A Process-Based Approach to Guide the Observational Strategies for the Assessment of the Marine Environment
Abstract
:1. Introduction
2. Methodology
2.1. The General Approach to the Sampling Strategy
- Physical and biogeochemical parameters (Sea water temperature and salinity along the water column, Beam Transmission, Chlorophyll-a absorption and concentration, POC, DOC, CDOM, Inherent Optical Properties, Ocean Colour radiometry);
- Biodiversity (environmental DNA for metabarcoding, bottle and net samples for quantitative analysis at various trophic levels via microscopic counts, flow cytometry, optical scanners);
- Contaminants (concentration: dissolved and particulate, bioavailability (by analysis of free and complexed forms of the various pollutants in seawater and also adopting passive sampling) [18], and distribution at the various plankton trophic levels to investigate contaminants accumulation and transfer quantify along the web;
- Biomarkers (sentinel molecules for detecting cumulative and/or specific impacts of contaminants) at the individual and/or trophic level;
- Plankton sampling (as required for trophic web analyses).
2.2. Physical Oceanography
2.3. Biodiversity
2.4. Trophic Web
- Definition of plankton nodes
- 1.
- Detritus (better if split into dissolved and particulate components);
- 2.
- Heterotrophic bacteria;
- 3.
- Pico-phytoplankton (cell size < 2 µm);
- 4.
- Nano-phytoplankton (cell size 2–20 µm);
- 5.
- Micro-phytoplankton (better if split into different groups, such as diatoms and dinoflagellates) (cell size 20–200 µm);
- 6.
- Protozooplankton (better if split into the nano and micro size classes, and/or hetero- and mixotrophic) (cell size 2–20-200 µm);
- 7.
- Juvenile herbivorous crustaceans (e.g., copepods) (individual size > 200 µm);
- 8.
- Adult herbivorous crustaceans (copepods, cladocerans) (individual size > 200 µm);
- 9.
- Adult omnivore crustaceans (copepods) (individual size > 200 µm);
- 10.
- Adult detritivores crustaceans (copepods) (individual size > 200 µm);
- 11.
- Gelatinous filter feeders (pelagic tunicates) (individual size ca. 2000 µm);
- 12.
- Carnivorous zooplankton (individual size ca. 2000 µm).
- Trophic network models
- (a)
- The biomass of FNs;
- (b)
- Production, consumption, assimilation and respiration rates of FNs (estimated from published metrics and from measured rates, if available, i.e., PP, bacterial and secondary production);
- (c)
- Diets of FNs (based on expert knowledge and implemented by isotope analysis, if available).
- i.
- Maximum number of trophic levels (max TL) in the network.
- ii.
- Number of trophic cycles in the network (TC).
- iii.
- Detritivory/herbivory ratio
- iv.
- Topological importance (TI) and trophic overlap (TO) of each FN.
- Biomass–size distribution
2.5. Contaminants
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carstensen, J. Need for monitoring and maintaining sustainable marine ecosystem services. Front. Mar. Sci. 2014, 1, 33. [Google Scholar] [CrossRef]
- Waltham, N.J.; Elliott, M.; Lee, S.Y.; Lovelock, C.; Duarte, C.M.; Buelow, C.; Simenstad, C.; Nagelkerken, I.; Claassens, L.; Wen, C.K.-C.; et al. UN Decade on Ecosystem Restoration 2021–2030—What Chance for Success in Restoring Coastal Ecosystems? Front. Mar. Sci. 2020, 7, 71. [Google Scholar] [CrossRef]
- San Miguel, M.; Johnson, J.H.; Kertesz, J.; Kaski, K.; Díaz-Guilera, A.; MacKay, R.S.; Loreto, V.; Érdi, P.; Helbing, D. Challenges in complex systems science. Eur. Phys. J. Special Topics 2012, 214, 245–271. [Google Scholar] [CrossRef]
- EC. Directive 2008/56/EC of the European Parliament and of the Council establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Off. J. Eur. Union L164 2008, 164, 19–40. [Google Scholar]
- Cardoso, A.C.; Cochrane, S.; Doerner, H.; Ferreira, J.G.; Galgani, F.; Hagebro, C.; Hanke, G.; Hoepffner, N.; Keizer, P.D.; Law, R.; et al. Scientific Support to the European Commission Marine Strategy Framework Directive: Management Group Report, March 2010; Publications Office: Luxembourg, 2010. [Google Scholar]
- Levin, P.S.; Fogarty, M.J.; A Murawski, S.; Fluharty, D. Integrated Ecosystem Assessments: Developing the Scientific Basis for Ecosystem-Based Management of the Ocean. PLoS Biol. 2009, 7, e1000014. [Google Scholar] [CrossRef]
- Burton, G.A. Sediment Toxicity Assessment; CRC Press: Boca Raton, FL, USA, 2018; p. 480. [Google Scholar]
- Guy-Haim, T.; Lyons, D.A.; Kotta, J.; Ojaveer, H.; Queirós, A.M.; Chatzinikolaou, E.; Arvanitidis, C.; Como, S.; Magni, P.; Blight, A.J.; et al. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and meta-analysis. Glob. Chang. Biol. 2018, 24, 906–924. [Google Scholar] [CrossRef]
- Lehtiniemi, M.; Ojaveer, H.; David, M.; Galil, B.; Gollasch, S.; McKenzie, C.; Minchin, D.; Occhipinti-Ambrogi, A.; Olenin, S.; Pederson, J. Dose of truth—Monitoring marine non-indigenous species to serve legislative requirements. Mar. Policy 2015, 54, 26–35. [Google Scholar] [CrossRef]
- Borja, A. Grand challenges in marine ecosystems ecology. Front. Mar. Sci. 2014, 1, 1. [Google Scholar] [CrossRef]
- Borja, A.; Elliott, M.; Andersen, J.H.; Berg, T.; Carstensen, J.; Halpern, B.S.; Heiskanen, A.-S.; Korpinen, S.; Lowndes, J.S.S.; Martin, G.; et al. Overview of Integrative Assessment of Marine Systems: The Ecosystem Approach in Practice. Front. Mar. Sci. 2016, 3, 20. [Google Scholar] [CrossRef]
- Borja, A.; Elliott, M.; Uyarra, M.C.; Carstensen, J.; Mea, M. (Eds.) Bridging the Gap between Policy and Science in Assessing the Health Status of Marine Ecosystems, 2nd ed.; Frontiers Media: Lausanne, Switzerland, 2017; p. 548. [Google Scholar] [CrossRef]
- Boyd, P.W.; Hutchins, D.A. Understanding the responses of ocean biota to a complex matrix of cumulative an-thropogenic change. Marine Ecology Progress Series 2012, 470, 125–135. [Google Scholar] [CrossRef]
- Berg, T.; Fürhaupter, K.; Teixeira, H.; Uusitalo, L.; Zampoukas, N. The Marine Strategy Framework Directive and the ecosystem-based approach—Pitfalls and solutions. Mar. Pollut. Bull. 2015, 96, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Bryhn, A.; Kaufvelin, P.; Bergstrom, U.; Vretborn, M. and Bergstrom L. A Model for Disentangling Dependencies and Impacts among Human Activities and Marine Ecosystem Services. Environ. Manag. 2020, 65, 575–586. [Google Scholar] [CrossRef]
- Palialexis, A.; Connor, D.; Damalas, D.; Gonzalvo, J.; Micu, D.; Mitchel, I.; Korpinen, S.; Rees, A.F.; Somma, F. Indicators for Status Assessment of Species, Relevant to MSFD Biodiversity Descriptor; EUR 29820 EN; Publications Office of the European Union: Luxembourg, 2019; JRC117126; ISBN 978-92-76-09156-1. [Google Scholar] [CrossRef]
- Sprovieri, M.; D’aLcalà, M.R.; Roose, P.; Drago, A.; De Cauwer, K.; Falcini, F.; Lips, I.; Maggi, C.; Mauffret, A.; Tronczynski, J.; et al. Science for Good Environmental Status: A European Joint Action to Support Marine Policy. Sustainability 2021, 13, 8664. [Google Scholar] [CrossRef]
- Rodríguez, J.G.; Amouroux, I.; Belzunce-Segarra, M.J.; Bersuder, P.; Bolam, T.; Caetano, M.; Carvalho, I.; dos Santos, M.M.C.; Fones, G.R.; Gonzalez, J.-L.; et al. Assessing variability in the ratio of metal concentrations measured by DGT-type passive samplers and spot sampling in European seawaters. Sci. Total. Environ. 2021, 783, 147001. [Google Scholar] [CrossRef]
- Colella, S.; Falcini, F.; Rinaldi, E.; Sammartino, M.; Santoleri, R. Mediterranean Ocean Colour Chlorophyll Trends. PLoS ONE 2016, 11, e0155756. [Google Scholar] [CrossRef] [PubMed]
- Gohin, F.; Druon, J.N.; Lampert, L. A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. Int. J. Remote Sens. 2002, 23, 1639–1661. [Google Scholar] [CrossRef]
- Vilas, L.G.; Brando, V.E.; Di Cicco, A.; Colella, S.; D’aLimonte, D.; Kajiyama, T.; Attila, J.; Schroeder, T. Assessment of ocean color atmospheric correction methods and development of a regional ocean color operational dataset for the Baltic Sea based on Sentinel-3 OLCI. Front. Mar. Sci. 2024, 10, 1256990. [Google Scholar] [CrossRef]
- Pecci, M.; Colella, S.; Di Iorio, T.; Meloni, D.; Monteleone, F.; Pace, G.; Sferlazzo, D.M.; di Sarra, A.G. Validation of photosynthetically active radiation by OLCI on Sentinel-3 against ground-based measurements in the central Mediterranean and possible aerosol effects. Eur. J. Remote Sens. 2024, 57, 2307617. [Google Scholar] [CrossRef]
- Dana, D.R.; Maffione, R.A. A new hyperspectral spherical-cavity absorption meter. In Proceedings of the Ocean Sciences Meeting, Honolulu, HI, USA, 20–24 February 2006. [Google Scholar]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Falcini, F.; Khan, N.S.; Macelloni, L.; Horton, B.P.; Lutken, C.B.; McKee, K.L.; Santoleri, R.; Colella, S.; Li, C.; Volpe, G.; et al. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation. Nat. Geosci. 2012, 5, 803–807. [Google Scholar] [CrossRef]
- Palatella, L.; Bignami, F.; Falcini, F.; Lacorata, G.; Lanotte, A.S.; Santoleri, R. Lagrangian simulations and interannual variability of anchovy egg and larva dispersal in the Sicily Channel. J. Geophys. Res. Oceans 2014, 119, 1306–1323. [Google Scholar] [CrossRef]
- Braga, F.; Ciani, D.; Colella, S.; Organelli, E.; Pitarch, J.; Brando, V.E.; Bresciani, M.; Concha, J.A.; Giardino, C.; Scarpa, G.M.; et al. COVID-19 lockdown effects on a coastal marine environment: Disentangling perception versus reality. Sci. Total. Environ. 2022, 817, 153002. [Google Scholar] [CrossRef] [PubMed]
- Brogi, S.R.; Cossarini, G.; Bachi, G.; Balestra, C.; Camatti, E.; Casotti, R.; Checcucci, G.; Colella, S.; Evangelista, V.; Falcini, F.; et al. Evidence of COVID-19 lockdown effects on riverine dissolved organic matter dynamics provides a proof-of-concept for needed regulations of anthropogenic emissions. Sci. Total. Environ. 2022, 812, 152412. [Google Scholar] [CrossRef]
- Pawlowski, J.; Apothéloz-Perret-Gentil, L.; Altermatt, F. Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Mol. Ecol. 2020, 29, 4258–4264. [Google Scholar] [CrossRef]
- Thomsen, P.F.; Kielgast, J.; Iversen, L.L.; Møller, P.R.; Rasmussen, M.; Willerslev, E. Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples. PLoS ONE 2012, 7, e41732. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-K.; Park, K.; Jo, H.; Kwak, I.-S. Comparison of Water Sampling between Environmental DNA Metabarcoding and Conventional Microscopic Identification: A Case Study in Gwangyang Bay, South Korea. Appl. Sci. 2019, 9, 3272. [Google Scholar] [CrossRef]
- Fraija-Fernández, N.; Bouquieaux, M.; Rey, A.; Mendibil, I.; Cotano, U.; Irigoien, X.; Santos, M.; Rodríguez-Ezpeleta, N. Marine water environmental DNA metabarcoding provides a comprehensive fish diversity assessment and reveals spatial patterns in a large oceanic area. Ecol. Evol. 2020, 10, 7560–7584. [Google Scholar] [CrossRef]
- Jensen, M.R.; Sigsgaard, E.E.; Ávila, M.d.P.; Agersnap, S.; Brenner-Larsen, W.; Sengupta, M.E.; Xing, Y.; Krag, M.A.; Knudsen, S.W.; Carl, H.; et al. Short-term temporal variation of coastal marine eDNA. Environ. DNA 2022, 4, 747–762. [Google Scholar] [CrossRef]
- Jeunen, G.-J.; Knapp, M.; Spencer, H.G.; Lamare, M.D.; Taylor, H.R.; Stat, M.; Bunce, M.; Gemmell, N.J. Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Mol. Ecol. Resour. 2019, 19, 426–438. [Google Scholar] [CrossRef]
- Sigsgaard, E.E.; Torquato, F.; Frøslev, T.G.; Moore, A.B.M.; Sørensen, J.M.; Range, P.; Ben-Hamadou, R.; Bach, S.S.; Møller, P.R.; Thomsen, P.F. Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. Conserv. Biol. 2020, 34, 697–710. [Google Scholar] [CrossRef]
- Rodríguez-Ezpeleta, N.; Zinger, L.; Kinziger, A.; Bik, H.M.; Bonin, A.; Coissac, E.; Emerson, B.C.; Lopes, C.M.; Pelletier, T.A.; Taberlet, P.; et al. Biodiversity monitoring using environmental DNA. Mol. Ecol. Resour. 2021, 21, 1405–1409. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, P.F.; Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Valentini, A.; Taberlet, P.; Miaud, C.; Civade, R.; Herder, J.; Thomsen, P.F.; Bellemain, E.; Besnard, A.; Coissac, E.; Boyer, F.; et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 2016, 25, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.A.; Wangensteen, O.S.; O’gOrman, E.J.; Mariani, S.; Sims, D.W.; Genner, M.J. Persistence of environmental DNA in marine systems. Commun. Biol. 2018, 1, 185. [Google Scholar] [CrossRef]
- Gold, Z.; Wall, A.R.; Schweizer, T.M.; Pentcheff, N.D.; Curd, E.E.; Barber, P.H.; Meyer, R.S.; Wayne, R.; Stolzenbach, K.; Prickett, K.; et al. A manager’s guide to using eDNA metabarcoding in marine ecosystems. PeerJ 2022, 10, e14071. [Google Scholar] [CrossRef]
- Hinz, S.; Coston-Guarini, J.; Marnane, M.; Guarini, J.-M. Evaluating eDNA for Use within Marine Environmental Impact Assessments. J. Mar. Sci. Eng. 2022, 10, 375. [Google Scholar] [CrossRef]
- Capurso, G.; Carroll, B.; Stewart, K.A. Transforming marine monitoring: Using eDNA metabarcoding to improve the monitoring of the Mediterranean Marine Protected Areas network. Mar. Policy 2023, 156, 105807. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Wu, H.; Liu, F.; Peng, W.; Zhang, X.; Chang, F.; Xie, P.; Zhang, H. A Review and Perspective of eDNA Application to Eutrophication and HAB Control in Freshwater and Marine Ecosystems. Microorganisms 2020, 8, 417. [Google Scholar] [CrossRef]
- Bucklin, A.; Lindeque, P.K.; Rodriguez-Ezpeleta, N.; Albaina, A.; Lehtiniemi, M. Metabarcoding of marine zooplankton: Prospects, progress and pitfalls. J. Plankton Res. 2016, 38, 393–400. [Google Scholar] [CrossRef]
- Schroeder, A.; Stanković, D.; Pallavicini, A.; Gionechetti, F.; Pansera, M.; Camatti, E. DNA metabarcoding and morphological analysis—Assessment of zooplankton biodiversity in transitional waters. Mar. Environ. Res. 2020, 160, 104946. [Google Scholar] [CrossRef]
- Garcia-Vazquez, E.; Georges, O.; Fernandez, S.; Ardura, A. eDNA metabarcoding of small plankton samples to detect fish larvae and their preys from Atlantic and Pacific waters. Sci. Rep. 2021, 11, 7224. [Google Scholar] [CrossRef]
- Barco, A.; Kullmann, B.; Knebelsberger, T.; Sarrazin, V.; Kuhs, V.; Kreutle, A.; Pusch, C.; Thiel, R. Detection of fish species from marine protected areas of the North Sea using environmental DNA. J. Fish Biol. 2022, 101, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Maes, S.M.; Desmet, S.; Brys, R.; Sys, K.; Ruttink, T.; Maes, S.; Hostens, K.; Vansteenbrugge, L.; Derycke, S. Detection and quantification of two commercial flatfishes (Solea solea and Pleuronectes platessa) in the North Sea using environmental DNA. Environ. DNA 2023, 6, e426. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, J.; Yao, M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol. Evol. 2020, 11, 1609–1625. [Google Scholar] [CrossRef]
- Zhang, T.; Li, H.; Ma, S.; Cao, J.; Liao, H.; Huang, Q.; Chen, W. The newest Oxford Nanopore R10.4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling. Appl. Environ. Microbiol. 2023, 89, e0060523. [Google Scholar] [CrossRef]
- Semmouri, I.; Schamphelaere, K.A.C.D.; Willemse, S.; Vandegehuchte, M.B.; Janssen, C.R.; Asselman, J. Metabarcoding reveals hidden species and improves identification of marine zooplankton communities in the North Sea. ICES J. Mar. Sci. 2021, 78, 3411–3427. [Google Scholar] [CrossRef]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Hatton, I.A.; Heneghan, R.F.; Bar-On, Y.M.; Galbraith, E.D. The global ocean size spectrum from bacteria to whales. Sci. Adv. 2021, 7, eabh3732. [Google Scholar] [CrossRef]
- D’aLelio, D.; Libralato, S.; Wyatt, T.; D’aLcalà, M.R. Ecological-network models link diversity, structure and function in the plankton food-web. Sci. Rep. 2016, 6, 21806. [Google Scholar] [CrossRef]
- D’Alelio, D.; Mazzocchi, M.G.; Montresor, M.; Sarno, D.; Zingone, A.; Di Capua, I.; Franzé, G.; Margiotta, F.; Saggiomo, V.; D’Alcala’, M.R. The green-blue swing: Plasticity of plankton food-webs in response to coastal oceanographic dynamics. Mar. Ecol. 2015, 36, 1155–1170. [Google Scholar] [CrossRef]
- D’ALelio, D.; Mele, B.H.; Libralato, S.; D’ALcalà, M.R.; Jordán, F. Rewiring and indirect effects underpin modularity reshuffling in a marine food web under environmental shifts. Ecol. Evol. 2019, 9, 11631–11646. [Google Scholar] [CrossRef] [PubMed]
- Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. Oceans 2006, 111, 56. [Google Scholar] [CrossRef]
- Christensen, V.; Pauly, D. (Eds.) Trophic Models of Aquatic Ecosystems; WorldFish: Penang, Malaysia, 1993; Volume 26. [Google Scholar]
- Christensen, V.; Walters, C.J. Ecopath with Ecosim: Methods, capabilities and limitations. Ecol. Model. 2003, 172, 109–139. [Google Scholar] [CrossRef]
- Jordán, F.; Liu, W.-C.; Mike, Á. Trophic field overlap: A new approach to quantify keystone species. Ecol. Model. 2009, 220, 2899–2907. [Google Scholar] [CrossRef]
- Jordán, F.; Liu, W.-C.; van Veen, J. Quantifying the importance of species and their interactions in a host-parasitoid community. Community Ecol. 2003, 4, 79–88. [Google Scholar] [CrossRef]
- Mehner, T.; Lischke, B.; Scharnweber, K.; Attermeyer, K.; Brothers, S.; Gaedke, U.; Hilt, S.; Brucet, S. Empirical correspondence between trophic transfer efficiency in freshwater food webs and the slope of their size spectra. Ecology 2018, 99, 1463–1472. [Google Scholar] [CrossRef]
- Poelen, J.H.; Simons, J.D.; Mungall, C.J. Global biotic interactions: An open infrastructure to share and analyze species-interaction datasets. Ecol. Inform. 2014, 24, 148–159. [Google Scholar] [CrossRef]
- D’aLessandro, S.; Mariani, S. Sifting environmental DNA metabarcoding data sets for rapid reconstruction of marine food webs. Fish Fish. 2021, 22, 822–833. [Google Scholar] [CrossRef]
- Bellardini, D.; Russo, L.; Di Tuccio, V.; De Luca, D.; Del Gaizo, G.; Zampicinini, G.; Kokoszka, F.; Botte, V.; Colloca, F.; Conversano, F.; et al. Spatiotemporal changes of pelagic food webs investigated by environmental DNA metabarcoding and connectivity analysis. Phil. Trans. R. Soc. B 2024, 379, 20230178. [Google Scholar] [CrossRef]
- Tao, Y.; Yu, J.; Liu, X.; Xue, B.; Wang, S. Factors affecting annual occurrence, bioaccumulation, and biomagnification of polycyclic aromatic hydro-carbons in plankton food webs of subtropical eutrophic lakes. Water Res. 2018, 132, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chouvelon, T.; Strady, E.; Harmelin-Vivien, M.; Radakovitch, O.; Brach-Papa, C.; Crochet, S.; Knoery, J.; Rozuel, E.; Thomas, B.; Tronczynski, J.; et al. Patterns of trace metal bioaccumulation and trophic transfer in a phytoplankton-zooplankton-small pelagic fish marine food web. Mar. Pollut. Bull. 2019, 146, 1013–1030. [Google Scholar] [CrossRef] [PubMed]
- Tedetti, M.; Tronczynski, J.; Carlotti, F.; Pagano, M.; Ben Ismail, S.; Sammari, C.; Hassen, M.B.; Desboeufs, K.; Poindron, C.; Chifflet, S.; et al. Contamination of planktonic food webs in the Mediterranean Sea: Setting the frame for the MERITE-HIPPOCAMPE oceanographic cruise (spring 2019). Mar. Pollut. Bull. 2022, 189, 114765. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, W.-X. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton. Environ. Pollut. 2011, 159, 3097–3105. [Google Scholar] [CrossRef]
- Vander Zanden, J.; Rasmussen, J. Variation in d15N and d13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 2001, 46, 2061–2066. [Google Scholar] [CrossRef]
- Falcini, F.; D’Alelio, D.; Schon, I.; Vandenboen, T.; Pitarch, J.; Dupont, D.; Moretti, P.E. Linking biodiversity and hyperspectral bio-optics from process-based sampling strategy in tidal environments. In preparation. 2024. [Google Scholar]
ID | Type | Descriptor | Achievement | n. of Criteria |
---|---|---|---|---|
D1 | state | Marine biodiversity | Biological diversity is maintained. The quality and occurrence of habitats and the distribution and abundance of species are in line with prevailing physiographic, geographic and climatic conditions | 6 |
D2 | pressure | Non-indigenous species | Non-indigenous species introduced by human activities are at levels that do not adversely alter the ecosystems | 3 |
D3 | state | Commercial fish and shellfish | Populations of all commercially exploited fish and shellfish are within safe biological limits, exhibiting a population age and size distribution that is indicative of a healthy stock | 3 |
D4 | state | Food webs | All elements of the marine food webs, to the extent that they are known, occur at normal abundance and diversity and levels capable of ensuring the long-term abundance of the species and the retention of their full reproductive capacity | 4 |
D5 | pressure | Eutrophication | Human-induced eutrophication is minimised, especially adverse effects thereof, such as losses in biodiversity, ecosystem degradation, harmful algae blooms and oxygen deficiency in bottom waters | 8 |
D6 | state | Seabed integrity | Sea-floor integrity is at a level that ensures that the structure and functions of the ecosystems are safeguarded and benthic ecosystems, in particular, are not adversely affected | 5 |
D7 | pressure | Hydrographical conditions | Permanent alteration of hydrographical conditions does not adversely affect marine ecosystems | 2 |
D8 | pressure | Contaminants | Concentrations of contaminants are at levels not giving rise to pollution effects | 4 |
D9 | pressure | Contaminants in seafood | Contaminants in fish and other seafood for human consumption do not exceed levels established by Union legislation or other relevant standards | 1 |
D10 | pressure | Marine litter | Properties and quantities of marine litter do not cause harm to the coastal and marine environment | 4 |
D11 | pressure | Energy, including underwater noise | Introduction of energy, including underwater noise, is at levels that do not adversely affect the marine environment | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moretti, P.F.; D’Alelio, D.; Drago, A.; Pitarch, J.; Roose, P.; Schön, I.; Sprovieri, M.; Falcini, F. A Process-Based Approach to Guide the Observational Strategies for the Assessment of the Marine Environment. Sustainability 2024, 16, 8335. https://doi.org/10.3390/su16198335
Moretti PF, D’Alelio D, Drago A, Pitarch J, Roose P, Schön I, Sprovieri M, Falcini F. A Process-Based Approach to Guide the Observational Strategies for the Assessment of the Marine Environment. Sustainability. 2024; 16(19):8335. https://doi.org/10.3390/su16198335
Chicago/Turabian StyleMoretti, Pier Francesco, Domenico D’Alelio, Aldo Drago, Jaime Pitarch, Patrick Roose, Isa Schön, Mario Sprovieri, and Federico Falcini. 2024. "A Process-Based Approach to Guide the Observational Strategies for the Assessment of the Marine Environment" Sustainability 16, no. 19: 8335. https://doi.org/10.3390/su16198335
APA StyleMoretti, P. F., D’Alelio, D., Drago, A., Pitarch, J., Roose, P., Schön, I., Sprovieri, M., & Falcini, F. (2024). A Process-Based Approach to Guide the Observational Strategies for the Assessment of the Marine Environment. Sustainability, 16(19), 8335. https://doi.org/10.3390/su16198335