu, Zn, Se and F content in agricultural products from karst high geological background areas in Guizhou Province. J. Food Saf. Qual. 2022, 13, 5008–5016. [Google Scholar]
- Chai, G.Q.; Wang, L.; Liu, G.H.; Luomu, X.J.; Jiang, Y.; Liang, H.; Fan, C.W. Health risk assessment of heavy metals and differences in Cd uptake and accumulation of three types of pod peppers. J. Agric. Sci. Technol. 2023, 25, 169–177. [Google Scholar] [CrossRef]
Statistical Summary | Se (mg kg−1) | BCFSe | |
---|---|---|---|
Crop | Rhizosphere Soil | ||
Min | 0.0046 | 0.093 | 0.0497 |
Max | 1.0030 | 2.028 | 0.5343 |
Ave | 0.0727 | 0.315 | 0.1992 |
Median | 0.0550 | 0.239 | 0.2128 |
Number of Variables | p | R2 |
---|---|---|
7 | 0.01 | 0.2907 |
6 | 0.4 | 0.1011 |
5 | 0.15 | 0.1744 |
4 | 0.00 | 0.3432 |
3 | 0.04 | 0.2507 |
2 | 0.00 | 0.3650 |
Prediction Model | Fitted Equation | R2 | RMSE |
---|---|---|---|
MLR | lgBCFSe = −0.045166lgSe − 0.000928lgEffective P − 0.645112lgCd − 0.007227lgEffective Cu + 0.407666 | 0.039 | 7.492 |
RF | 0.3432 | 0.245 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Miao, G.; Niu, Y.; Ma, Q.; Wang, S.; He, L.; Zhu, M.; Xu, K.; Zhu, Q. Toward Cross-Species Crop Se Content Prediction Using Random Forest Modeling. Sustainability 2024, 16, 8679. https://doi.org/10.3390/su16198679
Zhang Y, Miao G, Niu Y, Ma Q, Wang S, He L, Zhu M, Xu K, Zhu Q. Toward Cross-Species Crop Se Content Prediction Using Random Forest Modeling. Sustainability. 2024; 16(19):8679. https://doi.org/10.3390/su16198679
Chicago/Turabian StyleZhang, Yafeng, Guowen Miao, Yao Niu, Qiang Ma, Shuai Wang, Lianzhu He, Mingxia Zhu, Kaili Xu, and Qiaohui Zhu. 2024. "Toward Cross-Species Crop Se Content Prediction Using Random Forest Modeling" Sustainability 16, no. 19: 8679. https://doi.org/10.3390/su16198679
APA StyleZhang, Y., Miao, G., Niu, Y., Ma, Q., Wang, S., He, L., Zhu, M., Xu, K., & Zhu, Q. (2024). Toward Cross-Species Crop Se Content Prediction Using Random Forest Modeling. Sustainability, 16(19), 8679. https://doi.org/10.3390/su16198679