Research Progress and Hotspot Analysis of Low-Carbon Landscapes Based on CiteSpace Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Analytical Method
3. Results and Discussion
3.1. Annual Number of Publications
3.2. Subject Area Distribution
3.3. National/Regional Cooperation Network
3.4. Institutional Cooperation Network
3.5. Frequently Cited Literature
3.6. Keyword Co-Occurrence Analysis
3.7. Time Zone Distribution of Keywords
3.8. Keyword Emergence Analysis
3.9. Literature Co-Citation Cluster Analysis
3.10. Frontiers of Research on Key Issues
3.10.1. Emission-Reduction Technology for Low-Carbon Landscapes
3.10.2. Research Methods for Low-Carbon Landscapes
3.10.3. Development and Application of Low-Carbon Materials
3.10.4. Correlation and Synergy of Key Issues
3.11. Future Research Direction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Zhao, J.B. Analysis on Planning and Design Strategy of Residential Communities at Low-carbon Situation. Adv. Mater. Res. 2013, 726–731, 4760–4764. [Google Scholar] [CrossRef]
- Mi, Z.F.; Zhang, Y.K.; Guan, D.B.; Shan, Y.L.; Liu, Z.; Cong, R.G.; Yuan, X.C.; Wei, Y.M. Consumption-based emission accounting for Chinese cities. Appl. Energy 2016, 184, 1073–1081. [Google Scholar] [CrossRef]
- Zhou, Y.; Shan, Y.; Liu, G.; Guan, D. Emissions and low-carbon development in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings. Appl. Energy 2018, 228, 1683–1692. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, S.; Geng, Y.; Xue, B.; Xi, F.; Pan, Y.; Zhang, T.; Fujita, T. Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing. Energy 2012, 37, 245–254. [Google Scholar] [CrossRef]
- Cao, F.; Qiu, Y.; Wang, Q.; Zou, Y. Urban Form and Function Optimization for Reducing Carbon Emissions Based on Crowd-Sourced Spatio-Temporal Data. Int. J. Environ. Res. Public Health 2022, 19, 10805. [Google Scholar] [CrossRef]
- Huang, D.X. Coupling coordination analysis between urban park wetland water ecological construction and carbon emissions. Desalination Water Treat. 2023, 313, 290–299. [Google Scholar] [CrossRef]
- Li, J.; Gan, J. The Importance of Low-Carbon Landscape Design in Rural Tourism Landscape. Ecol. Chem. Eng. S-Chem. I Inz. Ekol. S 2022, 29, 319–332. [Google Scholar] [CrossRef]
- Fu, F.; Deng, S.; Wu, D.; Liu, W.; Bai, Z. Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sustain. Cities Soc. 2022, 80, 103760. [Google Scholar] [CrossRef]
- Brouwer, A.S.; van den Broek, M.; Seebregts, A.; Faaij, A. Operational flexibility and economics of power plants in future low-carbon power systems. Appl. Energy 2015, 156, 107–128. [Google Scholar] [CrossRef]
- Linares, J.I.; Montes, M.J.; Cantizano, A.; Sanchez, C. A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants. Appl. Energy 2020, 263, 114644. [Google Scholar] [CrossRef]
- Dai, Y.; Zheng, H.; Jiang, Z.; Xing, B. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 2020, 713, 136635. [Google Scholar] [CrossRef]
- Wang, H.; Shi, W.; He, W.; Xue, H.; Zeng, W. Simulation of urban transport carbon dioxide emission reduction environment economic policy in China: An integrated approach using agent-based modelling and system dynamics. J. Clean. Prod. 2023, 392, 136221. [Google Scholar] [CrossRef]
- Chabannes, M.; Benezet, J.-C.; Clerc, L.; Garcia-Diaz, E. Use of raw rice husk as natural aggregate in a lightweight insulating concrete: An innovative application. Constr. Build. Mater. 2014, 70, 428–438. [Google Scholar] [CrossRef]
- Zhao, Q.; Ren, Y. RESEARCH ON THE PLANNING MODEL OF LOW-CARBON ECO-CITY FORM AND STRUCTURE. J. Environ. Prot. Ecol. 2022, 23, 2027–2036. [Google Scholar]
- Nakata, T.; Silva, D.; Rodionov, M. Application of energy system models for designing a low-carbon society. Prog. Energy Combust. Sci. 2011, 37, 462–502. [Google Scholar] [CrossRef]
- Wang, J.T.; Zhou, Y.; Cooke, F.L. Low-carbon economy and policy implications: A systematic review and bibliometric analysis. Environ. Sci. Pollut. Res. 2022, 29, 65432–65451. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.B.; Wu, S.P.; Zhang, Y.; Zhou, G.; Xu, L.J.; Xu, Y. Review on Chinese agricultural science and technology research from a low-carbon economy perspective: Hotspots, evolution, and frontiers. Front. Environ. Sci. 2023, 11, 1268432. [Google Scholar] [CrossRef]
- Aboagye, E.M.; Zeng, C.; Owusu, G.; Mensah, F.; Afrane, S.; Ampah, J.D.; Brenyah, S.A. A review contribution to emission trading schemes and low carbon growth. Environ. Sci. Pollut. Res. 2023, 30, 74575–74597. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Qiu, Z.W. A systematic review of transportation carbon emissions based on CiteSpace. Environ. Sci. Pollut. Res. 2023, 30, 54362–54384. [Google Scholar] [CrossRef]
- Yu, Z.J.; Wang, Y.; Zhao, B.; Li, Z.X.; Hao, Q.L. Research on Carbon Emission Structure and Model in Low-Carbon Rural Areas: Bibliometric Analysis. Sustainability 2023, 15, 12353. [Google Scholar] [CrossRef]
- Liu, Y.; Sang, M.Y.; Xu, X.R.; Shen, L.Y.; Bao, H.J. How Can Urban Regeneration Reduce Carbon Emissions? A Bibliometric Review. Land 2023, 12, 1328. [Google Scholar] [CrossRef]
- Birkle, C.; Pendlebury, D.A.; Schnell, J.; Adams, J. Web of Science as a data source for research on scientific and scholarly activity. Quant. Sci. Stud. 2020, 1, 363–376. [Google Scholar] [CrossRef]
- Zhu, J.W.; Liu, W.S. A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, X. Research on the Literature of Green Building Based on the Web of Science: A Scientometric Analysis in CiteSpace (2002–2018). Sustainability 2019, 11, 3716. [Google Scholar] [CrossRef]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101 (Suppl. 1), 5303–5310. [Google Scholar] [CrossRef]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z. Research Progress and Hotspot Analysis of Urban Heat Island Effects Based on Cite Space Analysis. Land 2023, 12, 1154. [Google Scholar] [CrossRef]
- Nemet, G.F. Beyond the learning curve: Factors influencing cost reductions in photovoltaics. Energy Policy 2006, 34, 3218–3232. [Google Scholar] [CrossRef]
- Batel, S.; Devine-Wright, P.; Tangeland, T. Social acceptance of low carbon energy and associated infrastructures: A critical discussion. Energy Policy 2013, 58, 1–5. [Google Scholar] [CrossRef]
- Wei, M.; Patadia, S.; Kammen, D.M. Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US? Energy Policy 2010, 38, 919–931. [Google Scholar] [CrossRef]
- Zappa, W.; Junginger, M.; van den Broek, M. Is a 100% renewable European power system feasible by 2050? Appl. Energy 2019, 233, 1027–1050. [Google Scholar] [CrossRef]
- White, C.M.; Strazisar, B.R.; Granite, E.J.; Hoffman, J.S.; Pennline, H.W. Separation and capture of CO2 from large stationary sources and sequestration in geological formations -: Coalbeds and deep saline aquifers. J. Air Waste Manag. Assoc. 2003, 53, 645–715. [Google Scholar] [CrossRef]
- Chambers, J.Q.; Tribuzy, E.S.; Toledo, L.C.; Crispim, B.F.; Higuchi, N.; dos Santos, J.; Araújo, A.C.; Kruijt, B.; Nobre, A.D.; Trumbore, S.E. Respiration from a tropical forest ecosystem: Partitioning of sources and low carbon use efficiency. Ecol. Appl. 2004, 14, S72–S88. [Google Scholar] [CrossRef]
- Liu, S.G.; Bliss, N.; Sundquist, E.; Huntington, T.G. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition. Glob. Biogeochem. Cycles 2003, 17, 1074. [Google Scholar] [CrossRef]
- Chen, C.M.; Leydesdorff, L. Patterns of Connections and Movements in Dual-Map Overlays: A New Method of Publication Portfolio Analysis. J. Assoc. Inf. Sci. Technol. 2014, 65, 334–351. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, B.; Yao, Y.; Fang, J.; Zhang, M.; Zhou, Y.; Chen, H.; Yang, L. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem. Eng. J. 2014, 240, 574–578. [Google Scholar] [CrossRef]
- Fang, C.; Wang, S.; Li, G. Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities. Appl. Energy 2015, 158, 519–531. [Google Scholar] [CrossRef]
- Li, Y.; Zou, Y.; Tan, Y.; Cao, Y.; Liu, X.; Shahidehpour, M.; Tian, S.; Bu, F. Optimal Stochastic Operation of Integrated Low-Carbon Electric Power, Natural Gas, and Heat Delivery System. IEEE Trans. Sustain. Energy 2018, 9, 273–283. [Google Scholar] [CrossRef]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.; Somerville, C. Cellulosic Biofuels. Annu. Rev. Plant Biol. 2009, 60, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Cross, A.; Sohi, S.P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem. 2011, 43, 2127–2134. [Google Scholar] [CrossRef]
- Rumpel, C.; Koegel-Knabner, I. Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant Soil 2011, 338, 143–158. [Google Scholar] [CrossRef]
- Santamaría, L. Why are most aquatic plants widely distributed?: Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica-Int. J. Ecol. 2002, 23, 137–154. [Google Scholar] [CrossRef]
- Raja, P.B.; Sethuraman, M.G. Natural products as corrosion inhibitor for metals in corrosive media—A review. Mater. Lett. 2008, 62, 113–116. [Google Scholar] [CrossRef]
- de Jong, M.; Joss, S.; Schraven, D.; Zhan, C.J.; Weijnen, M. Sustainable-smart-resilient-low carbon-eco-knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 2015, 109, 25–38. [Google Scholar] [CrossRef]
- Satapathy, A.K.; Gunasekaran, G.; Sahoo, S.C.; Amit, K.; Rodrigues, P.V. Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution. Corros. Sci. 2009, 51, 2848–2856. [Google Scholar] [CrossRef]
- Zhang, L.F.; Thomas, B.G. State of the art in evaluation and control of steel cleanliness. ISIJ Int. 2003, 43, 271–291. [Google Scholar] [CrossRef]
- Tillie, N.; Borsboom-van Beurden, J.; Doepel, D.; Aarts, M. Exploring a Stakeholder Based Urban Densification and Greening Agenda for Rotterdam Inner CityAccelerating the Transition to a Liveable Low Carbon City. Sustainability 2018, 10, 1927. [Google Scholar] [CrossRef]
- Liu, J.; Bao, L.; Ye, B.; Wang, J. Low-carbon progressive design for sustainable development of buildings. Indoor Built Environ. 2023, 32, 1638–1656. [Google Scholar] [CrossRef]
- Gilfillan, D.; Pittock, J. Pumped Storage Hydropower for Sustainable and Low-Carbon Electricity Grids in Pacific Rim Economies. Energies 2022, 15, 3139. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, C.; Zhang, Y.; Wu, K.; Wu, Q.; Su, Y. Low-Carbon Transportation Oriented Urban Spatial Structure: Theory, Model and Case Study. Sustainability 2018, 10, 19. [Google Scholar] [CrossRef]
- Guo, H.; Xie, S.; Pan, C. The Impact of Planting Industry Structural Changes on Carbon Emissions in the Three Northeast Provinces of China. Int. J. Environ. Res. Public Health 2021, 18, 705. [Google Scholar] [CrossRef]
- Ward, A.J.; Lewis, D.M.; Green, B. Anaerobic digestion of algae biomass: A review. Algal Res.-Biomass Biofuels Bioprod. 2014, 5, 204–214. [Google Scholar] [CrossRef]
- Meyers, S.; Schmitt, B.; Vajen, K. The future of low carbon industrial process heat: A comparison between solar thermal and heat pumps. Sol. Energy 2018, 173, 893–904. [Google Scholar] [CrossRef]
- Karschin, I.; Geldermann, J. Efficient cogeneration and district heating systems in bioenergy villages: An optimization approach. J. Clean. Prod. 2015, 104, 305–314. [Google Scholar] [CrossRef]
- Ding, C.; Zhou, Y.; Pu, G.; Zhang, H. Low carbon economic dispatch of power system at multiple time scales considering GRU wind power forecasting and integrated carbon capture. Front. Energy Res. 2022, 10, 953883. [Google Scholar] [CrossRef]
- Meyers, S.; Schmitt, B.; Vajen, K. Renewable process heat from solar thermal and photovoltaics: The development and application of a universal methodology to determine the more economical technology. Appl. Energy 2018, 212, 1537–1552. [Google Scholar] [CrossRef]
- Alexiades, A.; Kendall, A.; Winans, K.S.; Kaffka, S.R. Sugar beet ethanol (Beta vulgaris L.): A promising low-carbon pathway for ethanol production in California. J. Clean. Prod. 2018, 172, 3907–3917. [Google Scholar] [CrossRef]
- Wang, Q.; Duan, H.; Miao, Q.; Li, H.; Liu, J.; Wang, N.; Xu, Q. Environmental and economic impact assessment of synergistic organic-waste treatment strategies in eco-industrial parks: A pilot-scale case study in Shenzhen, China. Environ. Impact Assess. Rev. 2023, 103, 107250. [Google Scholar] [CrossRef]
- Park, H.-M.; Jo, H.-K. Ecological Design and Construction Strategies through Life Cycle Assessment of Carbon Budget for Urban Parks in Korea. Forests 2021, 12, 1399. [Google Scholar] [CrossRef]
- Alvarado, V.I.; Hsu, S.-C.; Lam, C.-M.; Lee, P.-H. Beyond Energy Balance: Environmental Trade-Offs of Organics Capture and Low Carbon-to-Nitrogen Ratio Sewage Treatment Systems. Environ. Sci. Technol. 2020, 54, 4746–4757. [Google Scholar] [CrossRef]
- Wang, R.; Wen, X.; Wang, X.; Fu, Y.; Zhang, Y. Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading. Appl. Energy 2022, 311, 118664. [Google Scholar] [CrossRef]
- Shea, A.; Lawrence, M.; Walker, P. Hygrothermal performance of an experimental hemp-lime building. Constr. Build. Mater. 2012, 36, 270–275. [Google Scholar] [CrossRef]
- Nie, S.; Zhou, J.; Yang, F.; Lan, M.; Li, J.; Zhang, Z.; Chen, Z.; Xu, M.; Li, H.; Sanjayan, J.G. Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. J. Clean. Prod. 2022, 334, 130270. [Google Scholar] [CrossRef]
- Shimamoto, Y.; Suzuki, T. Recycle of rice husk into agro-infrastructure for decreasing carbon dioxide. Paddy Water Environ. 2019, 17, 555–559. [Google Scholar] [CrossRef]
- Sheng, G.; Zuo, Y.; Zheng, L.; Li, X.; Wu, Y. Imitating Spiders to catch flying insects: Realizing high-strength bonding of bamboo scraps/magnesium oxychloride lightweight composite interface. Compos. Sci. Technol. 2022, 230, 109767. [Google Scholar] [CrossRef]
- Wang, W.J.; Wu, Y.C.; Liu, W.D.; Fu, T.F.; Qiu, R.H.; Wu, S.Y. Tensile Performance Mechanism for Bamboo Fiber-Reinforced, Palm Oil-Based Resin Bio-Composites Using Finite Element Simulation and Machine Learning. Polymers 2023, 15, 2633. [Google Scholar] [CrossRef]
- Zhang, Y.; Fei, X.; Liu, F.; Chen, J.; You, X.; Huang, S.; Wang, M.; Dong, J. Advances in Forest Management Research in the Context of Carbon Neutrality: A Bibliometric Analysis. Forests 2022, 13, 1810. [Google Scholar] [CrossRef]
- Bagheri, M.; Delbari, S.H.; Pakzadmanesh, M.; Kennedy, C.A. City-integrated renewable energy design for low-carbon and climate resilient communities. Appl. Energy 2019, 239, 1212–1225. [Google Scholar] [CrossRef]
- Lei, D.Y.; Zhang, Z.H.; Wang, Z.J.; Zhang, L.Y.; Liao, W. Long-term, multi-stage low-carbon planning model of electricity-gas-heat integrated energy system considering ladder-type carbon trading mechanism and CCS. Energy 2023, 280, 128113. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.M.; Liu, Z.Y.; Hu, Z.G.; Wang, X.W. The methodology function of Cite Space mapping knowledge domains. Stud. Sci. Sci. 2015, 33, 242–253. [Google Scholar]
- Buongiorno, J.; Corradini, M.; Parsons, J.; Petti, D. Should Nuclear Energy Play a Role in a Carbon-Constrained World? Atw-Int. J. Nucl. Power 2018, 63, 573–578. [Google Scholar]
- Wang, X.; Tang, F.; Li, Z.; Tian, Y.; Meng, J.; Zhu, M.; Bao, Y.; Deng, Z.; Wang, M. Desulphurisation with dispersed in-situ phases induced by composite ball explosive reaction during ultra-low carbon steel production in RH degasser. Ironmak. Steelmak. 2022, 49, 217–225. [Google Scholar] [CrossRef]
- Wang, Y.; Hoeller, S.; Viebahn, P.; Hao, Z. Integrated assessment of CO2 reduction technologies in China’s cement industry. Int. J. Greenh. Gas Control 2014, 20, 27–36. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Li, W.; Shi, Z.; Lin, Y.; Zhou, R.; Meng, J.; Tang, J.; Hou, P. Coupled process of in-situ sludge fermentation and riboflavin-mediated nitrogen removal for low carbon wastewater treatment. Bioresour. Technol. 2022, 363, 127928. [Google Scholar] [CrossRef]
- Cormos, A.M.; Cormos, C.C. Techno-economic assessment of combined hydrogen & power co-generation with carbon capture: The case of coal gasification. Appl. Therm. Eng. 2019, 147, 29–39. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Ng, T.S. Analysis of the carbon-gas-electricity trigger price for carbon capture and power-to-gas coupling system. Sustain. Prod. Consum. 2021, 28, 1164–1177. [Google Scholar] [CrossRef]
- Posch, S.; Haider, M. Optimization of CO2 compression and purification units (CO2CPU) for CCS power plants. Fuel 2012, 101, 254–263. [Google Scholar] [CrossRef]
- Yang, Q.C.; Xu, S.M.; Zhang, J.L.; Liu, C.L.; Zhang, D.W.; Zhou, H.R.; Mei, S.M.; Gao, M.L.; Liu, H.Y. Thermodynamic and techno-economic analyses of a novel integrated process of coal gasification and methane tri-reforming to ethylene glycol with low carbon emission and high efficiency. Energy 2021, 229, 120713. [Google Scholar] [CrossRef]
- Feng, X.M.; Sun, T.; Guo, J.R.; Cai, H.G.; Qian, C.R.; Hao, Y.B.; Yu, Y.; Deng, A.X.; Song, Z.W.; Zhang, W.J. Climate-smart agriculture practice promotes sustainable maize production in northeastern China: Higher grain yield while less carbon footprint. Field Crops Res. 2023, 302, 109108. [Google Scholar] [CrossRef]
- Thame, D. Carbon Farming: Nature-Based Solutions in Brazil. Green Low-Carbon Econ. 2023, 1, 130–137. [Google Scholar] [CrossRef]
- Cormos, C.C. Biomass direct chemical looping for hydrogen and power co-production: Process configuration, simulation, thermal integration and techno-economic assessment. Fuel Process. Technol. 2015, 137, 16–23. [Google Scholar] [CrossRef]
- Xiang, C.H.; Qi, Y.S.; He, Q.; Ting, Z.T. The Low-carbon Construction and Operation Technologies of Water System in the Residential District of Mountainous City. In Proceedings of the 4th International Conference on Digital Manufacturing and Automation (ICDMA), Qingdao, China, 29–30 June 2013; IEEE: Piscataway, NJ, USA; pp. 1481–1486. [Google Scholar]
- Ji, M.D.; Wang, J.; Khanal, S.K.; Wang, S.Q.; Zhang, J.; Liang, S.; Xie, H.J.; Wu, H.M.; Hu, Z. Water-energy-greenhouse gas nexus of a novel high-rate activated sludge-two-stage vertical up-flow constructed wetland system for low-carbon wastewater treatment. Water Res. 2023, 229, 119491. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, F.; Han, K.X. Optimization analysis of grain self-production and import structure based on carbon footprint. China Agric. Econ. Rev. 2022, 14, 741–757. [Google Scholar] [CrossRef]
- Hsueh, S.L.; Sun, Y.; Zhang, Y.H.; Xiao, N.; Meen, T.H. Decision-Making Model Based on Discriminant Analysis Fuzzy Method for Low-Carbon and Eco-Friendly Residence Design: Case Study of Conghua District, Guangzhou, China. Buildings 2022, 12, 815. [Google Scholar] [CrossRef]
- Guo, H.B.; Fan, X.Y. Low Carbon-Oriented Methords For Urban Plan Based on Ecological Technologies. In Proceedings of the International Conference on Civil Engineering and Transportation (ICCET 2011), Jinan, China, 14–16 October 2011; pp. 577–581. [Google Scholar]
- Fan, J.F.; Xu, H.; Zhu, B.Z.; Yuan, J. Research on Evaluation of Low Carbon Industrial Transfer Park Based on Extension Model. In Proceedings of the International Conference on Sustainable Energy and Environmental Engineering (ICSEEE 2012), Guangzhou, China, 29–30 December 2012; pp. 787–793. [Google Scholar]
- Zhang, Z.L.; Yu, X.P.; Hou, Y.Z.; Chen, T.H.; Lu, Y.; Sun, H.H. Carbon Emission Patterns and Carbon Balance Zoning in Urban Territorial Spaces Based on Multisource Data: A Case Study of Suzhou City, China. ISPRS Int. J. Geo-Inf. 2023, 12, 385. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, X.B.; Wang, X.C.; Zhang, P.; Liu, M.X.; Zhang, Y.F.; Xiao, R.M. The Relationship between the Low-Carbon Industrial Model and Human Well-Being: A Case Study of the Electric Power Industry. Energies 2023, 16, 1357. [Google Scholar] [CrossRef]
- Dong, L.; Liang, H.W.; Zhang, L.G.; Liu, Z.W.; Gao, Z.Q.; Hu, M.M. Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China. Ecol. Model. 2017, 361, 164–176. [Google Scholar] [CrossRef]
- Guidi, G.; Violante, A.C.; De Iuliis, S. Environmental Impact of Electricity Generation Technologies: A Comparison between Conventional, Nuclear, and Renewable Technologies. Energies 2023, 16, 7847. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, J.X.; Zhao, X.Y.; Dong, Q.Y.; Wang, X.H.; Wei, L.L.; Yang, S.S.; Sun, H.H.; Ren, N.Q.; Bai, S.W. Towards the carbon neutrality of sludge treatment and disposal in China: A nationwide analysis based on life cycle assessment and scenario discovery. Environ. Int. 2023, 174, 107927. [Google Scholar] [CrossRef]
- Liu, X.P.; Zhang, H.; Yao, M.F.; Li, L.; Qin, Y.C. Assessment of Carbon Reduction Benefits of A/O-Gradient Constructed Wetland Renovation for Rural Wastewater Treatment in the Southeast Coastal Areas of China Based on Life Cycle Assessment: The Example of Xiamen Sanxiushan Village. Sustainability 2023, 15, 8094. [Google Scholar] [CrossRef]
- Xia, L.L.; Zhang, Y.; Sun, X.X.; Li, J.J. Analyzing the spatial pattern of carbon metabolism and its response to change of urban form. Ecol. Model. 2017, 355, 105–115. [Google Scholar] [CrossRef]
- Peng, Y.C.; Azadi, H.; Yang, L.; Scheffran, J.; Jiang, P. Assessing the Siting Potential of Low-Carbon Energy Power Plants in the Yangtze River Delta: A GIS-Based Approach. Energies 2022, 15, 2167. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, Y.; Zhang, N. A Literature Survey of Green and Low-Carbon Economics Using Natural Experiment Approaches in Top Field Journal. Green Low-Carbon Econ. 2023, 1, 2–14. [Google Scholar] [CrossRef]
- Wu, C.L.; Liu, C.H.; Cheng, G.Y.; Li, J.W.; Zhang, C.; Jiang, W.; Yang, S.Z.; Wang, X.J.; Wang, W.L. Preparation of a low-carbon plant-compatible ecological concrete with fertilizer self-release characteristics based on multi-solid waste co-recycling and its environmental impact. J. Build. Eng. 2023, 76, 107268. [Google Scholar] [CrossRef]
- Wiranata, D.Y.; Yang, S.H.; Akgul, C.M.; Hsien, H.Y.; Nugraha, M.Z.P. Use of coal ash cement stabilized material as pavement base material: Laboratory characterization and field evaluation. Constr. Build. Mater. 2022, 344, 128055. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Anaele, J.U.; Oke, T.M.; Kareem, S.A.; Adediran, M.; Ajibuwa, O.A.; Anabaranze, Y.O. Mycelium based composites: A review of their bio-fabrication procedures, material properties and potential for green building and construction applications. Alex. Eng. J. 2023, 83, 234–250. [Google Scholar] [CrossRef]
- Lee, B.H.; Jo, M.; Yoo, Y.H. The Effect of Flue Gas Environment on the Corrosion Behavior of the Sulfuric Acid Dew-Point Corrosion Resistant Steel. In Proceedings of the 10th International Conference on Processing and Manufacturing of Advanced Materials Processing, Fabrication, Properties, Applications (THERMEC), Cite Sci Paris, Paris, France, 9–13 July 2018; pp. 1705–1709. [Google Scholar]
- Guo, J.; Shang, C.J.; Yang, S.W.; Guo, H.; Wang, X.M.; He, X.L. Weather resistance of low carbon high performance bridge steel. Mater. Des. 2009, 30, 129–134. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Skrzypczak, D.; Kocek, D.; Mironiuk, M.; Witek-Krowiak, A.; Moustakas, K.; Chojnacka, K. Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets. Energy 2020, 194, 116898. [Google Scholar] [CrossRef]
- Bao, L.; Wu, Z.P.; Yang, X.D. Analysis of Low Carbon Energy Application in Ascension Rural Landscape Transformation. In Proceedings of the International Conference on Industrial Technology and Management Science (ITMS), Tianjin, China, 27–28 March 2015; pp. 303–306. [Google Scholar]
- Diego, M.E.; Abanades, J.C. Techno-economic analysis of a low carbon back-up power system using chemical looping. Renew. Sustain. Energy Rev. 2020, 132, 110099. [Google Scholar] [CrossRef]
- Guédez, R.; García, J.; Martín, F.; Wiesenberg, R.; Laumert, B. Integrated Solar Combined Cycles vs Combined Gas Turbine to Bottoming Molten Salt Tower Plants—A Techno-economic Analysis. In Proceedings of the 23rd International Conference on Concentrating Solar Power and Chemical Energy Systems (SolarPACES), Santiago, Chile, 26–29 September 2017. [Google Scholar]
- Rosner, F.; Papadias, D.; Brooks, K.; Yoro, K.; Ahluwalia, R.; Autrey, T.; Breunig, H. Green steel: Design and cost analysis of hydrogen-based direct iron reduction. Energy Environ. Sci. 2023, 16, 4121–4134. [Google Scholar] [CrossRef]
- Rinaldi, R.; Lombardelli, G.; Gatti, M.; Visconti, C.G.; Romano, M.C. Techno-economic analysis of a biogas-to-methanol process: Study of different process configurations and conditions. J. Clean. Prod. 2023, 393, 136259. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Ma, X. Feasible carbon-trade model for low-carbon density ecosystem. J. Appl. Ecol. 2022, 59, 1086–1097. [Google Scholar] [CrossRef]
- Wang, N.; Hou, W.J.; Zhang, X.L.; Wang, Z.H.; Yang, L.S. Quantifying the effects of the ‘Internet plus Ecology’ framework on carbon sink in the digital age: A representative study of Ant Forest in China. Environ. Res. Lett. 2022, 17, 124005. [Google Scholar] [CrossRef]
- Peng, W.J.; Wang, X.M.; Guo, L.J. An Exploration of Neighborhood Residents’ Cognition of and Participation in Low-Carbon Behaviors in Wuhan, China. Adv. Civ. Eng. 2018, 2018, 8764801. [Google Scholar] [CrossRef]
- Mo, J.L.; Agnolucci, P.; Jiang, M.R.; Fan, Y. The impact of Chinese carbon emission trading scheme (ETS) on low carbon energy (LCE) investment. Energy Policy 2016, 89, 271–283. [Google Scholar] [CrossRef]
Number | Subject Area | Number of Published Papers |
---|---|---|
1 | Energy Fuels | 1205 |
2 | Environmental Sciences | 877 |
3 | Green Sustainable Science Technology | 516 |
4 | Engineering Environmental | 405 |
5 | Engineering Chemical | 382 |
6 | Environmental Studies | 325 |
7 | Materials Science Multidisciplinary | 217 |
8 | Thermodynamics | 202 |
9 | Engineering Electrical Electronic | 174 |
10 | Metallurgy Metallurgical Engineering | 149 |
Number | Count | Centrality | Year | Countries | Count | Centrality | Year | Countries |
---|---|---|---|---|---|---|---|---|
1 | 972 | 0.18 | 2002 | China | 474 | 0.27 | 2002 | USA |
2 | 474 | 0.27 | 2002 | USA | 972 | 0.18 | 2002 | China |
3 | 291 | 0.14 | 2004 | England | 291 | 0.14 | 2004 | England |
4 | 167 | 0.14 | 2002 | Germany | 167 | 0.14 | 2002 | Germany |
5 | 136 | 0.09 | 2006 | Italy | 77 | 0.11 | 2003 | France |
6 | 132 | 0.04 | 2007 | Australia | 136 | 0.09 | 2006 | Italy |
7 | 117 | 0.09 | 2003 | India | 117 | 0.09 | 2003 | India |
8 | 109 | 0.08 | 2008 | Spain | 54 | 0.09 | 2006 | Austria |
9 | 108 | 0.07 | 2003 | Canada | 109 | 0.08 | 2008 | Spain |
10 | 104 | 0.05 | 2005 | Japan | 108 | 0.07 | 2003 | Canada |
Number | Count | Centrality | Year | Institutions | Count | Centrality | Year | Institutions |
---|---|---|---|---|---|---|---|---|
1 | 109 | 0.2 | 2002 | CAS | 109 | 0.2 | 2002 | CAS |
2 | 66 | 0.06 | 2010 | TU | 65 | 0.13 | 2003 | USDOE |
3 | 65 | 0.13 | 2003 | USDOE | 44 | 0.08 | 2002 | UC |
4 | 60 | 0.02 | 2015 | NCEPU | 66 | 0.06 | 2010 | TU |
5 | 44 | 0.08 | 2002 | UC | 19 | 0.06 | 2015 | FU |
6 | 44 | 0.02 | 2007 | ICL | 12 | 0.06 | 2003 | INRAE |
7 | 37 | 0.01 | 2008 | UCAS | 34 | 0.05 | 2016 | UL |
8 | 34 | 0.05 | 2016 | UL | 19 | 0.05 | 2004 | IITS |
9 | 33 | 0.04 | 2006 | SFITD | 33 | 0.04 | 2006 | SFITD |
10 | 25 | 0.03 | 2018 | SJTU | 22 | 0.04 | 2003 | CNRS |
Number | Author | Title | Year | Journal Name | Citations |
---|---|---|---|---|---|
1 | Fargione, J [39] | Land clearing and the biofuel carbon debt | 2008 | Science | 2590 |
2 | Rumpel, C [42] | Deep soil organic matter—a key but poorly understood component of terrestrial C cycle | 2011 | Plant and Soil | 1192 |
3 | Raja, PB [44] | Natural products as corrosion inhibitor for metals in corrosive media—a review | 2008 | Materials Letters | 781 |
4 | White, CM [32] | Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers | 2003 | Journal of the AIR & Waste Management Association | 598 |
5 | de Jong, M [45] | Sustainable–smart–resilient–low-carbon–eco-knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization | 2015 | Journal of Cleaner Production | 594 |
6 | Carroll, A [40] | Cellulosic biofuels | 2009 | Annual Review of Plant Biology | 564 |
7 | Sun, YN [36] | Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties | 2014 | Chemical Engineering Journal | 534 |
8 | Satapathy, AK [46] | Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution | 2009 | Corrosion Science | 552 |
9 | Zhang, LF [47] | State of the art in evaluation and control of steel cleanliness | 2003 | ISIJ International | 511 |
10 | Santamaria, L [43] | Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment | 2002 | Acta Oecologica—International Journal of Ecology | 490 |
Number | Count | Centrality | Year | Keywords | Count | Centrality | Year | Keywords |
---|---|---|---|---|---|---|---|---|
1 | 271 | 0.05 | 2004 | Energy | 142 | 0.34 | 2003 | Emissions |
2 | 181 | 0.01 | 2012 | Renewable energy | 13 | 0.19 | 2006 | Responses |
3 | 178 | 0.02 | 2011 | Performance | 73 | 0.18 | 2002 | Carbon |
4 | 165 | 0.06 | 2008 | Climate change | 53 | 0.16 | 2013 | Energy efficiency |
5 | 156 | 0.01 | 2008 | Life cycle assessment | 6 | 0.14 | 2019 | Nitric oxide |
6 | 151 | 0.03 | 2009 | Model | 87 | 0.13 | 2011 | Electricity |
7 | 144 | 0.1 | 2010 | Storage | 36 | 0.13 | 2010 | Carbon capture and storage |
8 | 144 | 0.01 | 2011 | Generation | 83 | 0.12 | 2007 | Biomass |
9 | 143 | 0 | 2013 | Optimization | 51 | 0.12 | 2003 | Coal |
10 | 142 | 0.34 | 2003 | Emissions | 48 | 0.11 | 2012 | Hydrogen |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, W.; Liu, F.; Zhang, Y.; Dong, J.; Lin, S.; Wang, M. Research Progress and Hotspot Analysis of Low-Carbon Landscapes Based on CiteSpace Analysis. Sustainability 2024, 16, 7646. https://doi.org/10.3390/su16177646
Hou W, Liu F, Zhang Y, Dong J, Lin S, Wang M. Research Progress and Hotspot Analysis of Low-Carbon Landscapes Based on CiteSpace Analysis. Sustainability. 2024; 16(17):7646. https://doi.org/10.3390/su16177646
Chicago/Turabian StyleHou, Wenwei, Fan Liu, Yanqin Zhang, Jiaying Dong, Shumeng Lin, and Minhua Wang. 2024. "Research Progress and Hotspot Analysis of Low-Carbon Landscapes Based on CiteSpace Analysis" Sustainability 16, no. 17: 7646. https://doi.org/10.3390/su16177646
APA StyleHou, W., Liu, F., Zhang, Y., Dong, J., Lin, S., & Wang, M. (2024). Research Progress and Hotspot Analysis of Low-Carbon Landscapes Based on CiteSpace Analysis. Sustainability, 16(17), 7646. https://doi.org/10.3390/su16177646