Strategic Adoption of Genetically Modified Crops in Lebanon: A Comprehensive Cost–Benefit Analysis and Implementation Framework
Abstract
:1. Introduction
2. Review of the Literature
3. Methodology: Selection of Crops for GM Implementation in Lebanon
- Pest and disease prevalence: Based on surveys conducted by agricultural extension services (Unifert SAL) and research institutions in Lebanon (Lebanese Agricultural Research Institute (LARI)).
- Impact on yield: Estimated from empirical studies and expert consultations.
- Current pest control methods: Reported by farmers during interviews and supported by agricultural extension service records.
- Potential GM benefits: Inferred from international case studies and the literature on GM crop performance.
- Tomatoes
- 2.
- Potatoes
- 3.
- Cucumbers
- 4.
- Apples
- 5.
- Maize
4. Cost–Benefit Model for the Introduction of GM Tomatoes in Lebanon
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ESCWA. Multidimensional Poverty in Lebanon (2019–2021); ESCWA: Beirut, Lebanon, 2021. [Google Scholar]
- Shaban, A.; Awad, M.; Ghandour, A.J.; Telesca, L. A 32-year aridity analysis: A tool for better understanding on water resources management in Lebanon. Acta Geophys. 2019, 67, 1179–1189. [Google Scholar] [CrossRef]
- Naimy, V.; Obegi, R. Lebanon-Economy. Routledge, Taylor & Francis LTD. Edited by Europa Publications. 2023. Available online: https://www.routledge.com/The-Middle-East-and-North-Africa-2023/Publications/p/book/9781032273778 (accessed on 20 March 2023).
- Roberts, R.J. The Nobel Laureates’ Campaign Supporting GMOs. J. Innov. Knowl. 2018, 3, 61–65. [Google Scholar] [CrossRef]
- Brookes, G.; Barfoot, P. Environmental impacts of genetically modified (GM) crop use 1996–2018: Impacts on pesticide use and carbon emissions. GM Crop. Food 2020, 11, 215–241. [Google Scholar] [CrossRef] [PubMed]
- Otegui, M.E.; Riglos, M.; Mercau, J.L. Genetically modified maize hybrids and delayed sowing reduced drought effects across a rainfall gradient in temperate Argentina. J. Exp. Bot. 2021, 72, 5180–5188. [Google Scholar] [CrossRef]
- Patowary, R. Scrutinizing the Impact of GMOs Through the Prism of Human Rights. India Law EJournal 2014, 7, 79–86. [Google Scholar]
- Roberts, R.J.; Naimy, V. Overcoming Agricultural Challenges with GMOs as a Catalyst for Poverty Reduction and Sustainability in Lebanon. Sustainability 2023, 15, 16187. [Google Scholar] [CrossRef]
- Qaim, M.; Zilberman, D. Yield Effects of Genetically Modified Crops in Developing Countries. Science 2003, 299, 900–902. [Google Scholar] [CrossRef]
- Pray, C.; Ma, D.; Huang, J.; Qiao, F. Impact of Bt Cotton in China. World Dev. 2001, 29, 813–825. [Google Scholar] [CrossRef]
- Gouse, M.; Piesse, J.; Thirtle, C.G. Monsanto’s Adventures in Zulu Land: Output and Labour Effects of GM Maize and Minimum Tillage. In Proceedings of the International Association of Agricultural Economists Conference, Gold Coast, Australia, 12–18 August 2006. [Google Scholar] [CrossRef]
- Carpenter, J.E.; Gianessi, L.P. Agricultural Biotechnology: Updated Benefit Estimates; National Center for Food and Agricultural Policy: Washington, DC, USA, 2001. [Google Scholar]
- Fraiture, M.-A.; Herman, P.; Taverniers, I.; De Loose, M.; Deforce, D.; Roosens, N.H. Current and New Approaches in GMO Detection: Challenges and Solutions. BioMed Res. Int. 2015, 2015, 392872. [Google Scholar] [CrossRef]
- Gómez-Barbero, M.; Berbel, J.; Rodríguez-Cerezo, E. Bt corn in Spain—The performance of the EU’s first GM crop. Nat. Biotechnol. 2008, 26, 384–386. [Google Scholar] [CrossRef]
- Traxler, G.; Godoy-Avila, S.; Falck-Zepeda, J.; Espinoza-Arellano, J. Transgenic Cotton in Mexico: Economic and Environmental Impacts; AgBioForum: Portici, Italy, 2001; Volume 4. [Google Scholar]
- Brookes, G. Genetically Modified (GM) Crop Use 1996–2020: Environmental Impacts Associated with Pesticide Use Change. GM Crop. Food 2022, 13, 262–289. [Google Scholar] [CrossRef]
- Qaim, M.; DE Janvry, A. Bt cotton and pesticide use in Argentina: Economic and environmental effects. Environ. Dev. Econ. 2005, 10, 179–200. [Google Scholar] [CrossRef]
- Klümper, W.; Qaim, M. A Meta-Analysis of the Impacts of Genetically Modified Crops. PLoS ONE 2014, 9, e111629. [Google Scholar] [CrossRef] [PubMed]
- Trigo, E.; Cap, E. The Impact of the Introduction of Transgenic Crops in Argentinean Agriculture; AgBioForum: Portici, Italy, 2003; Volume 6, pp. 87–94. [Google Scholar]
- Yorobe, J.M.; Quicoy, C.B. Economic impact of bt corn in the philippines. Philipp. Agric. Sci. 2006, 89, 258–267. [Google Scholar]
- Romeis, J.; Meissle, M.; Bigler, F. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat. Biotechnol. 2006, 24, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, E.; Bedini, S.; Nuti, M.; Ercoli, L. Impact of genetically engineered maize on agronomic, environmental and toxicological traits: A meta-analysis of 21 years of field data. Sci. Rep. 2018, 8, 3113. [Google Scholar] [CrossRef]
- IDAL. Agriculture Sector in Lebanon; IDAL: Beirut, Lebanon, 2020. [Google Scholar]
- James, C. Global Status of Commercialized Biotech/GM Crops: 2010; The International Service for the Acquisition of Agribiotech Applications (ISAAA): New York, NY, USA, 2010; Volume 42. [Google Scholar]
- ISAAA. Global Status of Commercialized Biotech/GM Crops in 2018: Biotech Crops Continue to Help Meet the Challenges of Increased Population and Climate Change; ISAAA Brief 54; The International Service for the Acquisition of Agribiotech Applications (ISAAA): Ithaca, NY, USA, 2018. [Google Scholar]
- Areal, F.J.; Riesgo, L.; Rodríguez-Cerezo, E. Economic and agronomic impact of commercialized GM crops: A meta-analysis. J. Agric. Sci. 2013, 151, 7–33. [Google Scholar] [CrossRef]
- Beyene, Y.; Semagn, K.; Mugo, S.; Tarekegne, A.; Babu, R.; Meisel, B.; Sehabiague, P.; Makumbi, D.; Magorokosho, C.; Oikeh, S.; et al. Genetic Gains in Grain Yield through Genomic Selection in Eight Bi-parental Maize Populations under Drought Stress. Crop. Sci. 2015, 55, 154–163. [Google Scholar] [CrossRef]
- Mazumdar, P.; Singh, P.; Kethiravan, D.; Ramathani, I.; Ramakrishnan, N. Late blight in tomato: Insights into the pathogenesis of the aggressive pathogen Phytophthora infestans and future research priorities. Planta 2021, 253, 119. [Google Scholar] [CrossRef]
- Talens, P.; Mora, L.; Bramley, P.M.; Fraser, P.D. Antioxidant compounds and their bioaccessibility in tomato fruit and puree obtained from a DETIOLATED-1 (DET-1) down-regulated genetically modified genotype. Food Chem. 2016, 213, 735–741. [Google Scholar] [CrossRef]
- Ogden, A.J.; Boukari, W.; Nava, A.; Lucinda, N.; Sunter, G.; Curtis, W.R.; Adkins, J.N.; Polston, J.E. Characterization of Local and Systemic Impact of Whitefly (Bemisia tabaci) Feeding and Whitefly-Transmitted Tomato Mottle Virus Infection on Tomato Leaves by Comprehensive Proteomics. Int. J. Mol. Sci. 2020, 21, 7241. [Google Scholar] [CrossRef] [PubMed]
- Bergougnoux, V. The history of tomato: From domestication to biopharming. Biotechnol. Adv. 2014, 32, 170–189. [Google Scholar] [CrossRef] [PubMed]
- Gerszberg, A.; Hnatuszko-Konka, K.; Kowalczyk, T.; Kononowicz, A.K. Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 120, 881–902. [Google Scholar] [CrossRef]
- Schoville, S.D.; Chen, Y.H.; Andersson, M.N.; Benoit, J.B.; Bhandari, A.; Bowsher, J.H.; Brevik, K.; Cappelle, K.; Chen, M.-J.M.; Childers, A.K.; et al. A model species for agricultural pest genomics: The genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci. Rep. 2018, 8, 1931. [Google Scholar] [CrossRef]
- Chiab, N.; Aoiadni, N.; Nouri-Ellouz, O.; Ghorbel-Koubaa, F.; Mellouli, M.; Sellami-Boudawara, T.; Kallel, C.; Makni-Ayadi, F.; Gargouri-Bouzid, R. Subacute toxicity studies of meals prepared from genetically modified potato overexpressing the StDREB1 or the VvWRKY2 transcription factor in rats. J. Sci. Food Agric. 2022, 102, 5883–5890. [Google Scholar] [CrossRef]
- Radcliffe, E.B. Insect pests of potato. Annu. Rev. Èntomol. 1982, 27, 173–204. [Google Scholar] [CrossRef]
- Pribylova, R.; Pavlik, I.; Bartos, M. Genetically modified potato plants in nutrition and prevention of diseases in humans and animals: A review. Vet. Med. 2006, 51, 212–223. [Google Scholar] [CrossRef]
- Xu, Y.; Gray, S.M. Aphids and their transmitted potato viruses: A continuous challenges in potato crops. J. Integr. Agric. 2020, 19, 367–375. [Google Scholar] [CrossRef]
- Rhee, G.S.; Cho, D.H.; Won, Y.H.; Seok, J.H.; Kim, S.S.; Kwack, S.J.; Da Lee, R.; Chae, S.Y.; Kim, J.W.; Lee, B.M.; et al. Multigeneration Reproductive and Developmental Toxicity Study of bar Gene Inserted into Genetically Modified Potato on Rats. J. Toxicol. Environ. Health Part A 2005, 68, 2263–2276. [Google Scholar] [CrossRef]
- Tek, M.I.; Calis, O. Mechanisms of resistance to powdery mildew in cucumber. Phytopathol. Mediterr. 2022, 61, 119–127. [Google Scholar] [CrossRef]
- Liang, D.; Liu, M.; Hu, Q.; He, M.; Qi, X.; Xu, Q.; Zhou, F.; Chen, X. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.). Sci. Rep. 2015, 5, 9645. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Pląder, W.; Wiśniewska, A.; Szwacka, M.; Malepszy, S. Transgenic cucumber—A current state. Folia Hortic. 2005, 17, 73–90. [Google Scholar]
- Lei, H.; Tjallingii, W.F.; van Lenteren, J.C. Probing and feeding characteristics of the greenhouse whitefly in association with host-plant acceptance and whitefly strains. Èntomol. Exp. Appl. 1998, 88, 73–80. [Google Scholar] [CrossRef]
- Arthurs, S.; Lacey, L. Field evaluation of commercial formulations of the codling moth granulovirus: Persistence of activity and success of seasonal applications against natural infestations of codling moth in Pacific Northwest apple orchards. Biol. Control 2004, 31, 388–397. [Google Scholar] [CrossRef]
- Hong, Y.A.; Gallardo, R.K.; Fan, X.; Atallah, S.; Gómez, M.I. Phytosanitary Regulation of Washington Apple Producers under an Apple Maggot Quarantine Program. J. Agric. Resour. Econ. 2019, 44, 646–663. [Google Scholar] [CrossRef]
- Kaye-Blake, W.; O’COnnell, A.; Lamb, C. Potential market segments for genetically modified food: Results from cluster analysis. Agribusiness 2007, 23, 567–582. [Google Scholar] [CrossRef]
- Bevacqua, D.; Grechi, I.; Génard, M.; Lescourret, F. The consequences of aphid infestation on fruit production become evident in a multi-year perspective: Insights from a virtual experiment. Ecol. Model. 2016, 338, 11–16. [Google Scholar] [CrossRef]
- Uzogara, S.G. The impact of genetic modification of human foods in the 21st century. Biotechnol. Adv. 2000, 18, 179–206. [Google Scholar] [CrossRef]
- Bibb, J.L.; Cook, D.; Catchot, A.; Musser, F.; Stewart, S.D.; Leonard, B.R.; Buntin, G.D.; Kerns, D.; Allen, T.W.; Gore, J. Impact of Corn Earworm (Lepidoptera: Noctuidae) on Field Corn (Poales: Poaceae) Yield and Grain Quality. J. Econ. Èntomol. 2018, 111, 1249–1255. [Google Scholar] [CrossRef]
- Ala-Kokko, K.; Nalley, L.L.; Shew, A.M.; Tack, J.B.; Chaminuka, P.; Matlock, M.D.; D’HAese, M. Economic and ecosystem impacts of GM maize in South Africa. Glob. Food Secur. 2021, 29, 100544. [Google Scholar] [CrossRef]
- Kumar, R.M.; Gadratagi, B.-G.; Paramesh, V.; Kumar, P.; Madivalar, Y.; Narayanappa, N.; Ullah, F. Sustainable Management of Invasive Fall Armyworm, Spodoptera frugiperda. Agronomy 2022, 12, 2150. [Google Scholar] [CrossRef]
- Mueller, D.S.; Wise, K.A.; Sisson, A.J.; Allen, T.W.; Bergstrom, G.C.; Bosley, D.B.; Bradley, C.A.; Broders, K.D.; Byamukama, E.; Chilvers, M.I.; et al. Corn Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada from 2012 to 2015. Plant Health Prog. 2016, 17, 211–222. [Google Scholar] [CrossRef]
- Chavas, J.; Shi, G.; Lauer, J. The Effects of GM Technology on Maize Yield. Crop. Sci. 2014, 54, 1331–1335. [Google Scholar] [CrossRef]
- Al-Eryan, M.A.S.; El-Tabbakh, S.S. Forecasting yield of corn, Zea mays infested with corn leaf aphid, Rhopalosiphum maidis. J. Appl. Èntomol. 2004, 128, 312–315. [Google Scholar] [CrossRef]
- Xie, W.; Ali, T.; Cui, Q.; Huang, J. Economic impacts of commercializing insect-resistant GM maize in China. China Agric. Econ. Rev. 2017, 9, 340–354. [Google Scholar] [CrossRef]
- Agricultural Sector Review in Lebanon; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2021. [CrossRef]
- Roberts, R.J. “A Crime against Humanity”, Lindau Nobel Conference. 2015. Available online: https://mediatheque.lindau-nobel.org/recordings/34686/richard-roberts-crime-humanity (accessed on 14 May 2023).
- Fernandez-Cornejo, J.; Wechsler, S. Revisiting the Impact of Bt Corn Adoption by U.S. Farmers. Agric. Resour. Econ. Rev. 2012, 41, 377–390. [Google Scholar] [CrossRef]
- Sinebo, W.; Maredia, K. Innovative farmers and regulatory gatekeepers: Genetically modified crops regulation and adoption in developing countries. GM Crop. Food 2016, 7, 1151989. [Google Scholar] [CrossRef]
- Smyth, S.J.; Kerr, W.A.; Phillips, P.W. Global economic, environmental and health benefits from GM crop adoption. Glob. Food Secur. 2015, 7, 24–29. [Google Scholar] [CrossRef]
- Smyth, S.J. The human health benefits from GM crops. Plant Biotechnol. J. 2020, 18, 887–888. [Google Scholar] [CrossRef]
- Racovita, M.; Obonyo, D.N.; Craig, W.; Ripandelli, D. What are the non-food impacts of GM crop cultivation on farmers’ health? Environ. Évid. 2014, 3, 1. [Google Scholar] [CrossRef]
- Qaim, M. The Economics of Genetically Modified Crops. Annu. Rev. Resour. Econ. 2009, 1, 665–694. [Google Scholar] [CrossRef]
Country | GM Crop | Initial Costs | Long-Term Benefits | Break-Even Analysis | Reference |
---|---|---|---|---|---|
India | Bt Cotton | - Seed costs: USD 15/acre | - Yield increase: 50% | - Break-even in 1–2 years | Qaim and Zilberman [9] |
- Additional inputs: USD 10/acre | - Pesticide reduction: 60% | ||||
China | Bt Cotton | - Seed costs: USD 24/acre | - Yield increase: 24% | - Break-even in 1 year | Pray et al. [10] |
- Additional inputs: USD 12/acre | - Pesticide reduction: 78% | ||||
South Africa | Bt Maize | - Seed costs: USD 36/acre | - Yield increase: 11% | - Break-even in 1–2 years | Gouse et al. [11] |
- Additional inputs: USD 15/acre | - Reduction in insecticide costs: 10% | ||||
Argentina | RR Soybeans | - Seed costs: USD 40/acre | - Yield increase: 10% | - Break-even in 1–2 years | Trigo and Cap [19] |
- Additional inputs: USD 20/acre | - Herbicide cost reduction: 40% | ||||
Philippines | Bt Corn | - Seed costs: USD 50/acre | - Yield increase: 34% | - Break-even in 2–3 years | Yorobe and Quicoy [20] |
- Additional inputs: USD 25/acre | - Reduction in pesticide costs: 60% | ||||
Brazil | GM Soybeans | - Seed costs: USD 45/acre | - Yield increase: 20% | - Break-even in 2 years | Brookes and Barfoot [5] |
- Additional inputs: USD 18/acre | - Herbicide cost reduction: 50% | ||||
USA | Bt Corn | - Seed costs: USD 60/acre | - Yield increase: 7–12% | - Break-even in 1–2 years | Carpenter and Gianessi [12] |
- Additional inputs: USD 30/acre | - Reduction in mycotoxin contamination: significant financial savings | ||||
GM Apples | - Seed costs: USD 65/acre | - Yield increase: 10–15% | - Break-even in 3–4 years | Brookes [16] | |
- Additional inputs: USD 20/acre | - Reduction in pesticide costs: 40% | ||||
GM Potatoes | - Seed costs: USD 55/acre | - Yield increase: 15–20% | - Break-even in 2–3 years | Brookes and Barfoot [5] | |
- Additional inputs: USD 25/acre | - Reduction in pesticide costs: 50% | ||||
Spain | GM Tomatoes | - Seed costs: USD 35/acre | - Yield increase: 15% | - Break-even in 1–2 years | Gómez-Barbero et al. [14] |
- Additional inputs: USD 15/acre | - Reduction in pesticide costs: 50% | ||||
Mexico | GM Tomatoes | - Seed costs: USD 38/acre | - Yield increase: 20% | - Break-even in 2 years | Traxler et al. [15] |
- Additional inputs: USD 18/acre | - Reduction in pesticide costs: 60% | ||||
GM Cucumbers | - Seed costs: USD 30/acre | - Yield increase: 12% | - Break-even in 1–2 years | Gómez-Barbero et al. [14] | |
- Additional inputs: USD 12/acre | - Reduction in pesticide costs: 35% |
Crop | Region | Performance Indicators | Pests and Diseases | Impact on Yield | Impact on Revenue | Current Pest Control Methods | Potential GM Benefits |
---|---|---|---|---|---|---|---|
Tomatoes | Mount Lebanon, Bekaa | Average yield: 35–40 tons/ha | Tomato Leaf Miner (Tuta absoluta), Late Blight (Phytophthora infestans) | Yield loss up to 50% | Reduced marketable yield leading to lower revenue [28] | Chemical pesticides (high frequency) | Enhanced pest resistance [29] |
Revenue: USD 32,000–USD 37,000/ha | Whiteflies (Bemisia tabaci), Fusarium Wilt (Fusarium oxysporum) | Yield loss, reduced quality | Direct impact on fruit quality and marketability [30] | Biological control (limited success) | Reduced pesticide use [31] | ||
Production cost: USD 7000–USD 10,000/ha | Aphids (Aphidoidea), Bacterial Spot (Xanthomonas spp.) | Lower quality produce | Disease leads to lower yield and quality | Integrated pest management (IPM) | Higher yields and better quality [32] | ||
Potatoes | Bekaa, Akkar | Average yield: 23–30 tons/ha | Colorado Potato Beetle (Leptinotarsa decemlineata), Late Blight (Phytophthora infestans) | Yield loss up to 50% | Direct impact on tuber quality and marketable yield [33] | Chemical pesticides (moderate frequency) | Enhanced disease resistance [34] |
Revenue: USD 11,000–USD 15,000/ha | Potato Tuber Moth (Phthorimaea operculella), Early Blight (Alternaria solani) | Yield loss, reduced tuber quality | Reduced marketable yield due to tuber damage [35] | Crop rotation (moderate success) | Reduced production costs [36] | ||
Production cost: USD 4000–USD 6,000/ha | Aphids (Aphidoidea) | Lower quality produce | Disease leads to lower yield and quality [37] | Biological control (limited success) | Improved environmental sustainability [38] | ||
Cucumbers | Mount Lebanon, Bekaa | Average yield: 30–35 tons/ha | Aphids (Aphidoidea), Powdery Mildew (Podosphaera xanthii) | Yield loss up to 40% | Reduced marketable yield leading to lower revenue [39] | Chemical pesticides (high frequency) | Enhanced pest resistance |
Revenue: USD 18,000–USD 21,000/ha | Whiteflies (Bemisia tabaci), Downy Mildew (Pseudoperonospora cubensis) | Yield loss, reduced quality | Direct impact on fruit quality and marketability [40] | Biological control (limited success) | Reduced pesticide use [41] | ||
Production cost: USD 5000–USD 7,000/ha | Whiteflies (Bemisia tabaci), Downy Mildew (Pseudoperonospora cubensis) | Lower quality produce | Disease leads to lower yield and quality [42] | Integrated pest management (IPM) | Higher yields and better quality | ||
Apples | Mount Lebanon, North | Average yield: 16–25 tons/ha | Codling Moth (Cydia pomonella), Apple Scab (Venturia inaequalis) | Yield loss up to 30% | Direct impact on fruit quality and marketable yield [43] | Chemical pesticides (high frequency) | Enhanced pest resistance |
Revenue: USD 32,000–USD 50,000/ha | Apple Maggot (Rhagoletis pomonella), Fire Blight (Erwinia amylovora) | Yield loss, reduced quality [44] | Direct impact on fruit quality and marketability | Biological control (moderate success) | Reduced pesticide use [45] | ||
Production cost: USD 7000–USD 9,000/ha | Aphids (Aphidoidea), Powdery Mildew (Podosphaera leucotricha) | Lower quality produce | Disease leads to lower yield and quality [46] | Integrated pest management (IPM) | Improved environmental sustainability [47] | ||
Maize | Bekaa, South Lebanon | Average yield: 3–7 tons/ha | Corn Earworm (Helicoverpa zea), Maize Dwarf Mosaic Virus (MDMV) | Yield loss up to 20% | Direct impact on kernel quality and marketable yield [48] | Chemical pesticides (moderate frequency) | Enhanced pest resistance [49] |
Revenue: USD 1380–USD 3,220/ha | Fall Armyworm (Spodoptera frugiperda), Northern Corn Leaf Blight (Exserohilum turcicum) | Yield loss, reduced quality [50] | Direct impact on kernel quality and marketability [51] | Crop rotation (moderate success) | Reduced production costs [52] | ||
Production cost: USD 2000–USD 3,000/ha | Aphids (Aphidoidea), Southern Corn Leaf Blight (Bipolaris maydis) | Lower quality produce | Disease leads to lower yield and quality [53] | Biological control (limited success) | Improved environmental sustainability [54] |
Parameter | Non-GM Tomatoes | GM Tomatoes | Difference |
---|---|---|---|
Yield Increase (over 5 years) | 150 tons | 200 tons | +50 tons |
Cumulative Revenue (5 years) | USD 150,000 | USD 200,000 | +USD 50,000 |
Cumulative Production Cost (5 years) | USD 39,000 | USD 42,000 | −USD 3000 |
Cumulative Net Income (5 years) | USD 105,000 | USD 154,000 | +USD 50,000 |
Parameter | Non-GM Tomatoes | GM Tomatoes | Difference |
---|---|---|---|
Initial Seed Cost (per ha) | USD 200 | USD 400 | −USD 200 |
Production Cost (per ha) | USD 6600 | USD 7000 | −USD 400 |
Yield (tons per ha) | 30 | 40 | +10 tons |
Revenue (per ha) | USD 30,000 | USD 40,000 | +USD 10,000 |
Pesticide Cost (per ha) | USD 1000 | USD 400 | +USD 600 |
Total Cost (per ha) | USD 7800 | USD 7800 | USD 0 |
Net Income (per ha) | USD 22,200 | USD 32,200 | +USD 10,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, R.J.; Naimy, V. Strategic Adoption of Genetically Modified Crops in Lebanon: A Comprehensive Cost–Benefit Analysis and Implementation Framework. Sustainability 2024, 16, 8350. https://doi.org/10.3390/su16198350
Roberts RJ, Naimy V. Strategic Adoption of Genetically Modified Crops in Lebanon: A Comprehensive Cost–Benefit Analysis and Implementation Framework. Sustainability. 2024; 16(19):8350. https://doi.org/10.3390/su16198350
Chicago/Turabian StyleRoberts, Richard J., and Viviane Naimy. 2024. "Strategic Adoption of Genetically Modified Crops in Lebanon: A Comprehensive Cost–Benefit Analysis and Implementation Framework" Sustainability 16, no. 19: 8350. https://doi.org/10.3390/su16198350
APA StyleRoberts, R. J., & Naimy, V. (2024). Strategic Adoption of Genetically Modified Crops in Lebanon: A Comprehensive Cost–Benefit Analysis and Implementation Framework. Sustainability, 16(19), 8350. https://doi.org/10.3390/su16198350