Enhancing Sustainability: Quantifying and Mapping Vulnerability to Extreme Heat Using Socioeconomic Factors at the National, Regional and Local Levels
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Ballester, J.; Quijal-Zamorano, M.; Méndez Turrubiates, R.F.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagana, X.; Tonne, C.; Anto, J.M.; Achebak, H. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Ellena, M.; Breil, M.; Soriani, S. The heat-health nexus in the urban context: A systematic literature review exploring the socio-economic vulnerabilities and built environment characteristics. Urban Clim. 2020, 34, 100676. [Google Scholar] [CrossRef]
- Guo, Y.; Gasparrini, A.; Li, S.; Sera, F.; Vicedo-Cabrera, A.; Coêlho, M.; Saldiva, P.; Lavigne, É.; Tawatsupa, B.; Punnasiri, K.; et al. Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study. PLoS Med. 2018, 15, e1002629. [Google Scholar] [CrossRef]
- Kearl, Z.; Vogel, J. Urban extreme heat, climate change, and saving lives: Lessons from Washington state. Urban Clim. 2023, 47, 101392. [Google Scholar] [CrossRef]
- Hammer, J.; Ruggieri, D.G.; Thomas, C.; Caum, J. Local Extreme Heat Planning: An Interactive Tool to Examine a Heat Vulnerability Index for Philadelphia, Pennsylvania. J. Urban Health 2020, 97, 519–528. [Google Scholar] [CrossRef]
- Zaidi, R.; Pelling, M. Institutionally configured risk: Assessing urban resilience and disaster risk reduction to heat wave risk in London. Urban Stud. 2015, 52, 1218–1233. [Google Scholar] [CrossRef]
- Paravantis, J.; Santamouris, M.; Cartalis, C.; Efthymiou, C.; Kontoulis, N. Mortality Associated with High Ambient Temperatures, Heatwaves, and the Urban Heat Island in Athens, Greece. Sustainability 2017, 9, 606. [Google Scholar] [CrossRef]
- Romero-Lankao, P.; Qin, H.; Dickinson, K. Urban vulnerability to temperature-related hazards: A meta-analysis and meta-knowledge approach. Glob. Environ. Chang. 2012, 22, 670–683. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Nayak, S.G.; Shrestha, S.; Kinney, P.L.; Ross, Z.; Sheridan, S.C.; Pantea, C.I.; Hsu, W.; Muscatiello, N.; Hwang, S.A. Development of a heat vulnerability index for New York State. Public Health 2018, 161, 127–137. [Google Scholar] [CrossRef]
- Kaiser, R.; Le Tertre, A.; Schwartz, J.; Gotway, C.A.; Daley, W.R.; Rubin, C.H. The effect of the 1995 heat wave in Chicago on all-cause and cause-specific mortality. Am. J. Public Health 2007, 97 (Suppl. S1), S158–S162. [Google Scholar] [CrossRef]
- Semenza, J.C.; Rubin, C.H.; Falter, K.H.; Selanikio, J.D.; Flanders, W.D.; Howe, H.L.; Wilhelm, J.L. Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med. 1996, 335, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Hayhoe, K.; Sheridan, S.; Kalkstein, L.; Greene, S. Climate change, heat waves, and mortality projections for Chicago. J. Great Lakes Res. 2010, 36 (Suppl. S2), 65–73. [Google Scholar] [CrossRef]
- Founda, D.; Santamouris, M. Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012). Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bunker, A.; Wildenhain, J.; Vandenbergh, A.; Henschke, N.; Rocklöv, J.; Hajat, S.; Sauerborn, R. Effects of Air Temperature on Climate-Sensitive Mortality and Morbidity Outcomes in the Elderly; a Systematic Review and Meta-analysis of Epidemiological Evidence. EBioMedicine 2016, 6, 258–268. [Google Scholar] [CrossRef]
- Cutler, M.; Marlon, J.; Howe, P.; Leiserowitz, A. The Influence of Political Ideology and Socioeconomic Vulnerability on Perceived Health Risks of Heat Waves in the Context of Climate Change. Weather Clim. Soc. 2018, 10, 731–746. [Google Scholar] [CrossRef]
- Rohat, G.; Wilhelmi, O.; Flacke, J.; Monaghan, A.; Gao, J.; Dao, H.; Maarseveen, M. Characterizing the role of socioeconomic pathways in shaping future urban heat-related challenges. Sci. Total. Environ. 2019, 695, 133941. [Google Scholar] [CrossRef]
- Romero-Lankao, P.; Gnatz, D.M.; Wilhelmi, O.; Hayden, M. Urban Sustainability and Resilience: From Theory to Practice. Sustainability 2016, 8, 1224. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Hu, L.; Li, L. Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series. Int. J. Environ. Res. Public Health 2022, 19, 16080. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 1–45. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 2018, 31, 1–11. Available online: https://dl.acm.org/doi/pdf/10.5555/3327757.3327770 (accessed on 14 March 2022).
- Bergstra, J.; Yamins, D.; Cox, D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In International Conference on Machine Learning; PMLR: Birmingham, UK, 2013; pp. 115–123. Available online: https://proceedings.mlr.press/v28/bergstra13.pdf (accessed on 8 March 2022).
- Toms, J.D.; Lesperance, M.L. Piecewise regression: A tool for identifying ecological thresholds. Ecology 2003, 84, 2034–2041. [Google Scholar] [CrossRef]
- Xiang, L.; Cai, M.; Ren, C.; Ng, E. Modeling pedestrian emotion in high-density cities using visual exposure and machine learning: Tracking real-time physiology and psychology in Hong Kong. Build. Environ. 2021, 205, 108273. [Google Scholar] [CrossRef]
- Ziliaskopoulos, K. Athens Socioeconomic Heat Vulnerability Index—Features and Index Per Region; Zenodo: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Charakopoulos, A.; Karakasidis, T.; Ziliaskopoulos, K.; Laspidou, C. Complex network analysis of climate and landscape satellite data to explore spatio-temporal patterns in urban environment: The case of Athens. Appl. Netw. Sci. 2024, 9, 42. [Google Scholar] [CrossRef]
Data Description | Scale and Units | Data Source |
---|---|---|
Maximum temperature for 10 Greek cities, 2015–2020 | Hourly, Celsius | Open Weather Map https://openweathermap.org/ (accessed on 10 December 2022) |
Number of people by age group, from the 2011 national census | Per NUTS3 region and per census tract in Athens | Hellenic Statistical Authority |
Number of people by country of origin, from the 2011 national census | Per NUTS3 region and per census tract in Athens | Hellenic Statistical Authority |
Number of people by different household sizes (e.g., 2-people households, 4-people households, etc.) from the 2011 census | Per NUTS3 region and per census tract in Athens | Hellenic Statistical Authority |
Number of people by employment status, (employed, looking for work, first-time looking, student, retired, independent, housework, other) from the 2011 census | Per NUTS3 region and per census tract in Athens | Hellenic Statistical Authority |
Number of dwellings by living status (owner, renting, cooperative ownership, communal housing, other) from the 2011 census | Per NUTS3 region and per census tract in Athens | Hellenic Statistical Authority |
Number of dwellings by square footage, from the 2011 census | Per NUTS3 region and per census tract in Athens | Hellenic Statistical Authority |
Number of dwellings by age of building, from the 2011 census | Per NUTS3 region and per census tract in Athens | Hellenic Statistical Authority |
Number of deaths by age group, 2015–2020 | Per NUTS3 region, weekly | Eurostat |
Method | MSE | MAE | R2 |
---|---|---|---|
XGB | 2.1437 | 0.9 | 0.737 |
CatBoost | 3.724 | 1.688 | 0.726 |
Random Forest | 4.882 | 1.9 | 0.642 |
Hyperparameter Name | Hyperparameter Value |
---|---|
Column sample by tree | 0.862 |
Gamma | 1.309 |
Learning rate | 952 × 10−5 |
Max depth | 17 |
Minimum child weight | 2 |
Number of estimators | 1372 |
Alpha regularization | 0.2086 |
Lambda regularization | 1.007 |
Subsample | 0.96 |
No. Observations | 2983 | |||||
No. Model Parameters | 4 | |||||
Degrees of Freedom | 2979 | |||||
Res. Sum of Squares | 1.29253 × 105 | |||||
Total Sum of Squares | 1.55617 × 105 | |||||
R Squared | 0.169419 | |||||
Adjusted R Squared | 0.168303 | |||||
Converged | True | |||||
Estimate | Std Err | t-value | p > |t| | 95% CI (LL) | 95% CI (UL) | |
Constant | 31.2981 | 0.395 | 79.296 | 0 | 30.524 | 32.072 |
Alpha1 | 0.23707 | 0.0159 | 14.957 | 7.94 × 10−49 | 0.206 | 0.26815 |
Beta | 3.99292 | 0.387 | 10.326 | - | 3.2347 | 4.7511 |
Breakpoint | 37.3017 | 0.253 | - | - | 36.806 | 37.797 |
These alphas (gradients of segments) are estimated from betas (change in gradient) | ||||||
Alpha2 | 4.23 | 0.386 | 10.948 | 2.23 × 10−27 | 3.4724 | 4.9875 |
No. Observations | 2983 | |||||
No. Model Parameters | 6 | |||||
Degrees of Freedom | 2977 | |||||
Res. Sum of Squares | 1.85371 × 106 | |||||
Total Sum of Squares | 2.65208 × 106 | |||||
R Squared | 0.301034 | |||||
Adjusted R Squared | 0.299624 | |||||
Converged | True | |||||
Estimate | Std Err | t-value | p > |t| | 95% CI (LL) | 95% CI (UL) | |
Constant | 274.319 | 2.33 | 117.8 | 0 | 269.75 | 278.89 |
Alpha1 | −3.34262 | 0.121 | −27.629 | 8.9 × 10−150 | −3.5798 | −3.1054 |
Beta1 | 5.68021 | 0.573 | 9.9095 | - | 4.5563 | 6.8041 |
Beta2 | 3.92391 | 0.759 | 5.1673 | - | 2.4349 | 5.4129 |
Breakpoint1 | 26.8632 | 0.418 | - | - | 26.043 | 27.683 |
Breakpoint2 | 32.9795 | 0.649 | - | - | 31.707 | 34.252 |
These alphas (gradients of segments) are estimated from betas (change in gradient) | ||||||
Alpha2 | 2.33759 | 0.56 | 4.1721 | 3.1 × 10−5 | 1.239 | 3.4362 |
Alpha3 | 6.2615 | 0.513 | 12.216 | 1.6 × 10−33 | 5.2565 | 7.2665 |
Feature Name | Feature Importance Value |
---|---|
% Elderly | 0.455 |
% Retired | 0.245 |
% Living in houses built before 1980 | 0.130 |
% Living alone | 0.063 |
% Renting | 0.058 |
% Living in houses smaller than 60 m2 | 0.023 |
% Unemployed | 0.014 |
% Immigrants from developing countries | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziliaskopoulos, K.; Petropoulos, C.; Laspidou, C. Enhancing Sustainability: Quantifying and Mapping Vulnerability to Extreme Heat Using Socioeconomic Factors at the National, Regional and Local Levels. Sustainability 2024, 16, 7603. https://doi.org/10.3390/su16177603
Ziliaskopoulos K, Petropoulos C, Laspidou C. Enhancing Sustainability: Quantifying and Mapping Vulnerability to Extreme Heat Using Socioeconomic Factors at the National, Regional and Local Levels. Sustainability. 2024; 16(17):7603. https://doi.org/10.3390/su16177603
Chicago/Turabian StyleZiliaskopoulos, Konstantinos, Christos Petropoulos, and Chrysi Laspidou. 2024. "Enhancing Sustainability: Quantifying and Mapping Vulnerability to Extreme Heat Using Socioeconomic Factors at the National, Regional and Local Levels" Sustainability 16, no. 17: 7603. https://doi.org/10.3390/su16177603
APA StyleZiliaskopoulos, K., Petropoulos, C., & Laspidou, C. (2024). Enhancing Sustainability: Quantifying and Mapping Vulnerability to Extreme Heat Using Socioeconomic Factors at the National, Regional and Local Levels. Sustainability, 16(17), 7603. https://doi.org/10.3390/su16177603