Microbial Biopreparations and Their Impact on Organic Strawberry (Fragaria x ananassa Duch.) Yields and Fungal Infestation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Experiment
2.2. Biopreparations
2.3. Strawberry Fruit Analysis
2.4. Analysis of Biometric Parameters of Strawberry Plants
2.5. Meteorological Conditions
2.6. Statistical Analysis
3. Results and Discussion
3.1. The Influence of Biopreparations on Strawberry Yielding
3.2. The Influence of Biopreparations on Fungus Infestation of Strawberry Fruits
3.2.1. Botrytis cinerea (Gray Mold)
3.2.2. Colletotrichum acutatum (Anthracnose of Strawberry, Black Spot of Strawberry)
3.2.3. Phytophthora cactorum (Leather Rot)
3.3. The Influence of Biopreparations on Biometric Parameters of Strawberry Plants
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Patents
References
- Rochalska, M.; Orzeszko-Rywka, A.; Czapla, K. The content of nutritive substances in strawberries according to cropping system. J. Res. Appl. Agric. Eng. 2011, 56, 84–86. [Google Scholar]
- Kim, S.K.; Kim, D.S.; Kim, D.Y.; Chun, C. Variation of bioactive compounds content of 14 oriental strawberry cultivars. Food Chem. 2015, 184, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Soltaniband, V.; Brégard, A.; Gaudreau, L.; Dorais, M. Biostimulants Promote Plant Development, Crop Productivity, and Fruit Quality of Protected Strawberries. Agronomy 2022, 12, 1684. [Google Scholar] [CrossRef]
- Avetisyan, A.; Hokhanyan, M.; Herdt, K.; Lund, L.; Hykkerud, A.L.; Jaakola, L.; Martinussen, I. Effect of organic fertilizer on growth of strawberry cultivar Sonata. In Proceedings of the ISHS Acta Horticulturae 1309: IX International Strawberry Symposium, Rimini, Italy, 1–5 May 2021; p. 1309. [Google Scholar] [CrossRef]
- Katel, S.; Mandal, H.R.; Kattel, S.; Yadav, S.P.S.; Lamshal, B.S. Impact of plant growth regulators in strawberry plant: A review. Heliyon 2022, 8, e11959. [Google Scholar] [CrossRef] [PubMed]
- Khunte, S.D.; Kumar, A.; Ansari, N.; Saravanan, S. Effect of Different Levels of PGRs with Organic Manure on Growth Characters and Economics of Strawberry (Fragaria x ananassa Duch.) cv. Chandler in Northern region. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1633–1638. [Google Scholar] [CrossRef]
- Kumra, R.; Saravanan, S.; Bakshi, P.; Kumar, A.; Singh, M.; Kumar, V. Influence of plant growth regulators on strawberry: A review. Int. J. Chem. Stud. 2018, 6, 1236–1239. [Google Scholar]
- Sudha, G.; Saravanan, S.; Subash Chandra Bose, B. Effect of micronutrients on quality and shelf-life of strawberry (Fragaria x ananasa Duch.) cv. Chandler. J. Pharmacogn. Phytochem. 2018, 7, 2239–2241. [Google Scholar]
- Giamperi, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. Review The strawberry: Compositon, nutritional quality, and impact on human helth. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Janurianti, N.M.D.; Utama, I.M.S.; Gunam, I.B.W. Colour and Quality of Strawberry Fruit (Fragaria x ananasa Duch.) at Different Levels of Maturity. Sustain. Environ. Agric. Sci. (SEAS) 2021, 5, 22–28. [Google Scholar] [CrossRef]
- Singh, B.K.; Pal, A.K.; Verma, A.; Singh, A.K.; Yadav, K.S.; Tiwari, A. Impact of Integrated Nutrient Management on Physico-Chemical Attributes in Strawberry (Fragaria x ananassa Duch.) cv Chandler. Environ. Ecol. 2017, 35, 363–367. [Google Scholar]
- Khunte, S.D.; Kumar, A.; Ansari, N.; Saravanan, S. Influence of PGRs and Poultry Manure on Physico-Chemical Parameters of Strawberry (Fragaria x ananassa Duch.) cv. Chandler. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 108–117. [Google Scholar] [CrossRef]
- Gamba-Santos, J.; Vasco, M.F.; Campañnone, L. Diffusional analysis and textural properities of coated strawberries during osmotic dehydration treatment. J. Berry Res. 2021, 11, 151–169. [Google Scholar] [CrossRef]
- Wójcik, D.; Markiewicz, M.; Matysiak, B.; Sowik, I. effect of LED light irradiation on morphology, chlorophyll content and photosynthetic activity of strawberry (Fragaria x ananasa Duch.) cuttings. Sci. J. Inst. Hortic. 2021, 29, 59–70. [Google Scholar]
- Kaczmarska, E.; Dobrowolska, A.M.; Hortyński, J.A. The influence of pollen viability on seed set and fruit mass in strawberry (Fragaria x ananassa Duch). Acta Agrobot. 2008, 61, 79–84. [Google Scholar] [CrossRef]
- Kalisz, S.; Marszałek, K.; Mitek, M. Research into the impact of high methoxyl pectin preparations on qualitative parameters of strawberry nectars. Food Sci. Technol. Qual. 2009, 6, 129–139. [Google Scholar]
- Dziadczyk, E.; Domaciuk, M.; Nowak, M.; Szczuka, E.; Bednara, J. The development of the female gametophyte in Fragaria x ananasa Duch. cv. Selva. Acta Biol. Cracoviensia Ser. Bot. 2011, 53, 104–112. [Google Scholar] [CrossRef]
- Wójcik- Seliga, J.; Studnicki, M.; Wójcik-Gront, E. Evaluating economic value of 23 strawberry cultivars in the climatic conditions of central Europe. Acta Sci. Pol. Hortorum Cultus 2017, 16, 11–19. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 4 January 2024).
- GUS. Statistical Yearbook of Agriculture; Statistics Poland: Warsaw, Poland, 2023. [Google Scholar]
- GUS. Production of Agriculutral and Horitcultural Crops in 2023; Statistics Poland: Warsaw, Poland, 2024. [Google Scholar]
- GUS. Production of Agricultural and Horticultural Crops in 2020; Statistics Poland: Warsaw, Poland, 2021. [Google Scholar]
- Dobry Start dla Produkcji Sadowniczej. Available online: http://piorin.gov.pl/gi-aktualnosci/dobry-start-dla-produkcji-sadowniczej,574.html (accessed on 20 July 2024).
- EUROSTAT. Organic Crop Area by Agricutural Production Methods and Crops; Organic Crop Production by Crops. Available online: https://ec.europa.eu/eurostat/databrowser/view/ORG_CROPPRO$DEFAULTVIEW/default/table (accessed on 26 January 2023).
- Staniek, H.; Krejpcio, Z. Evaluation of Cd and Pb content in selected organic and conventional products. Probl. Hig. Epidemiol. 2013, 94, 857–861. [Google Scholar]
- Zydlik, P.; Zydlik, Z. Horticultural ecological crops in Poland—The dynamics of changes and perspectives for development. Nauka Przyr. Technol. 2016, 10, 25. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Nakielska, M.; Jończyk, K.; Berbeć, A.K.; Kopiński, J. Assessment of the Suitability of 10 Winter Triticale Cultivars (x Triticosecale Wittm. ex A. Camus) for Organic Agriculture: Polish Case Study. Agronomy 2020, 10, 1144. [Google Scholar] [CrossRef]
- Nachtman, G. Organic farming in Poland and activities undertaken for its development. Pol. Stat. 2021, 66, 24–43. [Google Scholar] [CrossRef]
- Staniak, S. Characteristics of food produced in organic farming. Pol. J. Agron. 2014, 19, 25–35. [Google Scholar] [CrossRef]
- Szymona, J. Problem of chemical plant protection products’ residues in organic raw material. J. Res. Appl. Agric. Eng. 2010, 55, 146–149. [Google Scholar]
- Regulation (EU) 2018/848 of The European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. OJ L 150, 14 June 2018, p. 1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02018R0848-20220101 (accessed on 4 January 2024).
- Ondrasek, G.; Horvatinec, J.; Kovačić, M.B.; Reljić, M.; Vinceković, M.; Rathod, S.; Bandumula, N.; Dharavath, R.; Rashid, M.I.; Panfilova, O.; et al. Land Resources in Organic Agriculture: Trends and Challenges in the Twenty-First Century from Global to Croatian Contexts. Agronomy 2023, 13, 1544. [Google Scholar] [CrossRef]
- Akanmu, A.O.; Olowe, O.M.; Phiri, A.T.; Nirere, D.; Odebode, A.J.; Karemera Umuhoza, N.J.; Asemoloye, M.D.; Babalola, O.O. Bioresources in Organic Farming: Implications for Sustainable Agricultural Systems. Horticulturae 2023, 9, 659. [Google Scholar] [CrossRef]
- Łuczka, W.; Kalinowski, S.; Shmygol, N. Organic Farming Support Policy in a Sustainable Development Context: A Polish Case Study. Energies 2021, 14, 4208. [Google Scholar] [CrossRef]
- Carbonaro, M.; Mattera, M.; Nicoli, S.; Bergamo, P.; Cappelloni, M. Modulation of antioxidant compounds in organic vs conventional fruit (peach, Prunus persica L., and pear, Pyrus communis L.). J. Agric. Food Chem. 2002, 50, 5458–5462. [Google Scholar] [CrossRef]
- Lester, G.E.; Manthey, J.A.; Buslig, B.S. Organic vs conventionally grown rio red whole grapefruit and juice: Comparison of production inputs, market quality, consumer acceptance, and human health-bioactive compounds. J. Agric. Food Chem. 2007, 55, 4474–4480. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.M.; Caixeirinho, D.; Miguel, M.G.; Sustelo, V.; Nunes, C.; Fernandes, M.M.; Marreiros, A. Organic Acids Concentration In Citrus Juice From Conventional versus Organic Farming. Acta Hortic. 2012, 933, 601–606. [Google Scholar] [CrossRef]
- Grzyb, A.; Waraczewska, Z.; Niewiadomska, A.; Wolna-Marówka, A. What are biopreparations and what is their use. Nauka Przyr. Technol. 2019, 13, 65–76. [Google Scholar]
- Pylak, M.; Oszust, K.; Frąc, M. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev. Environ. Sci. Biotechnol. 2019, 18, 597–616. [Google Scholar] [CrossRef]
- Derkowska, E.; Sas Paszt, L.; Harbuzov, A.; Sumorok, B. Root Growth, Mycorrhizal Frequency and Soil Microorganisms in Strawberry as Affected by Biopreparations. Adv. Microbiol. 2015, 5, 65–73. [Google Scholar] [CrossRef]
- Aisakulova, K. Organic fertilizer’s role in the improvement of soil microflora and biometric values in fruit crops. Sabrao J. Breed. Genet. 2023, 55, 1719–1728. [Google Scholar] [CrossRef]
- Krutiakova, V. Biological method as the basis of sustainable development of domestic agriculture. Visnyk Agrar. Nauk. 2020, 98, 5–14. [Google Scholar] [CrossRef]
- Kosicka, D.; Wolna-Marówka, A.; Trzeciak, M. The influences of microbial inoculates on morphological traits in plants). KOSMOS Probl. Biol. Sci. Pol. Copernic. Soc. Nat. 2015, 64, 327–335. [Google Scholar]
- Sas-Paszt, L.; Sumorok, B.; Derkowska, E.; Trzciński, P.; Lisek, A.; Grzyb, Z.S.; Sitarek, M.; Przybył, M.; Frąc, M. Effect of microbiologically enriched fertilizers on the vegetative growth of strawberry plants under field conditions in the first year of plantation. J. Res. Appl. Agric. Eng. 2019, 64, 29–37. [Google Scholar]
- Sas-Paszt, L.; Sumorok, B.; Derkowska, E.; Trzciński, P.; Lisek, A.; Grzyb, Z.S.; Sitarek, M.; Przybył, M.; Frąc, M. Effect of microbiologically enriched fertilizers on the vegetative growth of strawberry plants in container-based cultivation at different levels of irrigation. J. Res. Appl. Agric. Eng. 2019, 64, 38–46. [Google Scholar]
- El-Bialy, S.M.; El-Mahrouk, M.E.; Elesawy, T.; El-Dein Omara, A.; Elbehiry, F.; El-Ramady, H.; Aron, B.; Prokisch, J.; Brevik, E.C.; Solberg, S.Ø. Biological Nanofertilizers to Enhance Growth Potential of Strawberry Seedlings by Boosting Photosynthetic Pigments, Plant Enzymatic Antioxidants, and Nutritional Status. Plants 2023, 12, 276. [Google Scholar] [CrossRef]
- Bayat, M.; Pakina, E.; Astarkhanova, T.; Sediqi, A.N.; Zargar, M.; Vvedenskiy, V. Review on agro-nanotechnology for ameliorating strawberry cultivation. Res. Crops 2019, 20, 731–736. [Google Scholar] [CrossRef]
- Hindersach, R.; Purba, P.S.J.; Cahyaningrum, D.N.; Nurbaity, A.; Kamaluddin, N.N.; Akutsu, M. Evaluation of Strawberry Seedling Growth in Various Planting Media Amended with Biofertilizer. First Asian PGPR Indonesian Chapter International e-Conference 2021. KnE Life Sci. 2022, 358–367. [Google Scholar] [CrossRef]
- Tarafdar, M.; Mishra, S.; Singh, R.K.; Kumar, A.; Ekka, S.K. Effect on Vegetative Growth and Development of Strawberry (Fragaria ananassa) in Potting Mixture System under Shade Net Conditions cv. Winter Dawn. Int. J. Environ. Clim. Chang. 2023, 13, 799–808. [Google Scholar] [CrossRef]
- Singh, M.; Jamwal, M.; Sharma, N.; Kumar, R.; Wali, V.K. Response of iron and zinc on vegetative and reproductive growth of strawberry (Fragaria x ananassa Duch.) cv Chandler. Bangladesh J. Bot. 2015, 44, 337–340. [Google Scholar] [CrossRef]
- Kopeć, M.; Gondek, K.; Mierzwa-Hersztek, M.; Zaleski, T.; Bogdał, S.; Bienisz, M.; Błaszczyk, J.; Kaczmarczyk, E.; Knaga, J.; Łapczyńska-Kordon, B.; et al. The effect of stimulating biomass growth of everbearing strawberry cultivar San Andreas® by the foliage application of a product containing zinc. Prog. Plant Prot. 2019, 59, 126–132. [Google Scholar] [CrossRef]
- Filipczak, J.; Sas-Paszt, L.; Sitarek, M. The influence of silica preparations on growth and yielding of strawberry plants. Sci. J. Inst. Hortic. 2019, 27, 17–24. [Google Scholar]
- Filipczak, J.; Żurawicz, E.; Sas Paszt, L. Influence of selected biostimulants on the growth and yielding of ‘Elkat’ strawberry plants. Sci. J. Inst. Hortic. 2016, 24, 43–58. [Google Scholar]
- Pertot, I.; Zasso, R.; Amsalem, L.; Baldessari, M.; Angeli, G.; Eldad, Y. Use of biocontrol agents against powdery mildew in integrated strategies for reducing pesticide residues on strawberry: Evaluation of efficacy and side effects. IOBC/WPRS Bull. 2004, 27, 109–113. [Google Scholar]
- Pertot, I.; Zasso, R.; Amsalem, L.; Baldessari, M.; Angeli, G.; Elad, Y. Integrating biocontrol agents in strawberry powdery mildew control strategies in high tunnel growing systems. Crop Prot. 2008, 27, 622–631. [Google Scholar] [CrossRef]
- Mariańska-Cichoń, B.; Sapiecha-Waszkiewicz, A.; Miętkowski, R. Effectiveness of biofungicydes Bioczos S and Poliversum used to soak strawberry cuttings in verticillum wilt disease control. J. Plant Prot. Res. 2009, 49, 395–398. [Google Scholar] [CrossRef]
- Grata, K.; Rombel-Bryzek, A.; Ziembik, Z. Bacillus subtilis BS-2 and pepermint oil as biocontrol agents against Botrytis cinerea. Ecol. Chem. Eng. S 2019, 26, 597–607. [Google Scholar] [CrossRef]
- Demir, S.; Durak, E.D.; Güneş, H.; Boyno, G.; Mulet, J.M.; Denesh, Y.R.; and Porcel, R. Biological Control of Three Fungal Diseases in Strawberry (Fragaria x ananassa) with Arbuscular Mycorrhizal Fungi. Agronomy 2023, 13, 2439. [Google Scholar] [CrossRef]
- Trzciński, P.; Frąc, M.; Lisek, A.; Przybył, M.; Frąc, M.; Sas-Paszt, L. Growth promotion of raspberry and strawberry plants by bacterial inoculants. Acta Sci. Pol. Hortorum Cultus 2021, 20, 71–82. [Google Scholar] [CrossRef]
- Kowalska, J.; Kowalska, H.; Marzec, A.; Brzeziński, T.; Samborska, K.; Lenart, A. Dried strawberries as a high nutritional value fruit snack. Food Sci. Biotechnol. 2018, 27, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Daugaard, H.; Lindhard, H. Strawberry Cultivars for organic production. Gartenbauwissenschalft 2000, 65, 213–217. [Google Scholar]
- Weissinger, H.; Spornberger, A.; Steffek, R.; Jezik, K.; Stich, K. Evaluation of New Strawberry Cultivars for their Potential Use in Organic Farming and Verticillum-infested Soils. Eur. J. Hort. Sci. 2009, 74, 30–34. [Google Scholar]
- Şener, S.; Türemiş, N.F. Effect of Genotype and Fertilization on Fruit Quality in Several Harvesting Periods of Organic Strawberry Plantation. Int. J. Agric. Innov. Res. 2016, 5, 252–256. [Google Scholar]
- Feledyn-Szewczyk, B.; Cacak-Pietrzak, G.; Lenc, L.; Stalenga, J. Rating of Spring Weat Cultivars (Triticum aestivum L.) According to Their Suitability for Organic Agriculture. Agronomy 2020, 10, 1900. [Google Scholar] [CrossRef]
- Drobek, M.; Cybulska, J.; Frąc, M.; Pieczywek, P.; Pertile, G.; Chibrikov, V.; Nosalewicz, A.; Feledyn-Szewczyk, B.; Sas-Paszt, L.; Zdunek, A. Microbial biostimulants affect the development of pathogenic microorganisms and the quality of fresh strawberries (Fragaria ananassa Duch.). Sci. Hortic. 2024, 327, 112793. [Google Scholar] [CrossRef]
- Kuś, J. Wpływ Preparatów Biologicznych (ProBioEmów) na Plonowanie Pszenicy Ozimej i Jarej oraz Ziemniaków w Uprawie Ekologicznej i Konwencjonalnej. pp. 275–286. W: Wyniki Badań z Zakresu Rolnictwa Ekologicznego Realizowanych w 2012 Roku; Ministerstwo Rolnictwa i Rozwoju Wsi: Warszawa, Poland, 2013; ISBN 978-83-62416-51-6. (In Polish) [Google Scholar]
- Mikiciuk, G.; Sas-Paszt, L.; Mikiciuk, M.; Derkowska, E.; Trzciński, P.; Głuszek, S.; Lisek, A.; Wera-Bryl, S.; Rudnicka, J. Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rizosphere bacteria. Mycorrhiza 2019, 29, 489–501. [Google Scholar] [CrossRef]
- Mohamed, M.H.M.; Petropolus, S.A.; Ali, M.M.E. The Application of Nitrogen Fertilization and Foliar Spraying with Calcium and Boron Affects Growth Aspects, Chemical Composition, Productivity and Fruit Quality of Strawberry Plants. Horticulturae 2021, 7, 257. [Google Scholar] [CrossRef]
- Ahmed, R.; Karim, M.R.; Quddus, M.A.; Ahmed, S.; Siddiky, M.A. Response of strawberry to NPKS on yield in terrace soil. Bangladesh J. Agril. Res. 2018, 43, 89–97. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Jończyk, K.; Stalenga, J. The Effect of Crop Production Systems and Cultivars on Spring Wheat (Triticum aestivum L.) Yield in a Long-Term Experiment. Agriculture 2024, 14, 625. [Google Scholar] [CrossRef]
- You, Z.J.; Xing, Y.; Guan, W.; Ma, H.P.; Liu, Z.M. Evaluation of the soil ecological measure for overcoming replant disorder of strawberry. Eur. J. Hort. Sci. 2015, 80, 128–133. [Google Scholar] [CrossRef]
- Şener, S.; Türemiş, N.F. Influence of Mulch Types on Yield and Quality of Organically Grown Strawberry Cultivars. Süleyman Demirel Üniversitesi Ziraat Fakültesi Derg. 2017, 12, 66–72. [Google Scholar]
- Kalnina, I.; Sterne, D.; Strautina, S. Strawberry (Fragaria ananassa) cultivar ‘Rumba’ assessment under the northern climatic conditions. Acta Hortic. 2016, 1139, 259–264. [Google Scholar] [CrossRef]
- Kilic, N.; Turemis, N.F.; Dasgan, H.Y. The effect of fertilizers on crop yield, fruit quality and plant nutrition of organically grown strawberry (Fragaria x ananassa Duch.). Appl. Ecol. Environ. Res. 2021, 19, 2201–2211. [Google Scholar] [CrossRef]
- Develi, E.A.; Yavuz, A.; Erdoğan, Ü. The Effects of Vermicompost Applications on the Yield and Quality of San Andreas (Fragaria Ananassa Duch.) Strawberry Cultivar#. Turk. J. Agric.-Food Sci. Technol. 2021, 9, 2641–2648. [Google Scholar] [CrossRef]
- Sharma, R.R.; Singh, R. Gibberellic acid influences the production of malformed and button berries, and fruit yield and quality in strawberry (Fragaria x ananassa Duch.). Sci. Hortic. 2009, 119, 430–433. [Google Scholar] [CrossRef]
- Saima, Z.; Sharma, A.; Umar, I.; Wali, V.K. Effect of plant bio-regulators on vegetative growth, yield and quality of strawberry cv. Chandler. Afr. J. Agric. Res. 2014, 9, 1694–1699. [Google Scholar] [CrossRef]
- Stachowiak, B.; Ratajczyk, H. The application possibility of Bacillus circulans strains in plant protection against grey mould and fusarium spp. Agric. Advis. 2021, 3, 30–44. [Google Scholar]
- Morkeliūnė, A.; Rasiukevičiūtė, N.; Valiuškaitė, A. Meteorological conditions in a temperate climate for Colletotrichum acutatum, strawberry pathogen distribution and susceptibility of different cultivars to anthracnose. Agriculture 2021, 11, 80. [Google Scholar] [CrossRef]
- Morkeliūnė, A.; Rasiukevičiūtė, N.; Valiuškaitė, A. Pathogenicity of Colletotrichum acutatum to different strawberry cultivars and anthracnose control with essential oils. Zemdirb.-Agric. 2021, 108, 173–180. [Google Scholar] [CrossRef]
- Keldibekova, M. Genes and loci controlling the resistance of strawberry (F. ananassa Duch.) to pathogens. Indian J. Agric. Res. 2023, 57, 709–716. [Google Scholar] [CrossRef]
- Gannett, M.; Pritts, M.P.; Lehmann, J. Soil amendments affect soil health indicators and crop yield in perennial strawberry. Horttechnology 2019, 29, 179–188. [Google Scholar] [CrossRef]
- Song, Z.; Yan, D.; Fang, W.; Zhang, D.; Jin, X.; Li, Y.; Wang, Q.; Wang, G.; Li, Q.; Cao, A. Response of strawberry fruit yield, soil chemical and microbial properties to anaerobic soil disinfestation with biochar and rice bran. Agriculture 2023, 13, 1466. [Google Scholar] [CrossRef]
- Ziedan, E.S.H. A review of the efficacy of biofumigation agents in the control of soil-borne plant diseases. J. Plant Prot. Res. 2022, 62, 1–11. [Google Scholar] [CrossRef]
- Tournas, V.H.; Katsoudas, E. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food Microbiol. 2005, 105, 11–17. [Google Scholar] [CrossRef]
- Kordowska-Wiater, M. Yeasts as biological control agents for plants. Post Mikrobiol. 2011, 50, 17–119. [Google Scholar]
- Kowalska, J. Effects of Trichoderma asperellum [T1] ON Botrytis cinerea [PERS.: FR.], growth and yield of organic strawberry. Acta Sci. Pol. Hortorum Cultus 2011, 10, 107–114. [Google Scholar]
- Meszka, B.; Bielenin, A. Activity of laminarin in control of strawberry diseases. Phytopathologia 2011, 62, 15–23. [Google Scholar]
- Wachowska, U.; Borowska, J.; Kwiatkowska, E.; Kowalska, E. Biological, bio-technolognical and chemical possibilities in reducing of grey mould (Botrytis cinerea) severity on strawberries. Prog. Plant Prot. 2015, 55, 275–279. [Google Scholar] [CrossRef]
- Oliveira Filho, J.G.; Cruz Silva, G.; Aguiar, A.C.; Cipriano, L.; Azeredo, H.M.C.; Junior, S.B.; Ferreira, M.D. Chemical composition and antifungal activty of essential oils and their combinations against Botrytis cinerea in strawberries. J. Food Meas. Charact. 2021, 15, 1815–1825. [Google Scholar] [CrossRef]
- Gebel, M.P.; Magurno, F. Assessment of the antifungal potential of the essential oil from Thymus vulgaris against Botrytis cinerea causative agent of postharvest grey mould on strawberry fruits. Columella-J. Agric. Environ. Sci. 2014, 1, 17–23. [Google Scholar] [CrossRef]
- Rhouma, A.; Hajji-Hedfi, L.; Ben Othmen, S.; Shah, K.K.; Matrood, A.A.A.; Okon, O.G.; Pant, D. Strawberry grey mould, a devastating disease caused by the airborne fungal pathogen Botrytis cinerea. Egypt. J. Phytopathol. 2022, 50, 44–50. [Google Scholar] [CrossRef]
- Jia, S.; Wang, Y.; Zhang, G.; Yan, Z.; Cai, Q. Strawberry FaWRKY25 transcription factor negatively regulated the resistance of strawberry fruits to Botrytis cinerea. Genes 2021, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Caproni, C.M.; Rodrigues, F.A.; Rezende, R.A.L.S.; Pomella, A.W.V.; Pasqual, M. Application of biological products in strawberry cultivars to control Botrytis cinerea. Res. Soc. Dev. 2021, 10, e8710514655. [Google Scholar] [CrossRef]
- Nielsen, K.A.G.; Skårn, M.N.; Strømeng, G.M.; Brurberg, M.B.; Stensvand, A. Pervasive fungicide resistance in Botrytis from strawberry in Norway: Identification of the grey mould pathogen and mutations. Plant Pathol. 2022, 71, 1392–1403. [Google Scholar] [CrossRef]
- Leroch, M.; Plesken, C.; Weber, R.W.S.; Kauff, F.; Scalliet, G.; Hahn, M. Gray mold populations in German strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea. Appl. Environ. Microbiol. 2013, 79, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Gonzàlez, A.E.; Palou, E.; López-Malo, A. Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea)in strawberries. Innov. Food Sci. Emerg. Technol. 2015, 32, 181–185. [Google Scholar] [CrossRef]
- Garrido, C.; Carbú, M.; Fernández-Acero, F.J.; Budge, G.; Vallejo, I.; Colyer, A.; Cantoral, J.M. Isolation and pathogenicity of Colletotrichum Spp. causing anthracnose of strawberry in south west Spain. Eur. J. Plant Pathol. 2008, 120, 409–415. [Google Scholar] [CrossRef]
- Freeman, S.; Horowitz, S.; Sharon, A. Pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum from strawberry and other plants. Phytopathology 2001, 91, 986–992. [Google Scholar] [CrossRef]
- Sreenivasaprasad, S.; Talhinhas, P. Genotypic and phenotypic diversity in Colletotrichum acutatum, a cosmopolitan pathogen causing anthracnose on a wide range of hosts. Mol. Plant Pathol. 2005, 6, 361–378. [Google Scholar] [CrossRef] [PubMed]
- Miller- Butler, M.A.; Smith, B.J.; Kreiser, B.R.; Blythe, E.K. Composition of Anthracnose Resistance with the Presence of Two SCAR Markers Associated with the Rca2 Gene in Strawberry. Hort. Sci. 2019, 54, 793–798. [Google Scholar] [CrossRef]
- Haack, S.E.; Ivors, K.L.; Holmes, G.J.; Förster, H.; Adaskaveg, J.E. Natamycin, a new biofungicide for managing crown rot of strawberry caused by QoI-resistant Colletotrichum acutatum. Plant Dis. 2018, 102, 1687–1695. [Google Scholar] [CrossRef]
- Harp, T.; Kuhn, P.; Roberts, P.; Pernezny, K. Management and cross-infectivity potential of Colletotrichum acutatum causing anthracnose on bell pepper in florida. Phytoparasitica 2013, 42, 31–39. [Google Scholar] [CrossRef]
- Lima, N.B.; de A. Batista, M.V.; De Morais, M.A., Jr.; Barbosa, M.A.G.; Michereff, S.J.; Hyde, K.D.; Câmara, M.P.S. Five Colletotrichum species are responsible for mango anthracnose in northeastern Brazil. Fungal Divers. 2013, 61, 75–88. [Google Scholar] [CrossRef]
- Moreira, R.R.; Nesi, C.N.; May De Mio, L.L. Bacillus spp. and Pseudomonas putida as inhibitors of the Colletotrichum acutatum group and potential to control Glomerella leaf spot. Biol. Control 2014, 72, 30–37. [Google Scholar] [CrossRef]
- Marian, M.; Ohno, T.; Suzuki, H.; Kitamura, H.; Kuroda, K.; Shimizu, M. A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulata. Microbiol. Res. 2020, 234, 126428. [Google Scholar] [CrossRef]
- Alijani, Z.; Amini, J.; Ashengroph, M.; Bahramnejad, B. Isolation of strawberry endophytic bacteria and investigation of their antifungal effects on Colletotrichum nymphaeae, the casual agent of strawberry anthracnose. Biocontrol Plant Prot. 2020, 8, 29–46. [Google Scholar]
- Nellist, C.F.; Vickerstaff, R.J.; Sobczyk, M.K.; Marina-Montes, C.; Wilson, F.M.; Simpson, D.W.; Whitehouse, A.B.; Harrison, R.J. Quantitative trait loci controlling Phytophthora cactorum resistance in the cultivated octoploid strawberry (Fragaria × ananassa). Hortic. Res. 2019, 6, 60. [Google Scholar] [CrossRef]
- Bhat, R.G.; Browne, G.T. Specific detection of Phytophthora cactorum in diseased strawberry plants using nested polymerase chain reaction. Plant Pathol. 2010, 59, 121–129. [Google Scholar] [CrossRef]
- Poimala, A.; Parikka, P.; Hantula, J.; Vainio, E.J. Viral diversity in Phytophthora cactorum population infecting strawberry. Environ. Microbiol. 2021, 23, 5200–5221. [Google Scholar] [CrossRef]
- Lu, X.; Xu, H.; Song, W.; Yang, Z.; Yu, J.; Tian, Y.; Jiang, M.; Shen, D.; Dou, D. Rapid and simple detection of Phytophthora cactorum in strawberry using a coupled recombinase polymerase amplification–lateral flow strip assay. Phytopathol. Res. 2021, 3, 12. [Google Scholar] [CrossRef]
- Ali, A.; Kumar, R.; Mazáková, J.; Maňasová, M.; Zouhar, M.; Pánek, M. Evaluation of the ability of seven active ingredients of fungicides to suppress Phytophthora cactorum at diverse life stages, and variability in resistance found among isolates. J. Fungi 2022, 8, 1039. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Marín, M.V.; Lee, M.B.; Baggio, J.S.; Peres, N.A.; Lee, S. Genomic approaches for improving resistance to Phytophthora crown rot caused by P. cactorum in strawberry (Fragaria × ananassa). Front. Agron. 2022, 4, 941111. [Google Scholar] [CrossRef]
- Pánek, M.; Hanáček, A.; Wenzlová, J.; Maňasowá, M.; Zouhar, M. A Comparision of the Ability of Some Commercially Produced Biological Control Agents to Protect Strawberry Plants against the Plant Pathogen Phytophthora cactorum. Agriculture 2021, 11, 1086. [Google Scholar] [CrossRef]
- Meszka, B.; Michalecka, M. Identification of Phytophtora spp. isolated from plants and soil samples on strawberry plantations in Poland. J. Plant Dis. Prot. 2016, 123, 29–36. [Google Scholar] [CrossRef]
- Sas-Paszt, L.; Sumorok, B.; Górnik, K.; Grzyb, Z.S.; Lisek, A.; Głuszek, S.; Trzciński, P.; Derkowska, E.; Frąc, M.; Treder, W.; et al. Influence of beneficial soil microorganisms and mineral fertilizers enriched with them on the flowering, fruiting, and physical and chemical parameters of the fruit of three-year-old strawberry plants in field cultivation. Hortic. Sci. 2023, 50, 112–126. [Google Scholar] [CrossRef]
- Rahman, M.; As Sabir, A.; Mukta, J.A.; Khan, M.A.; Mohi-Ud-Din, M.; Miah, G.; Rahman, M.; Islam, T. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci. Rep. 2018, 8, 2504. [Google Scholar] [CrossRef]
- Todeschini, V.; AitLahmidi, N.; Mazzucco, E.; Marsano, F.; Gosetti, F.; Robotti, E.; Bona, E.; Massa, N.; Bonneau, L.; Marengo, E.; et al. Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome. Front. Plant Sci. 2018, 9, 1611. [Google Scholar] [CrossRef] [PubMed]
- Palencia, P.; Martínez, F.; Pestana, M.; Oliveira, J.; Correia, P. Effect of Bacillus velezensis and Glomus intraradices on fruit quality and growth parameters in strawberry soilless growing system. Hortic. J. 2015, 84, 122–130. [Google Scholar] [CrossRef]
- Hong, S.; Kim, T.Y.; Won, S.-J.; Moon, J.-H.; Ajuna, H.B.; Kim, K.Y.; Ahn, Y.S. Control of fungal diseases and fruit yield improvement of strawberry using Bacillus velezensis CE 100. Microorganisms 2022, 10, 365. [Google Scholar] [CrossRef] [PubMed]
- Koilybayeva, M.; Shynykul, Z.; Ustenova, G.; Abzaliyeva, S.; Alimzhanova, M.; Amirkhanova, A.; Turgumbayeva, A.; Mustafina, K.; Yeleken, G.; Raganina, K.; et al. Molecular characterization of some Bacillus species from vegetables and evaluation of their antimicrobial and antibiotic potency. Molecules 2023, 28, 3210. [Google Scholar] [CrossRef] [PubMed]
- Sas-Paszt, L.; Smolińska, U.; Kowalska, B.; Szczech, M.; Lisek, A.; Trzciński, P.; Głuszek, S.; Górnik, K.; Derkowska, E.; Sumorok, B. Influence of microbiologically enriched mineral fertilizers on selected groups of microorganisms in the rhizosphere of strawberry plants. J. Hortic. Res. 2021, 29, 35–46. [Google Scholar] [CrossRef]
- Pastrana, A.M.; Basallote-Ureba, M.J.; Aguado, A.; Akdi, K.; Capote, N. Biological control of strawberry soil-borne pathogens Macrophomina phaseolina and Fusarium solani, using Trichoderma asperellum and Bacillus spp. Phytopathol. Mediterr. 2016, 55, 109–120. [Google Scholar] [CrossRef]
- Jamiołkowska, A.; Thanoon, A.H.; Skwaryło-Bednarz, B.; Patkowska, E.; Mielniczuk, E. Mycorrhizal inoculation as an alternative in the ecological production of tomato (Lycopersicon esculentum Mill.). Int. Agrophys. 2020, 34, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Makała, H. Organic food and factors of its choice by consumers. Res. Bull. Leis. Tour. 2019, 1, 151–166. [Google Scholar]
- Góralczyk, K. Czy żywność ekologiczna rzeczywiście jest najlepsza? Stud. Ecol. Et Bioethicae 2018, 16, 51–56. [Google Scholar] [CrossRef]
- Bieniek–Majka, M. Konsumpcja owoców i warzyw w Unii Europejskiej oraz jej potencjalne środowiskowe i zdrowotne konsekwencje. Issues Agric. Advis. Serv. 2022, 1, 22–41. [Google Scholar]
- Migdał, W.; Migdał, Ł. Od Pola do Stołu-wymagania konsumentów w stosunku do rolników. Food Sci. Technol. Qual. 2021, 28, 24–46. [Google Scholar] [CrossRef]
- Lipa, J.J.; Pruszyński, S. Scale of use of biological methods in plant protection in Poland and in the world. Prog. Plant Prot. 2010, 50, 1033–1043. [Google Scholar]
- Jamiołkowska, A.; Hetman, B. The mechanism of action of biological preparations used in plant protection against pathogens). Ann. UMCS Sect. E Agric. 2016, LXXI, 13–29. [Google Scholar]
- Klepacka, A.M. Selected assumptions of the European Green Deal and possibilities of development of a conventional and organic farm. Ann. Pol. Assoc. Agric. Agribus. Econ. 2023, XXV, 108–123. [Google Scholar] [CrossRef]
Acronym Names | Explanation |
---|---|
EM | Effective microorganisms |
GA3 | Gibbelleric acid |
K1 | Control |
K2 | Combination with P3 preparation only |
K3 | Combination of preparations P3 and P1 |
K4 | Combination of preparations P3 and P2 |
K5 | Combination of preparations P3 and P1 and P2 |
K6 | Combination of preparations P1 and P2 |
n.s. | Non-significant |
P1 | Preparation containing: Bacillus subtilis AF75AB2 and Bacillus sp. Sp115AD, on a carrier consists of plant extracts (nettle, horsetail, calendula), humic acids in liquid formulation in 2020 and in micronized dolomite (Inco S.A.) in 2021, |
P2 | Preparation containing: Bacillus sp. Sp116AC*, Bacillus sp. Sp115AD, humic acids, yeast culture effluent in liquid formulation in 2020 and in micronized dolomite (Inco S.A.) in 2021, |
P3 | Preparation containing: In 2020: Bacillus sp. AF75BC and Bacillus subtilis AF75AB2, on a carrier consists of wheat bran, dry humic acids, mustard, rapeseed oil, clove oil in a pellet formulation and on micronized dolomite (Inco S.A.) instead of wheat bran in 2021. |
PIORIN | Plant Health and Seed Inspection Service |
SD | Standard deviation |
Trade Name | Manufacturer | Chemical Composition | Application Date | Dose Applied |
---|---|---|---|---|
2018 | ||||
Cattle manure | - | - | 19,11,2018 | 30 t·ha−1 |
Patentkali® | K+S Polska Sp. z o.o., Poland | Potassium sulphate with magnesium: SO3 42.5%, K2O 30% water-soluble potassium | 16,11,2018 | 250 kg·ha−1 |
Potassium salt | K+S Minerals and Agriculture GmbH, Germany | 60% K2O | 16,11,2018 | 100 kg·ha−1 |
2019 | ||||
Bioilsa N 12.5 | NaturalCrop Poland Sp. z o.o., Poland | 12.5% organic nitrogen, 40% organic carbon, SO3 4.4%, B 100 mg·kg−1, Zn 61 mg·kg−1, Cu 20 mg·kg−1, Mn 18 mg·kg−1, other mineral compounds (P, K, Ca, Mg, Fe) | 11,04,2019 | 150 kg·ha−1 |
2020 | ||||
Redarom Activstart | Biodevas Laboratoires ZA de l’ L’Épine, France, | Aromatic plant extract. Mixture of micronutrients, guaranteed zinc content 0.7%. | 29,04,2020 | 1.5 L·ha−1 |
Olibio | Biodevas Laboratoires ZA de l’ L’Épine, France | Silicon extracts from field horsetail (Equisetum arvense) and nettle (Urtica dioica): B 0.02%, Cu 0.5%, Fe 0.5%, Mn 0.5%, Mo 0.1% | 29,04,2020 | 2.0 L·ha−1 |
Patentkali® | K+S Polska Sp. z o.o., Poland | Potassium sulphate with magnesium: SO3 42.5%, K2O 30% water-soluble potassium | 05,08,2020 | 150 kg·ha−1 |
Aminosol | AZELIS POLAND Sp. z o. o., Poland | N 9.4%, K2O 1.1 %, S 0.25%, Na 1.28%, 66.3% organic matter (56–58% aminoacids and peptides) | 21,07,2020 | 2.0 L·ha−1 |
2021 | ||||
Redarom Activstart | Biodevas Laboratoires ZA de l’ L’Épine, France, | Aromatic plant extract. Mixture of micronutrients, guaranteed zinc content 0.7%. | 30,04,2021 | 1.5 L·ha−1 |
Olibio | Biodevas Laboratoires ZA de l’ L’Épine, France | Silicon extracts from field horsetail (Equisetum arvense) and nettle (Urtica dioica): B 0.02%, Cu 0.5%, Fe 0.5%, Mn 0.5%, Mo 0.1% | 30,04,2021 | 2.0 L·ha−1 |
Aminosol | AZELIS POLAND Sp. z o. o., Poland | N 9.4%, K2O 1.1%, S 0.25%, Na 1.28%, 66.3% organic matter (56–58% aminoacids and peptides) | 07,05,2021 | 3.0 L·ha−1 |
Components | Biopreparation Combinations Used in the Experiment | |||||
---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | K6 | |
Control (sprayed with water) | ||||||
(P1) Bacillus subtilis AF75AB2 and Bacillus sp. Sp115AD, on a carrier consists of plant extracts (nettle, horsetail, calendula), humic acids in liquid formulation in 2020 and in micronized dolomite in 2021. | x | x | x | |||
(P2) Bacillus sp. Sp116AC*. Bacillus sp. Sp115AD, humic acids, yeast culture effluent in liquid formulation in 2020 and in micronized dolomite in 2021. | x | x | x | |||
(P3) In 2020: Bacillus sp. AF75BC and Bacillus subtilis AF75AB2, on a carrier consists of wheat bran, dry humic acids, mustard, rapeseed oil, clove oil in a pellet formulation and on micronized dolomite instead of wheat bran in 2021. | x | x | x | x |
Month | Average Temperature [°C] | Precipitation [mm] | ||||
---|---|---|---|---|---|---|
2020 | 2021 | Multi-Annual Average | 2020 | 2021 | Multi-Annual Average | |
April | 8.6 | 6.4 | 7.5 | 15.6 | 51.2 | 42.0 |
May | 11.3 | 12.5 | 12.4 | 76.5 | 49.9 | 53.0 |
June | 18.3 | 19.5 | 16.7 | 157.8 | 70.1 | 110.0 |
July | 18.6 | 21.8 | 17.8 | 38.3 | 61.7 | 105.0 |
Years and Combinations | |||||||
---|---|---|---|---|---|---|---|
2020 | |||||||
K1 | K2 | K3 | K4 | K5 | K6 | Average | |
‘Honeoye’ | 240.2 ab (±21.2) | 227.30 a (±65.2) | 440.2 ab (±79.0) | 527.2 b (±184.0) | 373.6 ab (±157.6) | 419.1 ab (±260.4) | 383.2 A (±176.1) |
‘Rumba’ | 621.0 b (±0.70) | 370.6 a (±108.2) | 374.3 a (±58.6) | 512.4 ab (±132.4) | 599.0 b (±129.1) | 606.6 b (±111.1) | 504.2 B (±143.0) |
‘Vibrant’ | 389.1 ab (±255.2) | 216.6 a (±25.2) | 341.7 ab (±72.2) | 393.0 b (±54.3) | 358.5 ab (±134.5) | 260.7 ab (±62.4) | 320.9 A (±109.7) |
average | 416.8 ab (±206.3) | 271.5 a (±99.5) | 385.4 ab (±76.7) | 477.5 b (±137.0) | 443.7 b (±171.6) | 428.8 b (±211.4) | 402.8 (±162.5) |
2021 | |||||||
K1 | K2 | K3 | K4 | K5 | K6 | average | |
‘Honeoye’ | 368.9 a (±32.8) | 519.3 ab (±56.6) | 588.8 ab (±136.1) | 660.6 b (±33.8) | 496.8 ab (±188.3) | 590.6 ab (±148.2) | 552.8 A (±135.2) |
‘Rumba’ | 443.9 a (±25.8) | 578.8 ab (±89.2) | 574.9 ab (±77.4) | 661.1 b (±119.4) | 560.1 ab (±77.7) | 602.3 ab (±84.5) | 581.7 A (±95.6) |
‘Vibrant’ | 663.2 ab (±137.6) | 576.2 ab (±83.2) | 688.5 b (±49.0) | 649.9 ab (±122.7) | 622.2 ab (±104.0) | 503.5 a (±121.7) | 613.1 A (±110.4) |
average | 492.0 a (±151.1) | 558.1 ab (±75.9) | 617.4 bc (±100.7) | 657.2 c (±91.3) | 559.7 ab (±130.9) | 565.5 ab (±118.7) | 582.5 (±115.8) |
Years and Combinations | |||||||
---|---|---|---|---|---|---|---|
2020 | |||||||
K1 | K2 | K3 | K4 | K5 | K6 | Average | |
‘Honeoye’ | 1.49 a (±0.98) | 2.07 a (±1.34) | 4.47 a (±3.75) | 2.79 a (±0.60) | 3.19 a (±3.11) | 1.93 a (±2.21) | 2.76 A (±2.33) |
‘Rumba’ | 4.85 a (±3.22) | 2.80 a (±2.54) | 4.49 a (±2.28) | 3.38 a (±1.00) | 4.03 a (±1.84) | 3.58 a (±2.97) | 3.77 A (±2.12) |
‘Vibrant’ | 4.43 ab (±1.13) | 3.48 ab (±1.41) | 5.10 b (±3.20) | 2.69 ab (±0.82) | 3.33 ab (±1.53) | 2.08 a (±1.63) | 3.44 A (±1.93) |
average | 3.59 ab (±2.28) | 2.78 a (±1.78) | 4.69 b (±2.85) | 2.96 a (±0.81) | 3.52 ab (±2.09) | 2.53 a (±2.25) | 3.32 (±2.14) |
2021 | |||||||
K1 | K2 | K3 | K4 | K5 | K6 | average | |
‘Honeoye’ | 1.10 ab (±1.55) | 0.13 a (±0.15) | 0.29 ab (±0.28) | 1.06 b (±1.00) | 0.17 ab (±0.14) | 0.26 ab (±0.32) | 0.45 A (±0.67) |
‘Rumba’ | 0.12 a (±0.17) | 0.50 a (±0.56) | 0.20 a (±0.07) | 0.15 a (±0.19) | 0.30 a (±0.32) | 0.31 a (±0.22) | 0.28 A (±0.30) |
‘Vibrant’ | 0.20 a (±0.28) | 0.49 a (±0.56) | 0.36 a (±0.59) | 0.74 a (±0.69) | 0.57 a (±0.93) | 0.69 a (±0.86) | 0.54 A (±0.65) |
average | 0.47 a (±0.86) | 0.37 a (±0.46) | 0.28 a (±0.35) | 0.65 a (±0.75) | 0.34 a (±0.55) | 0.42 a (±0.53) | 0.42 (±0.57) |
Years and Combinations | |||||||
---|---|---|---|---|---|---|---|
2020 | |||||||
K1 | K2 | K3 | K4 | K5 | K6 | Average | |
‘Honeoye’ | 3.0 a (±4.24) | 7.7 a (±11.26) | 8.0 a (±3.90) | 9.4 a (±8.45) | 4.8 a (±2.93) | 5.4 a (±7.44) | 6.7 A (±6.68) |
‘Rumba’ | 17.0 ab (±0.01) | 26.5 b (±10.83) | 18.7 ab (±7.16) | 14.2 a (±9.15) | 18.9 ab (±3.61) | 11.8 a (±3.80) | 17.9 B (±8.00) |
‘Vibrant’ | 16.2 a (±0.58) | 21.4 a (±8.37) | 16.0 a (±3.75) | 17.2 a (±2.96) | 20.0 a (±7.80) | 18.6 a (±5.91) | 18.4 B (±5.57) |
average | 12.1 a (±7.29) | 18.5 a (±12.42) | 14.2 a (±6.67) | 13.6 a (±7.48) | 14.6 a (±8.64) | 11.9 a (±7.74) | 14.3 (±8.65) |
2021 | |||||||
K1 | K2 | K3 | K4 | K5 | K6 | average | |
‘Honeoye’ | 7.4 a (±7.12) | 9.4 a (±4.17) | 5.5 a (±3.66) | 4.7 a (±1.83) | 4.0 a (±2.10) | 9.0 a (±5.50) | 6.6 A (±4.13) |
‘Rumba’ | 8.0 a (±0.24) | 11.7 a (±5.19) | 13.0 a (±4.77) | 9.1 a (±1.99) | 10.0 a (±2.34) | 9.8 a (±2.18) | 10.5 B (±3.41) |
‘Vibrant’ | 10.1 ab (±2.29) | 9.7 b (±2.29) | 9.7 b (±3.92) | 7.4 ab (±2.21) | 4.5 a (±1.34) | 9.9 b (±4.59) | 8.4 AB (±3.38) |
average | 8.5 abc (±3.57) | 10.2 b (±3.83) | 9.4 bc (±4.94) | 7.1 ac (±2.61) | 6.2 a (±3.33) | 9.6 bc (±3.93) | 8.5 (±3.94) |
Years and Combinations | |||||||
---|---|---|---|---|---|---|---|
2020 | |||||||
K1 | K2 | K3 | K4 | K5 | K6 | Average | |
‘Honeoye’ | 1.84 a (±1.03) | 2.33 a (±2.64) | 0.92 a (±1.21) | 2.01 a (±2.07) | 1.80 a (±1.84) | 1.37 a (±1.38) | 1.70 A (±1.69) |
‘Rumba’ | 3.70 a (±2.02) | 5.38 a (±1.64) | 3.07 a (±1.92) | 3.46 a (±0.40) | 3.09 a (±2.10) | 4.11 a (±2.36) | 3.81 B (±1.81) |
‘Vibrant’ | 4.99 a (±4.07) | 4.58 a (±3.41) | 1.68 a (±1.38) | 2.99 a (±1.58) | 2.45 a (±2.96) | 4.53 a (±4.85) | 3.40 B (±3.03) |
average | 3.51 ab (±2.52) | 4.10 b (±2.76) | 1.89 a (±1.67) | 2.82 ab (±1.51) | 2.45 ab (±2.20) | 3.34 ab (±3.25) | 2.97 (±2.41) |
2021 | |||||||
K1 | K2 | K3 | K4 | K5 | K6 | average | |
‘Honeoye’ | 3.29 ab (±2.29) | 2.05 ab (±0.70) | 1.34 a (±1.24) | 1.95 ab (±1.18) | 3.96 b (±0.90) | 2.35 ab (±2.12) | 2.42 B (±1.52) |
‘Rumba’ | 2.00 a (±0.97) | 1.02 a (±0.69) | 1.16 a (±1.05) | 1.89 a (±2.21) | 1.95 a (±1.36) | 1.12 a (±1.01) | 1.48 A (±1.25) |
‘Vibrant’ | 2.83 ab (±0.38) | 2.60 a (±0.36) | 3.40 ab (±0.55) | 4.67 b (±2.32) | 2.78 a (±0.49) | 2.57 a (±1.15) | 3.17 B (±1.29) |
average | 2.70 a (±1.27) | 1.89 a (±0.87) | 1.97 a (±1.39) | 2.84 a (±2.24) | 2.90 a (±1.24) | 2.01 a (±1.52) | 2.36 (±1.51) |
Years and Combinations | |||||||
---|---|---|---|---|---|---|---|
2020 | |||||||
K1 | K2 | K3 | K4 | K5 | K6 | Average | |
‘Honeoye’ | 4.5 a (±0.71) | 4.5 a (±1.00) | 4.8 a (±1.50) | 7.5 a (±3.00) | 5.8 a (±2.75) | 5.3 a (±2.06) | 5.5 A (±2.15) |
‘Rumba’ | 7.5 a (±3.54) | 8.5 a (±4.36) | 9.5 a (±6.24) | 6.3 a (±2.50) | 6.3 a (±1.50) | 5.8 a (±2.22) | 7.3 B (±3.59) |
‘Vibrant’ | 5.0 a (±1.41) | 7.8 a (±0.96) | 6.5 a (±2.08) | 5.3 a (±1.89) | 5.8 a (±2.22) | 6.5 a (±1.29) | 6.2 AB (±1.77) |
average | 5.7 a (±2.25) | 6.9 a (±3.00) | 6.9 a (±4.08) | 6.3 a (±2.46) | 5.9 a (±2.02) | 5.8 a (±1.80) | 6.3 (±2.69) |
2021 | |||||||
K1 | K2 | K3 | K4 | K5 | K6 | average | |
‘Honeoye’ | 6.5 ab (±2.12) | 4.5 a (±2.08) | 7.8 ab (±1.71) | 9.8 b (±2.63) | 6.0 a (±1.83) | 6.8 ab (±3.50) | 6.9 B (±2.72) |
‘Rumba’ | 3.5 a (±0.71) | 5.3 a (±2.63) | 5.8 a (±2.22) | 7.5 a (±3.11) | 6.3 a (±1.89) | 5.5 a (±1.91) | 5.8 AB (±2.30) |
‘Vibrant’ | 6.5 a (±2.12) | 5.3 a (±1.89) | 5.0 a (±3.46) | 4.5 a (±0.58) | 5.5 a (±1.91) | 5.5 a (±2.52) | 5.3 A (±2.05) |
average | 5.5 ab (±2.07) | 5.0 a (±2.04) | 6.2 ab (±2.62) | 7.3 b (±3.11) | 5.9 ab (±1.73) | 5.9 ab (±2.54) | 6.0 (±2.44) |
Years and Combinations | |||||||
---|---|---|---|---|---|---|---|
2020 | |||||||
K1 | K2 | K3 | K4 | K5 | K6 | Average | |
‘Honeoye’ | 61.5 a (±13.08) | 59.5 a (±14.95) | 81.5 a (±43.86) | 108.1 a (±59.31) | 116.9 a (±86.11) | 106.9 a (±49.69) | 91.6 A (±52.43) |
‘Rumba’ | 113.4 a (±45.32) | 115.0 a (±64.96) | 118.8 a (±58.65) | 105.0 a (±34.16) | 133.6 a (±58.14) | 146.0 a (±61.24) | 122.7 B (±50.85) |
‘Vibrant’ | 100.4 a (±22.84) | 112.0 a (±40.19) | 126.7 a (±51.37) | 118.3 a (±30.03) | 102.1 a (±42.98) | 96.8 a (±27.15) | 110.2 AB (±35.38) |
average | 91.7 a (±33.66) | 95.5 a (±48.58) | 109.0 a (±51.05) | 110.5 a (±39.49) | 117.5 a (±60.24) | 116.6 a (±48.86) | 108.2 (±47.90) |
2021 | |||||||
K1 | K2 | K3 | K4 | K5 | K6 | average | |
‘Honeoye’ | 35.5 a (±14.59) | 31.6 a (±12.03) | 44.9 a (±15.77) | 48.1 a (±12.16) | 31.5 a (±6.05) | 35.5 a (±10.16) | 38.1 B (±12.40) |
‘Rumba’ | 34.1 ab (±11.42) | 51.1 b (±23.52) | 32.4 ab (±10.57) | 47.8 b (±2.09) | 33.6 ab (±12.95) | 26.5 a (±10.09) | 37.9 B (±15.10) |
‘Vibrant’ | 38.5 a (±23.20) | 22.0 a (±8.44) | 26.1 a (±11.64) | 23.6 a (±3.62) | 27.5 a (±7.62) | 22.3 a (±3.84) | 25.6 A (±9.46) |
average | 36.0 ab (±13.43) | 34.9 ab (±19.23) | 34.5 ab (±14.22) | 39.8 b (±13.74) | 30.9 ab (±8.85) | 28.1 a (±9.64) | 33.8 (±13.67) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakielska, M.; Feledyn-Szewczyk, B.; Berbeć, A.K.; Frąc, M. Microbial Biopreparations and Their Impact on Organic Strawberry (Fragaria x ananassa Duch.) Yields and Fungal Infestation. Sustainability 2024, 16, 7559. https://doi.org/10.3390/su16177559
Nakielska M, Feledyn-Szewczyk B, Berbeć AK, Frąc M. Microbial Biopreparations and Their Impact on Organic Strawberry (Fragaria x ananassa Duch.) Yields and Fungal Infestation. Sustainability. 2024; 16(17):7559. https://doi.org/10.3390/su16177559
Chicago/Turabian StyleNakielska, Małgorzata, Beata Feledyn-Szewczyk, Adam Kleofas Berbeć, and Magdalena Frąc. 2024. "Microbial Biopreparations and Their Impact on Organic Strawberry (Fragaria x ananassa Duch.) Yields and Fungal Infestation" Sustainability 16, no. 17: 7559. https://doi.org/10.3390/su16177559
APA StyleNakielska, M., Feledyn-Szewczyk, B., Berbeć, A. K., & Frąc, M. (2024). Microbial Biopreparations and Their Impact on Organic Strawberry (Fragaria x ananassa Duch.) Yields and Fungal Infestation. Sustainability, 16(17), 7559. https://doi.org/10.3390/su16177559