Socio-Economic Impact of the Brumadinho Landslide: A Hybrid MCDM-ML Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. TOPSIS
2.3. Entropy Weights
2.4. Transfer Entropy
2.5. Lasso Regression
2.6. Differences in Differences
2.7. Assumptions and Limitations of the Hybrid MCDM-ML Model
2.7.1. Assumptions
2.7.2. Limitations
3. Results and Discussion
3.1. Descriptive Statistics
3.1.1. Education
- (1)
- Education quality index (5th and 9th grade elementary): Positive (+), as higher scores directly indicate better educational outcomes, which are fundamental for socio-economic development [71].
- (2)
- Per capita expenditure (education): Positive (+), as higher investments in education per capita are generally associated with better educational facilities, resources, and outcomes [72].
3.1.2. Employment and Income
- (1)
- Employment rate (formal sector): Positive (+), as higher formal employment rates are indicative of better job availability and economic stability [73].
- (2)
- Gross value added per capita and (3) per capita income (formal sector): Positive (+), as these indices represent the economic productivity and income levels of the population, with higher values signifying better economic health [74].
3.1.3. Environment
- (1)
- Agricultural coverage: Negative (−), as excessive agricultural land coverage might imply deforestation or loss of natural habitats [75].
- (2)
- Native flora vegetation coverage: Positive (+), as higher levels of native vegetation are crucial for environmental sustainability and biodiversity [76].
- (3)
- Urban infrastructure coverage: Negative (−), as extensive urbanization can lead to environmental degradation and reduced green spaces [77].
3.1.4. Finances
- (1)
- GDP per capita, (2) net current revenue per capita, and (3) net taxes: Positive (+), as they reflect the economic prosperity and financial health of municipalities [78], (4 and 5) per capita expenditure (legislative and total), and (6) personnel expenditure in relation to net current revenue: Negative (−), as higher expenditures in these areas, relative to the overall financial resources, might indicate inefficiency or over-spending [79].
3.1.5. Health
- (1)
- Aging index: Negative (−), as a higher proportion of older population might indicate future challenges for healthcare and social services [80].
- (2)
- Per capita expenditure (health): Positive (+), as higher health spending per capita is typically associated with better healthcare access and outcomes [81].
3.1.6. Security
- (1)
- Inhabitants per police officer and (2) rate of violent crimes: Negative (−), as lower police coverage and higher crime rates are detrimental to social well-being and community safety [82].
3.1.7. Social Assistance
- (1)
- The six indices related to social assistance benefits and expenditures: Positive (+), as they reflect the extent and effectiveness of social support systems, which are crucial for vulnerable populations [83].
3.1.8. Urbanization and Sanitation
- (1)
- Per capita expenditure on infrastructure, (2) population density, (3) urbanization rate, and (4) vehicle density: Positive (+), as these indices generally signify better urban development, infrastructure, and accessibility, contributing to higher living standards [84].
3.2. Socio-Economic Development Overview of Minas Gerais
3.3. Transfer Entropy Results
3.3.1. Analysis for Minas Gerais State in Aggregate
3.3.2. Analysis for Minas Gerais State in Aggregate
3.4. LASSO Regression Results
3.5. DiD Results
4. Conclusions
4.1. Key Findings
4.2. Managerial and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Comparison between Total MEHI and FJP Original Socio-Economic Aggregate Score (IMRS)
Appendix B. Granger Causality and Endogeneity in MEHI Dimensions for Minas Gerais State
Appendix C. Transfer Entropy and Endogeneity in MEHI Dimensions for Selected Municipalities
References
- Do Carmo, F.F.; Kamino, L.H.Y.; Junior, R.T.; de Campos, I.C.; do Carmo, F.F.D.; Silvino, G.; de Castro, K.J.d.S.X.; Mauro, M.L.; Rodrigues, N.U.A.; Miranda, M.P.d.S.; et al. Fundão tailings dam failures: The environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspect. Ecol. Conserv. 2017, 15, 145–151. [Google Scholar] [CrossRef]
- Gomes, L.E.O.; Correa, L.B.; Sá, F.; Neto, R.R. The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil. Mar. Pollut. Bull. 2017, 120, 28–36. [Google Scholar] [CrossRef]
- Dedring, T.; Graw, V.; Thygesen, K.; Rienow, A. Validation of an empirical model with risk assessment functionalities to simulate and evaluate the tailings dam failure in Brumadinho. Sustainability 2022, 14, 6681. [Google Scholar] [CrossRef]
- Filho, C.R.M.; do Valle Junior, R.F.; de Melo Silva, M.M.A.P.; Mendes, R.G.; de Souza Rolim, G.; Pissarra, T.C.T.; de Melo, M.C.; Valera, C.A.; Pacheco, F.A.L.; Fernandes, L.F.S. The Accuracy of Land Use and Cover Mapping across Time in Environmental Disaster Zones: The Case of the B1 Tailings Dam Rupture in Brumadinho, Brazil. Sustainability 2023, 15, 6949. [Google Scholar] [CrossRef]
- Guardian. Brazilian Mining Company to Pay out £86m for Disaster that Killed Almost 300 People. Available online: https://www.theguardian.com/world/2019/jul/16/vale-brazil-mining-dam-collapse-brumadinho (accessed on 20 November 2022).
- Pereira, L.F.; Cruz, G.B.; Guimarães, R.M.F. Impactos do rompimento da barragem de rejeitos de Brumadinho, Brasil: Uma análise baseada nas mudanças de cobertura da terra. J. Environ. Anal. Prog. Pernamb. 2019, 4, 122–129. [Google Scholar] [CrossRef]
- Thompson, F.; Oliveira, B.C.; Cordeiro, M.C.; Masi, B.P.; Rangel, T.P.; Paz, P.; Freitas, T.; Lopes, G.; Silva, B.S.; Cabral, A.; et al. Severe impacts of the Brumadinho dam failure (Minas Gerais, Brazil) on the water quality of the Paraopeba River. Sci. Total Environ. 2020, 705, 135914. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, I.M.; Filho, J.M.J.; Vilela, R.A.d.G. Reasons for investigating the organizational dynamics of the Vale tailings dam disaster in Brumadinho, Minas Gerais State, Brazil. Cad. Saude Publica 2019, 35, e00027319. [Google Scholar] [CrossRef]
- Roque, M.P.B.; Ferreira Neto, J.A.; da Cruz Vieira, W.; Rocha, B.D.; Calegario, A.T. Social vulnerability to environmental disasters in the Paraopeba River Basin, Minas Gerais, Brazil. Nat. Hazards 2023, 118, 1191–1210. [Google Scholar] [CrossRef]
- De Klerk, J.; Swart, B. Paradoxes and dilemmas of responsible leadership in the mining industries of emerging economies—It is complex. Emerald Open Res. 2023, 1, 1–26. [Google Scholar] [CrossRef]
- Kalfin; Sukono; Supian, S.; Mamat, M. Insurance as an alternative for sustainable economic recovery after natural disasters: A systematic literature review. Sustainability 2022, 14, 4349. [Google Scholar] [CrossRef]
- Behera, J.K. Role of social capital in disaster risk management: A theoretical review. Int. J. Manag. 2021, 12, 221–233. [Google Scholar]
- Astuti, V.W.; Rimawati, R. Kelud Community Activities in Disaster Management. J. Qual. Public Health 2021, 5, 339–343. [Google Scholar] [CrossRef]
- Guo, X.; Kapucu, N. Engaging stakeholders for collaborative decision making in humanitarian logistics using system dynamics. J. Homel. Secur. Emerg. Manag. 2020, 17, 20180061. [Google Scholar] [CrossRef]
- Dube, E.; Wedawatta, G.; Ginige, K. Building-back-better in post-disaster recovery: Lessons learnt from Cyclone Idai-induced floods in Zimbabwe. Int. J. Disaster Risk Sci. 2021, 12, 700–712. [Google Scholar] [CrossRef]
- Gajewski, S.; Bell, H.; Lein, L.; Angel, R.J. Complexity and instability: The response of nongovernmental organizations to the recovery of Hurricane Katrina survivors in a host community. Nonprofit Volunt. Sect. Q. 2011, 40, 389–403. [Google Scholar] [CrossRef]
- Myomin, T.; Lim, S. The emergence of multiplex dynamics between information provision ties and rescue collaboration ties: A longitudinal network analytic approach to flooding cases in Myanmar. Nat. Hazards 2022, 114, 645–663. [Google Scholar] [CrossRef]
- Zanini, M.T.F.; Migueles, C.P.; Gambirage, C.; Silva, J. Barriers to local community participation in mining projects: The eroding role of power imbalance and information asymmetry. Resour. Policy 2023, 86, 104283. [Google Scholar] [CrossRef]
- Szoke-Burke, S.; Werker, E. Benefit sharing, power, and the performance of multi-stakeholder institutions at Ghana’s Ahafo mine. Resour. Policy 2021, 71, 101969. [Google Scholar] [CrossRef]
- Cunha, L.R.A.; Leiras, A.; Goncalves, P. Looking back and beyond the complex dynamics of humanitarian operations. J. Humanit. Logist. Supply Chain Manag. 2024, 14, 328–345. [Google Scholar] [CrossRef]
- Daly, P.; Mahdi, S.; McCaughey, J.; Mundzir, I.; Halim, A.; Srimulyani, E. Rethinking relief, reconstruction and development: Evaluating the effectiveness and sustainability of post-disaster livelihood aid. Int. J. Disaster Risk Reduct. 2020, 49, 101650. [Google Scholar] [CrossRef]
- Deryugina, T. The fiscal cost of hurricanes: Disaster aid versus social insurance. Am. Econ. J. Econ. Policy 2017, 9, 168–198. [Google Scholar] [CrossRef]
- McCaughey, J.W.; Daly, P.; Mundir, I.; Mahdi, S.; Patt, A. Socio-economic consequences of post-disaster reconstruction in hazard-exposed areas. Nat. Sustain. 2018, 1, 38–43. [Google Scholar] [CrossRef]
- Qian, G.; Duanmu, C.; Ali, N.; Khan, A.; Malik, S.; Yang, Y.; Bilal, M. Hazardous wastes, adverse impacts, and management strategies: A way forward to environmental sustainability. Environ. Dev. Sustain. 2021, 24, 9731–9756. [Google Scholar] [CrossRef]
- Corrente, S.; Tasiou, M. A robust TOPSIS method for decision making problems with hierarchical and non-monotonic criteria. Expert Syst. Appl. 2023, 214, 119045. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, D.; Yan, F. Effectiveness of entropy weight method in decision-making. Math. Probl. Eng. 2020, 2020, 3564835. [Google Scholar] [CrossRef]
- Qu, W.; Li, J.; Song, W.; Li, X.; Zhao, Y.; Dong, H.; Wang, Y.; Zhao, Q.; Qi, Y. Entropy-weight-method-based integrated models for short-term intersection traffic flow prediction. Entropy 2022, 24, 849. [Google Scholar] [CrossRef]
- Bossomaier, T.; Barnett, L.; Harré, M.; Lizier, J.T. Transfer Entropy. In An Introduction to Transfer Entropy; Springer: Cham, Switzerland, 2016; pp. 65–95. [Google Scholar] [CrossRef]
- Rafiei-Sardooi, E.; Azareh, A.; Choubin, B.; Mosavi, A.H.; Clague, J.J. Evaluating urban flood risk using hybrid method of TOPSIS and machine learning. Int. J. Disaster Risk Reduct. 2021, 66, 102614. [Google Scholar] [CrossRef]
- Musbah, H.; Ali, G.; Aly, H.H.; Little, T.A. Energy management using multi-criteria decision making and machine learning classification algorithms for intelligent system. Electr. Power Syst. Res. 2022, 203, 107645. [Google Scholar] [CrossRef]
- Wang, L.; Li, P.; Hou, M.; Zhang, X.; Cao, X.; Li, H. Construction of a risk prediction model for Alzheimer’s disease in the elderly population. BMC Neurol. 2021, 21, 271. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Fang, Z.; Zhang, Q.; Zhang, J. Generalized grey information entropy weight TOPSIS model for financial performance evaluation considering differentiation. Kybernetes 2023, 52, 5412–5426. [Google Scholar] [CrossRef]
- Li, H.; Huang, J.; Hu, Y.; Wang, S.; Liu, J.; Yang, L. A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China. Energy 2021, 231, 120723. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, X.; Zhu, B.; He, K.; Wang, P. Measuring the maturity of carbon market in China: An entropy-based TOPSIS approach. J. Clean. Prod. 2019, 229, 94–103. [Google Scholar] [CrossRef]
- Mangalathu, S.; Jeon, J.S.; DesRoches, R. Critical uncertainty parameters influencing seismic performance of bridges using Lasso regression. Earthq. Eng. Struct. Dyn. 2018, 47, 784–801. [Google Scholar] [CrossRef]
- Chen, S.; Shen, Z.D. Financial distress prediction using hybrid machine learning techniques. Asian J. Econ. Bus. Account. 2020, 16, 1–12. [Google Scholar] [CrossRef]
- Surano, F.V.; Porfiri, M.; Rizzo, A. Analysis of lockdown perception in the United States during the COVID-19 pandemic. Eur. Phys. J. Spec. Top. 2020, 231, 1625–1633. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Nemati, S.; Silva, I.; Edwards, B.A.; Butler, J.P.; Malhotra, A. Transfer entropy estimation and directional coupling change detection in biomedical time series. BioMed. Eng. OnLine 2012, 11, 19. [Google Scholar] [CrossRef]
- Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2020, 85, 46. [Google Scholar] [CrossRef]
- Wibral, M.; Vicente, R.; Lizier, J.T. (Eds.) . Directed Information Measures in Neuroscience; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytical Hierarchy Process; MacGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Ramanathan, U. Aligning supply chain collaboration using Analytic Hierarchy Process. Omega 2013, 41, 431–440. [Google Scholar] [CrossRef]
- Brans, J.P.; Vincke, P. Note—A Preference Ranking Organisation Method: (The PROMETHEE Method for Multiple Criteria Decision-Making). Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef]
- Corrente, S.; Greco, S.; Słowiński, R. Multiple criteria hierarchy process with ELECTRE and PROMETHEE. Omega 2013, 41, 820–846. [Google Scholar] [CrossRef]
- Hatami-Marbini, A.; Tavana, M. An extension of the Electre I method for group decision-making under a fuzzy environment. Omega 2011, 39, 373–386. [Google Scholar] [CrossRef]
- Tsai, W.H.; Chou, W.C.; Hsu, W. The sustainability balanced scorecard as a framework for selecting socially responsible investment: An effective MCDM model. J. Oper. Res. Soc. 2009, 60, 1396–1410. [Google Scholar] [CrossRef]
- Opricovic, S. Multicriteria optimization of civil engineering systems. Fac. Civ. Eng. Belgrade 1998, 2, 5–21. [Google Scholar]
- Opricovic, S.; Tzeng, G.H. Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res. 2007, 178, 514–529. [Google Scholar] [CrossRef]
- Siskos, E.; Askounis, D.; Psarras, J. Multicriteria decision support for global e-government evaluation. Omega 2014, 46, 51–63. [Google Scholar] [CrossRef]
- Wang, B.; Nistor, I.; Murty, T.; Wei, Y.M. Efficiency assessment of hydroelectric power plants in Canada: A multi criteria decision making approach. Energy Econ. 2014, 46, 112–121. [Google Scholar] [CrossRef]
- Bilbao-Terol, A.; Arenas-Parra, M.; Cañal-Fernández, V.; Antomil-Ibias, J. Using TOPSIS for assessing the sustainability of government bond funds. Omega 2014, 49, 1–17. [Google Scholar] [CrossRef]
- Feng, C.M.; Wang, R.T. Considering the financial ratios on the performance evaluation of highway bus industry. Transp. Rev. 2001, 21, 449–467. [Google Scholar] [CrossRef]
- Pirdavani, A.; Brijs, T.; Wets, G. A multiple criteria decision-making approach for prioritizing accident hotspots in the absence of crash data. Transp. Rev. 2010, 30, 97–113. [Google Scholar] [CrossRef]
- Chen, S.; Leng, Y.; Mao, B.; Liu, S. Integrated weight-based multi-criteria evaluation on transfer in large transport terminals: A case study of the Beijing South Railway Station. Transp. Res. Part A Policy Pract. 2014, 66, 13–26. [Google Scholar] [CrossRef]
- Hassan, M.N.; Hawas, Y.E.; Ahmed, K. A multi-dimensional framework for evaluating the transit service performance. Transp. Res. Part A Policy Pract. 2013, 50, 47–61. [Google Scholar] [CrossRef]
- Barros, C.P.; Wanke, P. An analysis of African airlines efficiency with two-stage TOPSIS and neural networks. J. Air Transp. Manag. 2015, 44, 90–102. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making Methods and Applications a State of the Art Survey; Springer: Berlin, Germany; New York, NY, USA, 1981. [Google Scholar]
- Ertuğrul, İ.; Karakaşoğlu, N. Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods. Expert Syst. Appl. 2009, 36, 702–715. [Google Scholar] [CrossRef]
- Lai, Y.J.; Liu, T.Y.; Hwang, C.L. Topsis for MODM. Eur. J. Oper. Res. 1994, 76, 486–500. [Google Scholar] [CrossRef]
- Wu, C.S.; Lin, C.T.; Lee, C. Optimal marketing strategy: A decision-making with ANP and TOPSIS. Int. J. Prod. Econ. 2010, 127, 190–196. [Google Scholar] [CrossRef]
- Jahanshahloo, G.R.; Lotfi, F.H.; Davoodi, A.R. Extension of TOPSIS for decision-making problems with interval data: Interval efficiency. Math. Comput. Model. 2009, 49, 1137–1142. [Google Scholar] [CrossRef]
- Basurto-Flores, R.; Guzmán-Vargas, L.; Velasco, S.; Medina, A.; Calvo Hernández, A. On entropy research analysis: Cross-disciplinary knowledge transfer. Scientometrics 2018, 117, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Özkan, K. Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear. Forestist 2018, 68, 136–140. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. Available online: http://www.jstor.org/stable/2236703 (accessed on 24 March 2024). [CrossRef]
- Dimpfl, T.; Peter, F.J. Using transfer entropy to measure information flows between financial markets. Stud. Nonlinear Dyn. Econom. 2013, 17, 85–102. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013; Volume 112, p. 18. [Google Scholar]
- Angrist, J.D.; Pischke, J.S. Mostly Harmless Econometrics: An Empiricist’s Companion; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Card, D.; Krueger, A.B. Minimum Wages and Employment: A Case Study of the Fast Food Industry in New Jersey and Pennsylvania. Am. Econ. Rev. 1994, 84, 772–793. [Google Scholar] [CrossRef]
- Bertrand, M.; Duflo, E.; Mullainathan, S. How Much Should We Trust Differences-in-Differences Estimates? Q. J. Econ. 2004, 119, 249–275. [Google Scholar] [CrossRef]
- Hanushek, E.A.; Woessmann, L. The Role of Education Quality for Economic Growth; Policy Research Working Paper No 4122; World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Baldacci, E.; Clements, B.; Gupta, S.; Cui, Q. Social spending, human capital, and growth in developing countries. World Dev. 2008, 36, 1317–1341. [Google Scholar] [CrossRef]
- Nickell, S. Unemployment and labor market rigidities: Europe versus North America. J. Econ. Perspect. 1997, 11, 55–74. [Google Scholar] [CrossRef]
- OECD. Measuring Productivity: Measurement of Aggregate and Industry-Level Productivity Growth; OECD: Paris, France, 2001. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- World Bank. World Development Report 2006: Equity and Development; World Bank Sanctions Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Afonso, A.; Schuknecht, L.; Tanzi, V. Public sector efficiency: An international comparison. Public Choice 2005, 123, 321–347. [Google Scholar] [CrossRef]
- Bloom, D.E.; Canning, D.; Fink, G. Implications of population ageing for economic growth. Oxf. Rev. Econ. Policy 2011, 26, 583–612. [Google Scholar] [CrossRef]
- Gupta, S.; Verhoeven, M.; Tiongson, E.R. Public spending on health care and the poor. Health Econ. 2003, 12, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Levitt, S.D. Using electoral cycles in police hiring to estimate the effect of police on crime. Am. Econ. Rev. 1997, 87, 270–290. [Google Scholar] [CrossRef]
- Barrientos, A.; Hulme, D. Social protection for the poor and poorest in developing countries: Reflections on a quiet revolution. Oxf. Dev. Stud. 2009, 36, 271–288. [Google Scholar] [CrossRef]
- Henderson, J.V. The urbanization process and economic growth: The so-what question. J. Econ. Growth 2003, 8, 47–71. [Google Scholar] [CrossRef]
- Fiszbein, A.; Schady, N.R. Conditional Cash Transfers: Reducing Present and Future Poverty; World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Ahmed, A.; Aune, D.; Vineis, P.; Pescarini, J.M.; Millett, C.; Hone, T. The effect of conditional cash transfers on the control of neglected tropical disease: A systematic review. Lancet Glob. Health 2022, 10, e640–e648. [Google Scholar] [CrossRef]
- Ravallion, M. Evaluating anti-poverty programs. In Handbook of Development Economics; Elsevier: Amsterdam, The Netherlands, 2007; Volume 4, pp. 3787–3846. [Google Scholar] [CrossRef]
- Barnett, L.; Barrett, A.B.; Seth, A.K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 2009, 103, 238701. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Rangarajan, G.; Feng, J.; Ding, M. Analyzing multiple nonlinear time series with extended Granger causality. Phys. Lett. A 2004, 324, 26–35. [Google Scholar] [CrossRef]
- Mao, X.; Shang, P. Transfer entropy between multivariate time series. Commun. Nonlinear Sci. Numer. Simul. 2017, 47, 338–347. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, W.; Yang, F. Detection of cause-effect relations based on information granulation and transfer entropy. Entropy 2022, 24, 212. [Google Scholar] [CrossRef]
- Shojaie, A.; Fox, E.B. Granger causality: A review and recent advances. Annu. Rev. Stat. Its Appl. 2022, 9, 289–319. [Google Scholar] [CrossRef] [PubMed]
- Seth, A. Granger causality. Scholarpedia 2007, 2, 1667. [Google Scholar] [CrossRef]
LASSO Regression Bootstrap Algorithm | ||
---|---|---|
Inputs: | ||
B: Number of Bootstraps | ||
D: Dataset | ||
Output: | ||
LASSO Regression Confidence Interval | ||
LASSO Regression Median Estimate | ||
1 | For each bootstrap replication from 1 to B: | |
2 | Draw a bootstrap sample D* of size N from D. | |
3 | Estimate LASSO Regression coefficients on D*. | |
4 | Combine the estimated coefficients into a result set. | |
5 | For each j coefficient: | |
6 | Calculate the 50% Quantile. (Estimate) | |
7 | Calculate the 2.5% Quantile. (Lower Bound) | |
8 | Calculate the 97.5% Quantile. (Upper Bound) | |
9 | End. |
MEHI Dimension | Social-Economic Index | Direction | Min | Max | Median | Mean | SD | CV | Skewness | Kurtosis | IE |
---|---|---|---|---|---|---|---|---|---|---|---|
Education | Education quality index (5th grade elementary) | + | 0.00 | 1.23 | 0.56 | 0.56 | 0.10 | 0.18 | −0.04 | 0.41 | 0.30 |
Education | Education quality index (9th grade elementary) | + | 0.00 | 0.98 | 0.37 | 0.37 | 0.08 | 0.21 | 0.22 | 0.51 | 0.30 |
Education | Per capita expenditure (education) | + | 0.00 | 869.08 | 51.45 | 63.90 | 44.98 | 0.70 | 3.56 | 23.89 | 0.22 |
Employment and income | Employment rate (formal sector) | + | 2.28 | 141.81 | 18.66 | 21.25 | 12.63 | 0.59 | 2.66 | 13.72 | 0.28 |
Employment and income | Gross value added per capita | + | 0.00 | 141,616.96 | 648.26 | 1493.89 | 3652.84 | 2.45 | 13.64 | 311.18 | 0.08 |
Employment and income | Per capita income (formal sector) | + | 0.68 | 402.73 | 15.52 | 21.03 | 21.41 | 1.02 | 5.63 | 53.88 | 0.21 |
Environment | Agricultural coverage | − | 0.00 | 194.53 | 68.54 | 62.59 | 19.99 | 0.32 | −0.87 | 0.09 | 0.30 |
Environment | Native flora vegetation coverage | + | 0.00 | 99.91 | 26.82 | 32.54 | 18.44 | 0.57 | 0.95 | 0.15 | 0.35 |
Environment | Urban infrastructure coverage | − | 0.00 | 82.44 | 0.30 | 1.21 | 4.61 | 3.80 | 10.27 | 137.97 | 0.08 |
Finances | GDP per capita | + | 0.00 | 118,881.29 | 1183.40 | 1758.46 | 2907.10 | 1.65 | 15.89 | 391.12 | 0.11 |
Finances | Net current revenue per capita | + | 0.00 | 4123.58 | 222.65 | 285.86 | 212.64 | 0.74 | 3.49 | 22.48 | 0.22 |
Finances | Net taxes | + | 0.00 | 1,174,530.04 | 521.97 | 7417.92 | 49,262.23 | 6.64 | 15.37 | 279.72 | 0.04 |
Finances | Per capita expenditure (legislative) | − | 0.00 | 129.23 | 8.46 | 10.61 | 7.68 | 0.72 | 2.79 | 15.25 | 0.24 |
Finances | Per capita expenditure (total) | − | 0.00 | 4464.09 | 232.00 | 296.40 | 215.45 | 0.73 | 3.67 | 26.90 | 0.21 |
Finances | Personnel expenditure in relation to net current revenue | − | 0.00 | 6.74 | 4.20 | 4.13 | 0.45 | 0.11 | −1.24 | 4.80 | 0.27 |
Health | Aging index | − | 7.10 | 181.09 | 48.47 | 53.27 | 18.81 | 0.35 | 1.33 | 2.40 | 0.30 |
Health | Per capita expenditure (health) | + | 0.00 | 858.36 | 56.21 | 70.48 | 49.38 | 0.70 | 2.81 | 16.01 | 0.24 |
Security | Inhabitants per police officer | − | 0.00 | 4845.05 | 633.46 | 694.49 | 350.21 | 0.50 | 2.26 | 12.13 | 0.27 |
Security | Rate of violent crimes | − | 0.00 | 2341.81 | 104.61 | 148.04 | 161.96 | 1.09 | 4.55 | 33.23 | 0.23 |
Social assistance | Disabled beneficiaries of the BPC | + | 0.00 | 25,529.48 | 100.57 | 290.11 | 894.14 | 3.08 | 16.24 | 362.06 | 0.08 |
Social assistance | Elderly beneficiaries of the BPC | + | 0.00 | 28,415.72 | 53.48 | 217.46 | 938.06 | 4.31 | 18.65 | 443.41 | 0.06 |
Social assistance | Families benefited by Bolsa Família | + | 0.00 | 269,819.38 | 728.69 | 1472.03 | 4270.72 | 2.90 | 25.63 | 1092.95 | 0.04 |
Social assistance | Municipal decentralized management index (Bolsa Família) | + | 0.00 | 101.55 | 0.92 | 22.17 | 33.96 | 1.53 | 1.15 | −0.45 | 0.20 |
Social assistance | Per capita expenditure (social assistance) | + | 0.00 | 161.41 | 5.42 | 6.90 | 6.70 | 0.97 | 7.25 | 103.51 | 0.19 |
Social assistance | Social assistance reference centers | + | 0.47 | 34.21 | 1.00 | 1.36 | 1.57 | 1.15 | 12.17 | 215.37 | 0.06 |
Urbanization and sanitation | Per capita expenditure on infrastructure | + | 0.00 | 1679.49 | 24.46 | 35.63 | 41.90 | 1.18 | 8.92 | 188.78 | 0.14 |
Urbanization and sanitation | Population density | + | 0.00 | 7687.20 | 22.78 | 68.94 | 324.96 | 4.71 | 15.83 | 313.62 | 0.05 |
Urbanization and sanitation | Urbanization rate | + | 22.01 | 104.96 | 75.10 | 73.74 | 15.57 | 0.21 | −0.49 | −0.29 | 0.36 |
Urbanization and sanitation | Vehicle density | + | 0.00 | 8470.14 | 9.31 | 34.91 | 230.69 | 6.61 | 24.32 | 696.38 | 0.03 |
Variables | Coef | Lower CI | Upper CI | Significance |
---|---|---|---|---|
(Intercept) | 0.215545 | 0.210778 | 0.219706 | * |
PTR_Amount | 0.000473 | 0.000384 | 0.000553 | * |
Trend | −0.000721 | −0.000730 | −0.000713 | * |
Trend2 | 0.000004 | 0.000004 | 0.000004 | * |
Tragedy | 0.001650 | 0.001354 | 0.001948 | * |
Affected | −0.046451 | −0.051073 | −0.041443 | * |
Neighborhood | 0.280816 | 0.274345 | 0.287747 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menezes, A.; Wanke, P.; Antunes, J.; Pimenta, R.; Frare, I.; Andrade, A.; Oliveira, W.; Mamede, A. Socio-Economic Impact of the Brumadinho Landslide: A Hybrid MCDM-ML Approach. Sustainability 2024, 16, 8187. https://doi.org/10.3390/su16188187
Menezes A, Wanke P, Antunes J, Pimenta R, Frare I, Andrade A, Oliveira W, Mamede A. Socio-Economic Impact of the Brumadinho Landslide: A Hybrid MCDM-ML Approach. Sustainability. 2024; 16(18):8187. https://doi.org/10.3390/su16188187
Chicago/Turabian StyleMenezes, Aline, Peter Wanke, Jorge Antunes, Roberto Pimenta, Irineu Frare, André Andrade, Wallace Oliveira, and Antonio Mamede. 2024. "Socio-Economic Impact of the Brumadinho Landslide: A Hybrid MCDM-ML Approach" Sustainability 16, no. 18: 8187. https://doi.org/10.3390/su16188187
APA StyleMenezes, A., Wanke, P., Antunes, J., Pimenta, R., Frare, I., Andrade, A., Oliveira, W., & Mamede, A. (2024). Socio-Economic Impact of the Brumadinho Landslide: A Hybrid MCDM-ML Approach. Sustainability, 16(18), 8187. https://doi.org/10.3390/su16188187