Analysis of the Impact of Biomass/Water Ratio, Particle Size, Stirring, and Catalysts on the Production of Chemical Platforms and Biochar in the Hydrothermal Valorization of Coffee Cherry Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Characterization
2.2. Hydrothermal Experiments
2.3. Characterization of Fractions
2.4. Analytical Methods
2.5. Homogeneous Catalysts
3. Results and Discussion
3.1. Biomass/Water Ratio Influence
3.2. Particle Size Influence
3.3. Stirring Influence
3.4. Catalyst’s Influence
4. Biochar Characterization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Coffee Organization. Coffee Development Report 2019; International Coffee Organization: London, UK, 2019. [Google Scholar]
- DaMatta, F.M.; Ronchi, C.P.; Maestri, M.; Barros, R.S. Ecophysiology of coffee growth and production. Braz. J. Plant Physiol. 2007, 19, 485–510. [Google Scholar] [CrossRef]
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Blinová, L.; Sirotiak, M.; Bartošová, A.; Soldán, M. Review: Utilization of Waste from Coffee Production. Res. Pap. Fac. Mater. Sci. Technol. Slovak. Univ. Technol. 2017, 25, 91–101. [Google Scholar] [CrossRef]
- Vitale, E.; Motta, C.M.; Avallone, B.; Amoresano, A.; Fontanarosa, C.; Battaglia, G.; Spinelli, M.; Fogliano, C.; Paradiso, R.; Arena, C. Sustainable Reuse of Expresso Coffee By-products as a Natural Fertilizer to Improve Growth and Photosynthesis in Cucumber (Cucumis sativus L.) Plants. Waste Biomass Valoriz. 2024, 15, 543–559. [Google Scholar] [CrossRef]
- Peluso, M. Coffee By-Products: Economic Opportunities for Sustainability and Innovation in the Coffee Industry. Proceedings 2023, 89, 6. [Google Scholar] [CrossRef]
- Islam, S.U.; Shalla, A.H.; Khan, S.A. (Eds.) Handbook of Biomass Valorization for Industrial Applications; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Wang, A.G.; Austin, D.; Song, H. Catalytic Biomass Valorization. In Biomass Volume Estimation and Valorization for Energy; InTech: Houston, TX, USA, 2017. [Google Scholar] [CrossRef]
- Chaturvedi, K.; Singhwane, A.; Dhangar, M.; Mili, M.; Gorhae, N.; Naik, A.; Prashant, N.; Srivastava, A.K.; Verma, S. Bamboo for producing charcoal and biochar for versatile applications. Biomass Convers. Biorefin. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Bystrzejewski, M.; De Adhikari, A.; Huczko, A.; Wang, N. Methods for the conversion of biomass waste into value-added carbon nanomaterials: Recent progress and applications. Prog. Energy Combust. Sci. 2022, 92, 101023. [Google Scholar] [CrossRef]
- Wang, C.; Ma, D.; Bao, X. Transformation of Biomass into Porous Graphitic Carbon Nanostructures by Microwave Irradiation. J. Phys. Chem. C 2008, 112, 17596–17602. [Google Scholar] [CrossRef]
- Khan, S.; Irshad, S.; Mehmood, K.; Hasnain, Z.; Nawaz, M.; Rais, A.; Gul, S.; Wahid, M.A.; Hashem, A.; Abd Allah, E.F.; et al. Biochar Production and Characteristics, Its Impacts on Soil Health, Crop Production, and Yield Enhancement: A Review. Plants 2024, 13, 166. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products. Int. J. Hydrogen Energy 2020, 45, 18275–18288. [Google Scholar] [CrossRef]
- Auyoong, Y.L.; Yap, P.L.; Huang, X.; Hamid, S.B.A. Optimization of reaction parameters in hydrothermal synthesis: A strategy towards the formation of CuS hexagonal plates. Chem. Cent. J. 2013, 7, 67. [Google Scholar] [CrossRef] [PubMed]
- Köchermann, J.; Görsch, K.; Wirth, B.; Mühlenberg, J.; Klemm, M. Hydrothermal carbonization: Temperature influence on hydrochar and aqueous phase composition during process water recirculation. J. Environ. Chem. Eng. 2018, 6, 5481–5487. [Google Scholar] [CrossRef]
- Bai, J.; Li, L.; Chen, Z.; Chang, C.; Pang, S.; Li, P. Study on the optimization of hydrothermal liquefaction performance of tobacco stem and the high value utilization of catalytic products. Energy 2023, 281, 128283. [Google Scholar] [CrossRef]
- Babu, R.; Capannelli, G.; Bernardini, M.; Pagliero, M.; Comite, A. Effect of varying hydrothermal temperature, time, and sludge pH on sludge solubilisation. Carbon Resour. Convers. 2023, 6, 142–149. [Google Scholar] [CrossRef]
- Barbanera, M.; Cardarelli, A.; Carota, E.; Castellini, M.; Giannoni, T.; Ubertini, S. Valorization of winery and distillery by-products by hydrothermal carbonization. Sci. Rep. 2021, 11, 23973. [Google Scholar] [CrossRef] [PubMed]
- Oktaviananda, C.; Rahmawati, R.F.; Prasetya, A.; Purnomo, C.W.; Yuliansyah, A.T.; Cahyono, R.B. Effect of temperature and biomass-water ratio to yield and product characteristics of hydrothermal treatment of biomass. AIP Conf. Proc. 2017, 1823, 020029. [Google Scholar] [CrossRef]
- Moreno-Chocontá, L.N.; Lozano-Pérez, A.S.; Guerrero-Fajardo, C.A. Evaluation of the Effect of Particle Size and Biomass-to-Water Ratio on the Hydrothermal Carbonization of Sugarcane Bagasse. ChemEngineering 2024, 8, 43. [Google Scholar] [CrossRef]
- Aturagaba, G.; Egesa, D.; Mubiru, E.; Tebandeke, E. Catalytic Hydrothermal Liquefaction of Water Hyacinth Using Fe3O4/NiO Nanocomposite: Optimization of Reaction Conditions by Response Surface Methodology. J. Sustain. Bioenergy Syst. 2023, 13, 73–98. [Google Scholar] [CrossRef]
- Díaz, B.; Sommer-Márquez, A.; Ordoñez, P.E.; Bastardo-González, E.; Ricaurte, M.; Navas-Cárdenas, C. Synthesis Methods, Properties, and Modifications of Biochar-Based Materials for Wastewater Treatment: A Review. Resources 2024, 13, 8. [Google Scholar] [CrossRef]
- Isahak, W.N.R.W.; Hisham, M.W.; Yarmo, M.A.; Hin, T.-Y.Y. A review on bio-oil production from biomass by using pyrolysis method. Renew. Sustain. Energy Rev. 2012, 16, 5910–5923. [Google Scholar] [CrossRef]
- Kiełbasa, K.; Bayar, Ş.; Varol, E.A.; Sreńscek-Nazzal, J.; Bosacka, M.; Michalkiewicz, B. Thermochemical conversion of lignocellulosic biomass—Olive pomace—Into activated biocarbon for CO2 adsorption. Ind. Crops Prod. 2022, 187, 115416. [Google Scholar] [CrossRef]
- Suchanek, W.; Riman, R. Hydrothermal Synthesis of Advanced Ceramic Powders. Adv. Sci. Technol. 2006, 45, 184–193. [Google Scholar]
- Szterner, P.; Biernat, M. Effect of reaction time, heating and stirring rate on the morphology of HAp obtained by hydrothermal synthesis. J. Therm. Anal. Calorim. 2022, 147, 13059–13071. [Google Scholar] [CrossRef]
- Szterner, P.; Antosik, A.; Pagacz, J.; Tymowicz-Grzyb, P. Morphology Control of Hydroxyapatite as a Potential Reinforcement for Orthopedic Biomaterials: The Hydrothermal Process. Crystals 2023, 13, 793. [Google Scholar] [CrossRef]
- Hong, C.; Wang, Z.; Si, Y.; Xing, Y.; Yang, J.; Feng, L.; Wang, Y.; Hu, J.; Li, Z.; Li, Y. Catalytic Hydrothermal Liquefaction of Penicillin Residue for the Production of Bio-Oil over Different Homogeneous/Heterogeneous Catalysts. Catalysts 2021, 11, 849. [Google Scholar] [CrossRef]
- Khandelwal, K.; Boahene, P.; Nanda, S.; Dalai, A.K. A Review of the Design and Performance of Catalysts for Hydrothermal Gasification of Biomass to Produce Hydrogen-Rich Gas Fuel. Molecules 2023, 28, 5137. [Google Scholar] [CrossRef]
- Dias, M.; Oliveira, G.; Couto, P.; Dussán, K.; Zaiat, M.; Ribeiro, R.; Stablein, M.; Watson, J.; Zhang, Y.; Tommaso, G. Anaerobic digestion of hydrothermal liquefaction wastewater from spent coffee grounds. Biomass Bioenergy 2021, 148, 106030. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H.; Niu, H.; McNutt, J.; He, Q. A Comparative Study on Thermochemical Valorization Routes for Spent Coffee Grounds. Energies 2021, 14, 3840. [Google Scholar] [CrossRef]
- Solomakou, N.; Tsafrakidou, P.; Goula, A.M. Valorization of SCG through Extraction of Phenolic Compounds and Synthesis of New Biosorbent. Sustainability 2022, 14, 9358. [Google Scholar] [CrossRef]
- Manrique, R.; Vásquez, D.; Ceballos, C.; Chejne, F.; Amell, A. Evaluation of the Energy Density for Burning Disaggregated and Pelletized Coffee Husks. ACS Omega 2019, 4, 2957–2963. [Google Scholar] [CrossRef]
- Ronix, A.; Pezoti, O.; de Souza, L.S.; Souza, I.P.A.F.; Bedin, K.C.; Souza, P.S.C.; Silva, T.L.; Melo, S.A.R.; Cazetta, A.L.; Almeida, V.C. Hydrothermal carbonization of coffee husk: Optimization of experimental parameters and adsorption of methylene blue dye. J. Environ. Chem. Eng. 2017, 5, 4841–4849. [Google Scholar] [CrossRef]
- NREL/TP-510-42621; Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples. National Renewable Energy Laboratory, Batelle: Golden, CO, USA, 2008.
- NREL/TP-510-42622; Determination of Ash in Biomass. National Renewable Energy Laboratory, Batelle: Golden, CO, USA, 2008.
- ASTM E872-82; Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D5373-21; Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2021.
- AOAC 973.18-1977; Fiber (Acid Detergent) and Lignin (H2SO4) in Animal Feed. AOAC International: Rockville, MD, USA, 2015.
- Lozano-Pérez, A.S.; Guerrero-Fajardo, C.A. Liquid Hot Water (LHW) and Hydrothermal Carbonization (HTC) of Coffee Berry Waste: Kinetics, Catalysis, and Optimization for the Synthesis of Platform Chemicals. Sustainability 2024, 16, 2854. [Google Scholar] [CrossRef]
- Galvis-Sandoval, D.E.; Lozano-Pérez, A.S.; Guerrero-Fajardo, C.A. Hydrothermal Valorization via Liquid Hot Water and Hydrothermal Carbonization of Pea Pod Waste: Characterization of the Biochar and Quantification of Platform Molecules. Appl. Sci. 2024, 14, 2329. [Google Scholar] [CrossRef]
- Al-Salih, H.; Abu-Lebdeh, Y. Investigating the phase diagram-ionic conductivity isotherm relationship in aqueous solutions of common acids: Hydrochloric, nitric, sulfuric and phosphoric acid. Sci. Rep. 2024, 14, 7894. [Google Scholar] [CrossRef] [PubMed]
- Venkatraman, Y.; Arunkumar, P.; Kumar, N.S.; Osman, A.I.; Muthiah, M.; Al-Fatesh, A.S.; Koduru, J.R. Exploring Modified Rice Straw Biochar as a Sustainable Solution for Simultaneous Cr(VI) and Pb(II) Removal from Wastewater: Characterization, Mechanism Insights, and Application Feasibility. ACS Omega 2023, 8, 38130–38147. [Google Scholar] [CrossRef] [PubMed]
- Aguado, D.; Montoya, T.; Ferrer, J.; Seco, A. Relating ions concentration variations to conductivity variations in a sequencing batch reactor operated for enhanced biological phosphorus removal. Environ. Model. Softw. 2006, 21, 845–851. [Google Scholar] [CrossRef]
- Marandi, A.; Polikarpus, M.; Jõeleht, A. A new approach for describing the relationship between electrical conductivity and major anion concentration in natural waters. Appl. Geochem. 2013, 38, 103–109. [Google Scholar] [CrossRef]
- Du, L.; Arauzo, P.J.; Zavala, M.F.M.; Cao, Z.; Olszewski, M.P.; Kruse, A. Towards the Properties of Different Biomass-Derived Proteins via Various Extraction Methods. Molecules 2020, 25, 488. [Google Scholar] [CrossRef]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Aziz, M.F.A.; Sazili, A.Q. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants 2021, 10, 1465. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.; Moreira, M.M.; Delerue-Matos, C.; Sarraguça, M. Subcritical Water Extraction to Valorize Grape Biomass—A Step Closer to Circular Economy. Molecules 2023, 28, 7538. [Google Scholar] [CrossRef] [PubMed]
- Chambon, C.L.; Verdía, P.; Fennell, P.S.; Hallett, J.P. Process intensification of the ionoSolv pretreatment: Effects of biomass loading, particle size and scale-up from 10 mL to 1 L. Sci. Rep. 2021, 11, 15383. [Google Scholar] [CrossRef] [PubMed]
- Chaves, J.O.; de Souza, M.C.; Da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.D.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-De-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids from Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef] [PubMed]
- Khantibongse, P.; Ratanatamskul, C. Insight into pathway of monosaccharide production from integrated enzymatic hydrolysis of rice straw waste as feed stock for anaerobic digestion. Sci. Rep. 2023, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.D.; Lara, B.; Bounoukta, C.E.; Domínguez, M.I.; Ammari, F.; Ivanova, S.; Centeno, M. Glucose dehydration reaction over metal halides supported on activated charcoal catalysts. Catal. Today 2023, 423, 114012. [Google Scholar] [CrossRef]
- Sinner, A.; Ziegler, K. Finite-size scaling in a 2D disordered electron gas with spectral nodes. J. Phys. Condens. Matter 2016, 28, 305701. [Google Scholar] [CrossRef] [PubMed]
- Sayar, F.; Güven, G.; Pişkin, E. Magnetically loaded poly(methyl methacrylate-co-acrylic acid) nano-particles. Colloid Polym. Sci. 2006, 284, 965–978. [Google Scholar] [CrossRef]
- Bobrov, P.P.; Kroshka, E.S.; Rodionova, O.V. The effect of shape and sizes of particles of wet quartz powders on complex dielectric permittivity in the frequency range of 10 kHz–10 GHz. J. Phys. Conf. Ser. 2021, 2140, 012004. [Google Scholar] [CrossRef]
- Onay, O.; Kockar, O.M. Slow, fast and flash pyrolysis of rapeseed. Renew. Energy 2003, 28, 2417–2433. [Google Scholar] [CrossRef]
- Gallifuoco, A.; Papa, A.A.; Spera, A.; Taglieri, L.; Di Carlo, A. Dynamics of liquid-phase platform chemicals during the hydrothermal carbonization of lignocellulosic biomass. Bioresour. Technol. Rep. 2022, 19, 101177. [Google Scholar] [CrossRef]
- Ogunkanmi, J.O.; Kulla, D.M.; Omisanya, N.O.; Sumaila, M.; Obada, D.O.; Dodoo-Arhin, D. Extraction of bio-oil during pyrolysis of locally sourced palm kernel shells: Effect of process parameters. Case Stud. Therm. Eng. 2018, 12, 711–716. [Google Scholar] [CrossRef]
- Kim, S.M.; Dien, B.S.; Singh, V. Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass. Biotechnol. Biofuels 2016, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Ghavami, N.; Özdenkçi, K.; Salierno, G.; Björklund-Sänkiaho, M.; De Blasio, C. Analysis of operational issues in hydrothermal liquefaction and supercritical water gasification processes: A review. Biomass Convers. Biorefin. 2023, 13, 12367–12394. [Google Scholar] [CrossRef]
- De la Rubia, M.A.; Fernández-Cegrí, V.; Raposo, F.; Borja, R. Influence of particle size and chemical composition on the performance and kinetics of anaerobic digestion process of sunflower oil cake in batch mode. Biochem. Eng. J. 2011, 58–59, 162–167. [Google Scholar] [CrossRef]
- Bridgeman, T.; Darvell, L.; Jones, J.; Williams, P.; Fahmi, R.; Bridgwater, A.; Barraclough, T.; Shield, I.; Yates, N.; Thain, S.; et al. Influence of particle size on the analytical and chemical properties of two energy crops. Fuel 2007, 86, 60–72. [Google Scholar] [CrossRef]
- Holliday, M.C.; Parsons, D.R.; Zein, S.H. Microwave-Assisted Hydrothermal Carbonisation of Waste Biomass: The Effect of Process Conditions on Hydrochar Properties. Processes 2022, 10, 1756. [Google Scholar] [CrossRef]
- Ambreen, T.; Kim, M.-H. Effects of variable particle sizes on hydrothermal characteristics of nanofluids in a microchannel. Int. J. Heat. Mass. Transf. 2018, 120, 490–498. [Google Scholar] [CrossRef]
- Singh, G.; Nakade, P.G.; Chetia, D.; Jha, P.; Mondal, U.; Kumari, S.; Sen, S. Kinetics and mechanism of phase transfer catalyzed synthesis of aromatic thioethers by H 2 S-rich methyldiethanolamine. J. Ind. Eng. Chem. 2016, 37, 190–197. [Google Scholar] [CrossRef]
- Singh, G.; Nakade, P.G.; Mishra, P.; Jha, P.; Sen, S.; Mondal, U. Kinetic investigation on liquid–liquid–solid phase transfer catalyzed synthesis of dibenzyl disulfide with H2S-laden monoethanolamine. J. Mol. Catal. A Chem. 2016, 411, 78–86. [Google Scholar] [CrossRef]
- Cao, X.; Sun, S.; Sun, R. Application of biochar-based catalysts in biomass upgrading: A review. RSC Adv. 2017, 7, 48793–48805. [Google Scholar] [CrossRef]
- Istadi, I.; Riyanto, T.; Buchori, L.; Anggoro, D.D.; Gilbert, G.; Meiranti, K.A.; Khofiyanida, E. Enhancing Brønsted and Lewis Acid Sites of the Utilized Spent RFCC Catalyst Waste for the Continuous Cracking Process of Palm Oil to Biofuels. Ind. Eng. Chem. Res. 2020, 59, 9459–9468. [Google Scholar] [CrossRef]
- Koranchalil, S. Homogenous Catalysis for the Sustainable Valorization of Biomass. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 2022. [Google Scholar]
- Mohammadi, P.; Heravi, M.M.; Mohammadi, L.; Saljooqi, A. Preparation of magnetic biochar functionalized by polyvinyl imidazole and palladium nanoparticles for the catalysis of nitroarenes hydrogenation and Sonogashira reaction. Sci. Rep. 2023, 13, 17375. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wu, T.; Li, J.; Liu, C.-L.; Dong, W.-S. Highly efficient catalytic conversion of biomass-derived 2,5-dimethylfuran into renewable p-xylene over zirconium phosphate catalysts. Appl. Catal. A Gen. 2023, 663, 119323. [Google Scholar] [CrossRef]
- Hu, Z.; Wei, L. Review on Characterization of Biochar Derived from Biomass Pyrolysis via Reactive Molecular Dynamics Simulations. J. Compos. Sci. 2023, 7, 354. [Google Scholar] [CrossRef]
- Amin, F.R.; Huang, Y.; He, Y.; Zhang, R.; Liu, G.; Chen, C. Biochar applications and modern techniques for characterization. Clean. Technol. Environ. Policy 2016, 18, 1457–1473. [Google Scholar] [CrossRef]
Platform Chemicals | Retention Time (minutes) |
---|---|
Glucose | 16.789 |
Xylose | 17.179 |
Galactose | 17.255 |
Arabinose | 17.916 |
HMF | 35.637 |
Levulinic acid | 22.127 |
Formic acid | 20.415 |
Furfural | 51.349 |
Essay | Coffee Cherry (%) | Pulp (%) | Husk (%) | SCG (%) |
---|---|---|---|---|
Dry matter (%) | 95.5 | |||
Hemicellulose | 12.5 | 3.60 | 7 | 12.1 |
Lignin | 13.7 | 20.07 | 9 | 17.8 |
Cellulose | 27.6 | 25.88 | 43 | 23.6 |
C | 45.27 | 44.95 | 68.52 | |
H | 4.862 | 5.34 | 11.04 | |
N | 1.471 | 1.5 | 0.60 | 1.40 |
S | 0.138 | 0.03 | - | |
Moisture (Initial Biomass) | 80.79 | 73.85 | 8.88 | 55.2 |
Moisture (BHP) * | 10.94 | - | - | - |
Ashes | 7.79 | 6.29 | 0.79 | 15.3 |
Volatile matter (Initial biomass) | 10.06 | 9.80 | 75.85 | 83.3 |
Volatile matter (BHP) * | 80.81 | - | - | - |
Fixed carbon | 1.36 | - | 14.48 | 1.5 |
T (°C) | B:W Ratio | WLF (g) | WWSF (g) | WDSF (g) | WGF (g) |
---|---|---|---|---|---|
180 | 1:05 | 37.000 | 57.142 | 11.008 | 5.858 |
180 | 1:10 | 50.944 | 37.985 | 6.256 | 11.071 |
180 | 1:20 | 72.258 | 18.201 | 2.083 | 9.542 |
180 | 1:40 | 83.267 | 7.687 | 1.235 | 9.046 |
220 | 1:05 | 34.504 | 55.402 | 13.621 | 10.094 |
220 | 1:10 | 57.544 | 26.601 | 4.264 | 15.854 |
220 | 1:20 | 78.252 | 14.305 | 1.819 | 7.444 |
220 | 1:40 | 81.072 | 6.115 | 0.792 | 12.814 |
260 | 1:05 | 53.472 | 26.262 | 8.935 | 20.267 |
260 | 1:10 | 69.762 | 14.393 | 3.097 | 15.845 |
260 | 1:20 | 71.382 | 7.151 | 1.258 | 21.468 |
260 | 1:40 | 75.593 | 2.625 | 0.520 | 21.782 |
T (°C) | Particle Size (mm) | WLF (g) | WWSF (g) | WDSF (g) | WGF (g) |
---|---|---|---|---|---|
180 | 0.5 | 70.809 | 9.889 | 1.628 | 19.303 |
180 | 1 | 82.587 | 11.677 | 1.671 | 5.736 |
180 | 2 | 72.258 | 18.201 | 2.083 | 9.542 |
180 | 5 | 67.078 | 10.691 | 1.653 | 22.232 |
220 | 0.5 | 69.026 | 11.213 | 1.570 | 19.761 |
220 | 1 | 71.154 | 12.707 | 1.542 | 16.139 |
220 | 2 | 78.252 | 14.305 | 1.819 | 7.444 |
220 | 5 | 72.141 | 10.631 | 1.986 | 17.228 |
260 | 0.5 | 83.920 | 7.159 | 1.296 | 8.921 |
260 | 1 | 83.827 | 8.314 | 1.242 | 7.859 |
260 | 2 | 71.382 | 7.151 | 1.258 | 21.468 |
260 | 5 | 73.251 | 7.945 | 1.251 | 18.804 |
T (°C) | Stirring (RPM) | WLF (g) | WWSF (g) | WDSF (g) | WGF (g) |
---|---|---|---|---|---|
180 | W/O | 70.809 | 9.889 | 1.628 | 19.303 |
180 | 5000 | 73.099 | 11.426 | 1.657 | 15.476 |
180 | 8000 | 75.818 | 9.989 | 1.610 | 14.194 |
220 | W/O | 69.026 | 11.213 | 1.570 | 19.761 |
220 | 5000 | 76.143 | 9.418 | 1.601 | 14.439 |
220 | 8000 | 80.672 | 8.048 | 1.481 | 11.280 |
260 | W/O | 83.920 | 7.159 | 1.296 | 8.921 |
260 | 5000 | 83.683 | 5.867 | 1.205 | 10.451 |
260 | 8000 | 84.064 | 6.289 | 1.200 | 9.647 |
T (°C) | Catalysts (0.1 M) | WLF (g) | WWSF (g) | WDSF (g) | WGF (g) |
---|---|---|---|---|---|
180 | W/O | 70.809 | 9.889 | 1.628 | 19.303 |
180 | CH3COOH | 84.021 | 8.909 | 1.693 | 7.070 |
180 | NaHCO3 | 68.508 | 16.788 | 1.079 | 14.704 |
220 | W/O | 69.026 | 11.213 | 1.570 | 19.761 |
220 | CH3COOH | 82.192 | 9.857 | 1.624 | 7.951 |
220 | NaHCO3 | 65.052 | 15.536 | 1.398 | 19.413 |
260 | W/O | 83.920 | 7.159 | 1.296 | 8.921 |
260 | CH3COOH | 81.653 | 8.343 | 1.561 | 10.004 |
260 | NaHCO3 | 76.701 | 7.285 | 1.037 | 16.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano Pérez, A.S.; Romero Mahecha, V.; Guerrero Fajardo, C.A. Analysis of the Impact of Biomass/Water Ratio, Particle Size, Stirring, and Catalysts on the Production of Chemical Platforms and Biochar in the Hydrothermal Valorization of Coffee Cherry Waste. Sustainability 2024, 16, 7415. https://doi.org/10.3390/su16177415
Lozano Pérez AS, Romero Mahecha V, Guerrero Fajardo CA. Analysis of the Impact of Biomass/Water Ratio, Particle Size, Stirring, and Catalysts on the Production of Chemical Platforms and Biochar in the Hydrothermal Valorization of Coffee Cherry Waste. Sustainability. 2024; 16(17):7415. https://doi.org/10.3390/su16177415
Chicago/Turabian StyleLozano Pérez, Alejandra Sophia, Valentina Romero Mahecha, and Carlos Alberto Guerrero Fajardo. 2024. "Analysis of the Impact of Biomass/Water Ratio, Particle Size, Stirring, and Catalysts on the Production of Chemical Platforms and Biochar in the Hydrothermal Valorization of Coffee Cherry Waste" Sustainability 16, no. 17: 7415. https://doi.org/10.3390/su16177415
APA StyleLozano Pérez, A. S., Romero Mahecha, V., & Guerrero Fajardo, C. A. (2024). Analysis of the Impact of Biomass/Water Ratio, Particle Size, Stirring, and Catalysts on the Production of Chemical Platforms and Biochar in the Hydrothermal Valorization of Coffee Cherry Waste. Sustainability, 16(17), 7415. https://doi.org/10.3390/su16177415