Reduction of Runoff Pollutants from Major Arterial Roads Using Porous Pavement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sample Collection
2.3. Water Quality Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Particles
3.2. Nutrients, BOD, and E. coli
3.3. Metals
3.4. Organic Compounds
3.5. Implications and Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN Population Division. World Urbanization Prospects, the 2018 Revision (ST/ESA/SER.A/420); Department of Economic and Social Affairs: New York, NY, USA, 2019; Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Jan/un_2018_wup_report.pdf (accessed on 1 May 2024).
- Humbal, A.; Chaudhary, N.; Pathak, B. Urbanization trends, climate change, and environmental sustainability. In Climate Change and Urban Environment Sustainability; Springer: Singapore, 2023; pp. 151–166. [Google Scholar]
- US Census Bureau. Redefining Urban Areas Following the 2020 Census; U.S. Census Bureau Geography Division: Washington, DC, USA, 2022. Available online: https://www.census.gov/newsroom/blogs/random-samplings/2022/12/redefining-urban-areas-following-2020-census.html (accessed on 1 May 2024).
- Almulhim, A.I.; Bibri, S.E.; Sharifi, A.; Ahmad, S.; Almatar, K.M. Emerging trends and knowledge structures of urbanization and environmental sustainability: A regional perspective. Sustainability 2022, 14, 13195. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Walsh, C.J.; Fletcher, T.D.; Ladson, A.R. Stream restoration in urban catchments through redesigning stormwater systems: Looking to the catchment to save the stream. J. N. Am. Benthol. Soc. 2005, 24, 690–705. [Google Scholar] [CrossRef]
- McIntyre, J.K.; Baldwin, D.H.; Beauchamp, D.A.; Scholz, N.L. Low-level copper exposures increase visibility and vulnerability of juvenile coho salmon to cutthroat trout predators. Ecol. Appl. 2012, 22, 1460–1471. [Google Scholar] [CrossRef]
- Bowen, L.; Werner, I.; Johnson, M.L. Physiological and behavioral effects of zinc and temperature on coho salmon (Oncorhynchus kisutch). Hydrobiologia 2006, 559, 161–168. [Google Scholar] [CrossRef]
- Tian, Z.; Zhao, H.; Peter, K.T.; Gonzalez, M.; Wetzel, J.; Wu, C.; Hu, X.; Prat, J.; Mudrock, E.; Hettinger, R.; et al. A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon. Science 2021, 371, 185–189. [Google Scholar] [CrossRef]
- Martins, K.; Hagedorn, B.; Ali, S.; Kennish, J.; Applegate, B.; Leu, M.; Epp, L.; Pallister, C.; Zwollo, P. Tissue phthalate levels correlate with changes in immune gene expression in a population of juvenile wild salmon. Arch. Environ. Contam. Toxicol. 2016, 71, 35–47. [Google Scholar] [CrossRef]
- Meador, J.P.; Sommers, F.C.; Ylitalo, G.M.; Sloan, C.A. Altered growth and related physiological responses in juvenile Chinook salmon (Oncorhynchus tshawytscha) from dietary exposure to polycyclic aromatic hydrocarbons (PAHs). Can. J. Fish. Aquat. Sci. 2006, 63, 2364–2376. [Google Scholar] [CrossRef]
- Wethington, B. Green Infrastructure in the City of Portland, OR; City of Portland Bureau of Environmental Services Presentation: Portland, OR, USA, 2015. [Google Scholar]
- Environmental Protection Agency (EPA). Benefits of Green Infrastructure. Available online: https://www.epa.gov/green-infrastructure/benefits-green-infrastructure (accessed on 13 May 2024).
- Liu, L.; Jensen, M.B. Green infrastructure for sustainable urban water management: Practices of five forerunner cities. Cities 2018, 74, 126–133. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Q.; Wang, J.; Meng, Y.; Zhou, Z. Aging Behavior of High-Viscosity Modified Asphalt Binder Based on Infrared Spectrum Test. Materials 2022, 15, 2778. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.; Davis, A.P. Evaluation and optimization of bioretention media for treatment of urban storm water runoff. J. Environ. Eng. 2005, 131, 1521–1531. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.; Traver, R.G.; Clar, M. Bioretention technology: Overview of current practice and future needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Chapman, C.; Horner, R.R. Performance assessment of street-drainage bioretention system. Water Environ. Res. 2010, 82, 109–119. [Google Scholar] [CrossRef]
- Trowsdale, S.; Simcock, R. Urban stormwater treatment using bioretention. J. Hydrol. 2011, 397, 167–174. [Google Scholar] [CrossRef]
- Poor, C.; Membrere, T.; Miyasato, J. Impact of green stormwater infrastructure age and type on water quality. Sustainability 2021, 13, 10484. [Google Scholar] [CrossRef]
- Okita, J.; Poor, C.; Kleiss, J.M.; Eckmann, T. Effect of green roof age on runoff water quality in Portland, Oregon. J. Green Build. 2018, 13, 42–54. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Permeable Pavements. Stormwater Best Management Practice EPA-832-F-21-031W; Office of Water: Washington, DC, USA, 2021. [Google Scholar]
- Environmental Protection Agency (EPA). Using Cool Pavements to Reduce Heat Islands. Available online: https://www.epa.gov/heatislands/using-cool-pavements-reduce-heat-islands#2 (accessed on 3 May 2024).
- Haddad, B.; Karaky, H.; Boutouil, M.; Boudart, B.; Sebaibi, N. Investigation Properties of Pervious and Water-Retaining Recycled Concrete to Mitigate Urban Heat Island Phenomena. Sustainability 2023, 15, 5384. [Google Scholar] [CrossRef]
- Ndon, U.J.; Al-Manaseer, A. Permeable Pavement as a Sustainable Management Option for Highway Stormwater and Safe Use of Roadways; WP Report 12–13; Mineta Transportation Institute: San Jose, CA, USA, 2017. [Google Scholar]
- Holleran, I.; Wilson, D.J.; Holleran, G.; Walubita, L.F.; Byrony, J. Porous Asphalt—More Than Just Safety. In Proceedings of the IPENZ Transportation Group Conference, Auckland, NZ, USA, 7–9 March 2016. [Google Scholar]
- Arámbula, E.; Estakhri, C.K.; Martin, A.E.; Trevino, M.; de Fortier Smit, A.; Prozzi, J. Performance and Cost Effectiveness of Permeable Friction Course (PFC) Pavements (No. FHWA/TX-12/0-5836-2); Texas A&M Transportation Institute: College Station, TX, USA, 2013. [Google Scholar]
- Nassiri, S.; Alsharedah, O. Development of Protocol to Maintain Winter Mobility of Different Classes of Pervious Concrete Pavement Based on Porosity; Final Project Report; Pacific Northwest Transportation Consortium, U.S Department of Transportation: Seattle, WA, USA, 2020. [Google Scholar]
- Charlesworth, S.M.; Beddow, J.; Nnadi, E.O. The Fate of Pollutants in Porous Asphalt Pavements, Laboratory Experiments to Investigate Their Potential to Impact Environmental Health. Int. J. Environ. Res. Public Health 2017, 14, 666. [Google Scholar] [CrossRef]
- Pilon, B.S.; Tyner, J.S.; Yoder, D.C.; Buchanan, J.R. The Effect of Pervious Concrete on Water Quality Parameters: A Case Study. Water 2019, 11, 263. [Google Scholar] [CrossRef]
- Haselbach, L.; Poor, C.; Tilson, J. Dissolved Zinc and Copper Retention from Stormwater Runoff in Ordinary Portland Cement Pervious Concrete. Constr. Bldg. Mater. 2013, 53, 652–657. [Google Scholar] [CrossRef]
- Jayasuriya, L.N.N.; Kadurupokune, N.; Othman, M.; Jesse, K. Contributing to the Sustainable Use of Stormwater: The Role of Pervious Pavements. Water Sci. Technol. 2007, 56, 69–75. [Google Scholar] [CrossRef]
- Brattebo, B.O.; Booth, D.B. Long-term Stormwater Quantity and Quality Performance of Permeable Pavement Systems. Water Res. 2003, 37, 4369–4376. [Google Scholar] [CrossRef]
- Jayakaran, A.D.; Knappenberger, T.; Stark, J.D.; Hinman, C. Remediation of stormwater pollutants by porous asphalt pavement. Water 2019, 11, 520. [Google Scholar] [CrossRef]
- Roseen, R.M.; Ballestero, T.P.; Houle, J.J.; Briggs, J.F.; Houle, K.M. Water quality and hydrologic performance of a porous asphalt pavement as a storm-water treatment strategy in a cold climate. J. Environ. Eng. 2012, 138, 81–89. [Google Scholar] [CrossRef]
- Alam, T.; Mahmoud, A.; Jones, K.D.; Bezares-Cruz, J.C.; Guerrero, J. A comparison of three types of permeable pavements for urban runoff mitigation in the semi-arid South Texas, USA. Water 2019, 11, 1992. [Google Scholar] [CrossRef]
- Barrett, M.E.; Kearfott, P.; Malina Jr, J.F. Stormwater quality benefits of a porous friction course and its effect on pollutant removal by roadside shoulders. Water Environ. Res. 2006, 78, 2177–2185. [Google Scholar] [CrossRef] [PubMed]
- Eck, B.J.; Winston, R.J.; Hunt, W.F.; Barrett, M.E. Water quality of drainage from permeable friction course. J. Environ. Eng. 2012, 138, 174–181. [Google Scholar] [CrossRef]
- Brown, C.; Chu, A.; Van Duin, B.; Valeo, C. Characteristics of sediment removal in two types of permeable pavement. Water Qual. Res. J. 2009, 44, 59–70. [Google Scholar] [CrossRef]
- Pagotto, C.; Legret, M.; Le Cloirec, P. Comparison of the hydraulic behaviour and the quality of highway runoff water according to the type of pavement. Water Res. 2000, 34, 4446–4454. [Google Scholar] [CrossRef]
- Legret, M.; Colandini, V.; Le Marc, C. Effects of a porous pavement with reservoir structure on the quality of runoff water and soil. Sci. Total Environ. 1996, 189, 335–340. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, C. Lead and zinc removal with storage period in porous asphalt pavement. Water SA 2014, 40, 65–72. [Google Scholar] [CrossRef]
- Zhang, K.; Yong, F.; McCarthy, D.T.; Deletic, A. Predicting long term removal of heavy metals from porous pavements for stormwater treatment. Water Res. 2018, 142, 236–245. [Google Scholar] [CrossRef]
- Weiss, P.T.; Kayhanian, M.; Gulliver, J.S.; Khazanovich, L. Permeable pavement in northern North American urban areas: Research review and knowledge gaps. Int. J. Pavement Eng. 2019, 20, 143–162. [Google Scholar] [CrossRef]
- Legret, M.; Colandini, V. Effects of a porous pavement with reservoir structure on runoff water: Water quality and fate of heavy metals. Water Sci. Technol. 1999, 39, 111–117. [Google Scholar] [CrossRef]
- Dierkes, C.; Kuhlmann, L.; Kandasamy, J.; Angelis, G. Pollution Retention Capability and Maintenance of Permeable Pavements. In Proceedings of the 9th International Conference on Urban Drainage, Portland, OR, USA, 8–13 September 2002; p. 444. [Google Scholar]
- Klenzendorf, J.B.; Eck, B.J.; Charbeneau, R.J.; Barrett, M.E. Quantifying the behavior of porous asphalt overlays with respect to drainage hydraulics and runoff water quality. Environ. Eng. Geosci. 2012, 18, 99–111. [Google Scholar] [CrossRef]
- He, J.; Huang, J.; Valeo, C.; Chu, A. Water Quality Treatment Efficacy Model of Porous Concrete Pavement. J. Water Res. Hydraul. Eng. 2015, 4, 159–168. [Google Scholar] [CrossRef]
- Poor, C.; Kaye, J.; Struck, R.; Gonzalez, R. Permeable Pavement in the Northwestern United States: Pollution Source or Treatment Option? Sustainability 2023, 15, 12926. [Google Scholar] [CrossRef]
- Boving, T.B.; Stolt, M.H.; Augenstern, J.; Brosnan, B. Potential for localized groundwater contamination in a porous pavement parking lot setting in Rhode Island. Environ. Geol. 2008, 55, 571–582. [Google Scholar] [CrossRef]
- Selvakumar, A.; O’Connor, T.P. Organism Detection in Permeable Pavement Parking Lot Infiltrates at the Edison Environmental Center, New Jersey. Water Environ. Res. 2018, 90, 21–29. [Google Scholar] [CrossRef]
- Tota-Maharaj, K.; Scholz, M. Efficiency of permeable pavement systems for the removal of urban runoff pollutants under varying environmental conditions. Environ. Prog. Sustain. Energy 2010, 29, 358–369. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). City of Portland HYDRA Rainfall Network; USGS Oregon Water Science Center: Reston, VA, USA, 2024. Available online: https://or.water.usgs.gov/non-usgs/bes (accessed on 1 July 2024).
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- OAR 340-041; Water Quality Standards: Beneficial Uses, Policies, and Criteria for Oregon. Oregon Department of Environmental Quality: Portland, OR, USA, 2021.
- Washington Department of Ecology. Technology Assessment Protocol—Ecology (TAPE) Process Overview; Washington Department of Ecology: Olympia, WA, USA, 2018. [Google Scholar]
- Kayhanian, M.; Singh, A.; Meyer, S. Impact of non-detects in water quality data on estimation of constituent mass loading. Water Sci. Technol. 2002, 45, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Helsel, D.R.; Hirsch, R.M. Techniques of Water-Resources Investigations of the United States Geological Survey: Statistical Methods in Water Resources; United States Geological Survey: Reston, VA, USA, 2002. [Google Scholar]
- Coupe, S.J.; Smith, H.G.; Newman, A.P.; Puehmeier, T. Biodegredation and microbial diversity within permeable pavements. Euro. J. Protistol. 2003, 39, 495–498. [Google Scholar] [CrossRef]
- Fathollahi, A.; Coupe, S.J.; El-Sheikh, A.H.; Sañudo-Fontaneda, L.A. The biosorption of mercury by permeable pavement biofilms in stormwater attenuation. Sci. Total Environ. 2020, 741, 140411. [Google Scholar] [CrossRef] [PubMed]
- Mbanaso, F.U.; Coupe, S.J.; Charlesworth, S.M.; Nnadi, E.O.; Ifelebuegu, A.O. Potential microbial toxicity and non-target impact of different concentrations of glyphosate-containing herbicide (GCH) in a model pervious paving system. Chemosphere 2014, 100, 34–41. [Google Scholar] [CrossRef]
- Clary, J.; Pitt, R.; Steets, B. Pathogens in Urban Stormwater; Urban Water Resources Research Council Technical Report, Water Resources Institute, American Society of Civil Engineers: Reston, VA, USA, 2014. [Google Scholar]
- Snoeyink, V.L.; Jenkins, D. Water Chemistry; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Mitchell, C.J.; Jayakaran, A.D. Mitigating tire wear particles and tire additive chemicals in stormwater with permeable pave-ments. Sci. Total Environ. 2024, 908, 168236. [Google Scholar] [CrossRef]
- Tian, Z.; Gonzalez, M.; Rideout, C.A.; Zhao, H.N.; Hu, X.; Wetzel, J.; Mudrock, E.; James, C.A.; McIntyre, J.K.; Kolodziej, E.P. 6PPD-quinone: Revised toxicity assessment and quantification with a commercial standard. Environ. Sci. Technol. Lett. 2022, 9, 140–146. [Google Scholar] [CrossRef]
- Lo, B.P.; Marlatt, V.L.; Liao, X.; Reger, S.; Gallilee, C.; Ross, A.R.; Brown, T.M. Acute toxicity of 6PPD-quinone to early life stage juvenile chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon. Environ. Toxicol. Chem. 2023, 42, 815–822. [Google Scholar] [CrossRef]
- Hiki, K.; Yamamoto, H. The tire-derived chemical 6PPD-quinone is lethally toxic to the white-spotted char Salvelinus leuco-maenis pluvius but not to two other salmonid species. Environ. Sci. Technol. Lett. 2022, 9, 1050–1055. [Google Scholar] [CrossRef]
- Brinkman, M.; Montgomery, D.; Selinger, S.; Miller, J.G.; Stock, E.; Alcaraz, A.J.; Challis, J.K.; Weber, L.; Janz, D.; Hecker, M.; et al. Acute toxicity of the tire rubber-derived chemical 6PPD-quinone to four fishes of commercial, cultural, and ecological importance. Environ. Sci. Technol. Lett. 2022, 9, 333–338. [Google Scholar] [CrossRef]
- Hua, X.; Wang, D. Tire-rubber related pollutant 6-PPD quinone: A review of its transformation, environmental distribution, bioavailability, and toxicity. J. Hazard. Mater. 2023, 459, 132265. [Google Scholar] [CrossRef] [PubMed]
- Barrett, M.; State Water Quality Requirements Addressed through the Use of an Innovative Pavement. TR News Magazine, July–August 2020. Available online: https://onlinepubs.trb.org/onlinepubs/trnews/trnews328RPO.pdf (accessed on 29 July 2024).
- Huurman, R.M.; Mo, L.; Woldekidan, M.F. Unravelling Porous Asphalt Concrete Towards a Mechanistic Material Design Tool. Road Mater. Pavement Des. 2010, 11, 583–612. [Google Scholar] [CrossRef]
- Transit New Zealand. Open-Graded Porous Asphalt; New Zealand Transportation Authority: Wellington, New Zealand, 2024. Available online: https://www.nzta.govt.nz/resources/open-graded-porous-asphalt/ (accessed on 29 July 2024).
Analyte | Method |
---|---|
Turbidity | Hach 2100Q Turbidimeter (Hach Company: Loveland, CO, USA) |
pH, conductivity, temperature, dissolved oxygen | YSI Pro Plus Multi-Meter Probe (YSI: Yellow Springs, OH, USA) |
Ammonia, nitrate | EPA 300.0 |
Phosphate | EPA 365.1 |
Total Kjeldahl Nitrogen (TKN) | EPA 351.2 |
Total Phosphorus | EPA 365.4 |
5-Day Biochemical Oxygen Demand (BOD) | SM 5210B |
Total Suspended Solids (TSS) | SM 2540D |
Total mercury, lead, copper, zinc | EPA 200.8 |
Dissolved lead, copper, zinc | EPA 200.8 |
E. coli | SM 9223B |
PAHs and phthalates | EPA 8270-SIM |
6PPD-quinone | ALS Environmental Laboratories In-House Method |
Category | Analyte | Porous Overlay | Full-Depth Porous |
---|---|---|---|
Particles | Total Suspended Solids | 82 | 87 |
Turbidity | 83 | 90 | |
Nutrients, BOD, and E. coli | Total Kjeldahl Nitrogen | 59 | 64 |
Ammonia | 64 | 76 | |
Nitrate | −231 | −113 | |
Total Phosphorus | 61 | 64 | |
Orthophosphate | −78 | −39 | |
Biochemical Oxygen Demand | 69 | 60 | |
E. coli | 4 | 44 | |
Metals | Total Copper | 76 | 81 |
Total Lead | 82 | 85 | |
Total Mercury | 60 | 56 | |
Total Zinc | 44 | 70 | |
Dissolved Copper | 50 | 52 | |
Dissolved Lead | 35 | 35 | |
Dissolved Zinc | −108 | 38 | |
Organic Compounds | Total PAHs | 55 | 69 |
Di-2-ethylhexyl phthalate | 77 | 68 | |
6PPD-quinone | 80 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holzer, K.; Poor, C. Reduction of Runoff Pollutants from Major Arterial Roads Using Porous Pavement. Sustainability 2024, 16, 7506. https://doi.org/10.3390/su16177506
Holzer K, Poor C. Reduction of Runoff Pollutants from Major Arterial Roads Using Porous Pavement. Sustainability. 2024; 16(17):7506. https://doi.org/10.3390/su16177506
Chicago/Turabian StyleHolzer, Katie, and Cara Poor. 2024. "Reduction of Runoff Pollutants from Major Arterial Roads Using Porous Pavement" Sustainability 16, no. 17: 7506. https://doi.org/10.3390/su16177506
APA StyleHolzer, K., & Poor, C. (2024). Reduction of Runoff Pollutants from Major Arterial Roads Using Porous Pavement. Sustainability, 16(17), 7506. https://doi.org/10.3390/su16177506