Geotechnical Site Characterizations Using a Bayesian-Optimized Multi-Output Gaussian Process
Abstract
:1. Introduction
2. Multi-Output Gaussian Process
3. Bayesian Optimization
4. Proposed BO-MOGP for Site Characterizations
5. Case Study
5.1. A Synthetic Case
5.2. A Real-World Case in Taipei
6. Conclusions
- The 95% CIs of the proposed BO-MOGP method for each soil property are narrower than those of traditional methods. This improvement is especially notable in scenarios with sparse data, as the proposed BO-MOGP method uses the interdependencies among different soil properties. This is because the proposed BO-MOGP method has the benefit of transferring information from measured soil properties to the soil properties in locations that have not been directly observed.
- The correlation matrix of soil properties derived from the site-specific data is accurately obtained by using the proposed BO-MOGP method. This indicates that the proposed method can effectively capture the true relationships among different soil properties.
- The proposed BO-MOGP method has the ability to generate conditional random field samples of multiple soil properties simultaneously, which is helpful in providing a comprehensive view of subsurface conditions. By offering a more accurate estimation of soil properties, the proposed BO-MOGP method can help reduce the uncertainty and risk associated with geotechnical engineering design, leading to a safe and reliable engineering solution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Ding, J.; Wang, T.; Connolly, D.P.; Wan, X. Soil property recovery from incomplete in-situ geotechnical test data using a hybrid deep generative framework. Eng. Geol. 2023, 326, 107332. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior; John Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Liu, C.; Ji, F.; Song, Y.; Wang, H.; Li, J.; Xuan, Z.; Zhao, M. Upper bound analysis of ultimate pullout capacity for a single pile using Hoek–Brown failure criterion. Buildings 2023, 13, 2904. [Google Scholar] [CrossRef]
- Kostrzewa, J.; Popielski, P.; Dąbska, A. Geotechnical properties of washed mineral waste from grit chambers and its potential use as soil backfill and road embankment materials. Buildings 2024, 14, 766. [Google Scholar] [CrossRef]
- Bozzano, F.; Andreucci, A.; Gaeta, M.; Salucci, R. A geological model of the buried Tiber River valley beneath the historical centre of Rome. Bull. Eng. Geol. Environ. 2000, 59, 1–21. [Google Scholar] [CrossRef]
- Nowak, S.; Sherizadeh, T.; Esmaeelpour, M.; Brooks, P.; Guner, D.; Karadeniz, K. Numerical back analysis of an underground bulk mining operation using distributed optical fiber sensors for model calibration. Bull. Eng. Geol. Environ. 2024, 83, 71. [Google Scholar] [CrossRef]
- Phoon, K.-K.; Ching, J.; Shuku, T. Challenges in data-driven site characterization. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2022, 16, 114–126. [Google Scholar] [CrossRef]
- Cai, Y.; Phoon, K.K.; Pan, Q.; Luo, W. Modifying the Tailored Clustering Enabled Regionalization (TCER) framework for outlier site detection and inference efficiency. Eng. Geol. 2024, 335, 107537. [Google Scholar] [CrossRef]
- Mavritsakis, A.; Schweckendiek, T.; Teixeira, A.; Smyrniou, E.; Nuttall, J. Bayesian analysis of benchmark examples for data-driven site characterization. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2023, 9, 04023008. [Google Scholar] [CrossRef]
- Shuku, T.; Phoon, K.K. Comparison of data-driven site characterization methods through benchmarking: Methodological and application aspects. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2023, 9, 04023006. [Google Scholar] [CrossRef]
- Phoon, K.K.; Zhang, W. Future of machine learning in geotechnics. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2023, 17, 7–22. [Google Scholar] [CrossRef]
- Ching, J.; Phoon, K.-K. Constructing site-specific multivariate probability distribution model using Bayesian machine learning. J. Eng. Mech. 2019, 145, 04018126. [Google Scholar] [CrossRef]
- Ching, J.; Phoon, K.-K. Constructing a site-specific multivariate probability distribution using sparse, incomplete, and spatially variable (MUSIC-X) data. J. Eng. Mech. 2020, 146, 04020061. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, T. Interpretation of soil property profile from limited measurement data: A compressive sampling perspective. Can. Geotech. J. 2016, 53, 1547–1559. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, T. Statistical interpretation of soil property profiles from sparse data using Bayesian compressive sampling. Géotechnique 2017, 67, 523–536. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, T.; Phoon, K.K. Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation. Can. Geotech. J. 2018, 55, 862–880. [Google Scholar] [CrossRef]
- Yang, H.Q.; Zhang, L. Bayesian back analysis of unsaturated hydraulic parameters for rainfall-induced slope failure: A review. Earth-Sci. Rev. 2024, 251, 104714. [Google Scholar] [CrossRef]
- Rana, H.; Sivakumar Babu, G.L. Probabilistic back analysis for rainfall-induced slope failure using MLS-SVR and Bayesian analysis. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2024, 18, 107–120. [Google Scholar] [CrossRef]
- Sheil, B. Prediction of microtunnelling jacking forces using a probabilistic observational approach. Tunn. Undergr. Space Technol. 2021, 109, 103749. [Google Scholar] [CrossRef]
- Tang, L.; Na, S. Comparison of machine learning methods for ground settlement prediction with different tunneling datasets. J. Rock Mech. Geotech. Eng. 2021, 13, 1274–1289. [Google Scholar] [CrossRef]
- Xie, J.; Huang, J.; Zeng, C.; Huang, S.; Burton, G.J. A generic framework for geotechnical subsurface modeling with machine learning. J. Rock Mech. Geotech. Eng. 2022, 14, 1366–1379. [Google Scholar] [CrossRef]
- Yoshida, I.; Tomizawa, Y.; Otake, Y. Estimation of trend and random components of conditional random field using Gaussian process regression. Comput. Geotech. 2021, 136, 104179. [Google Scholar] [CrossRef]
- Rohmer, J.; Foerster, E. Global sensitivity analysis of large-scale numerical landslide models based on Gaussian-Process meta-modeling. Comput. Geosci. 2011, 37, 917–927. [Google Scholar] [CrossRef]
- Ching, J.; Phoon, K.K.; Yang, Z.; Stuedlein, A.W. Quasi-site-specific multivariate probability distribution model for sparse, incomplete, and three-dimensional spatially varying soil data. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2022, 16, 53–76. [Google Scholar] [CrossRef]
- Rahardjo, H.; Aung, K.K.; Leong, E.C.; Rezaur, R.B. Characteristics of residual soils in Singapore as formed by weathering. Eng. Geol. 2004, 73, 157–169. [Google Scholar] [CrossRef]
- Fredlund, D.G. Unsaturated soil mechanics in engineering practice. J. Geotech. Geoenviron. Eng. 2006, 132, 286–321. [Google Scholar] [CrossRef]
- Xu, J.; Yang, C. Probabilistic Back Analysis Based on Adam, Bayesian and Multi-output Gaussian Process for Deep Soft-Rock Tunnel. Rock Mech. Rock Eng. 2023, 56, 6843–6853. [Google Scholar] [CrossRef]
- Song, C.; Zhao, T.; Xu, L.; Huang, X. Probabilistic prediction of uniaxial compressive strength for rocks from sparse data using Bayesian Gaussian process regression with Synthetic Minority Oversampling Technique (SMOTE). Comput. Geotech. 2024, 165, 105850. [Google Scholar] [CrossRef]
- Wang, L.; Pan, Q.; Wang, S. Data-driven predictions of shield attitudes using Bayesian machine learning. Comput. Geotech. 2024, 166, 106002. [Google Scholar] [CrossRef]
- Zhao, T.; Song, C.; Lu, S.; Xu, L. Prediction of Uniaxial Compressive Strength Using Fully Bayesian Gaussian Process Regression (fB-GPR) with Model Class Selection. Rock Mech. Rock Eng. 2022, 55, 6301–6319. [Google Scholar] [CrossRef]
- Li, S.C.; He, P.; Li, L.P.; Shi, S.S.; Zhang, Q.Q.; Zhang, J.; Hu, J. Gaussian process model of water inflow prediction in tunnel construction and its engineering applications. Tunn. Undergr. Space Technol. 2017, 69, 155–161. [Google Scholar] [CrossRef]
- Lin, Q.; Hu, J.; Zhou, Q.; Cheng, Y.; Hu, Z.; Couckuyt, I.; Dhaene, T. Multi-output Gaussian process prediction for computationally expensive problems with multiple levels of fidelity. Knowl.-Based Syst. 2021, 227, 107151. [Google Scholar] [CrossRef]
- Atkinson, J.H. Non-linear soil stiffness in routine design. Géotechnique 2000, 50, 487–508. [Google Scholar] [CrossRef]
- Liu, H.; Cai, J.; Ong, Y.S. Remarks on multi-output Gaussian process regression. Knowl.-Based Syst. 2018, 144, 102–121. [Google Scholar] [CrossRef]
- Bonilla, E.V.; Williams, C.; Chai, K. Multi-task Gaussian process prediction. Adv. Neural Inf. Process. Syst. 2007, 20, 153–160. [Google Scholar]
- Williams, C.K.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
Depth (m) | Y1 | Y2 | Y3 | Y5 | Y6 |
---|---|---|---|---|---|
12.8 | 30.1 | 9.1 | 1.20 | 1.71 | 0.37 |
14.8 | 32.8 | 12.8 | 1.43 | / | 0.36 |
16.1 | 36.4 | 14.5 | 1.24 | / | 0.33 |
17.8 | 41.9 | 18.9 | 0.90 | 1.79 | 0.25 |
18.3 | / | / | / | / | 0.34 |
20.2 | 38.1 | 17.3 | 0.70 | / | 0.32 |
22.7 | 37.0 | 16.0 | 0.58 | / | 0.31 |
24.0 | 38.0 | 16.2 | 0.75 | 2.19 | 0.30 |
26.6 | 34.8 | 13.8 | 0.80 | / | 0.34 |
Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | |
---|---|---|---|---|---|---|---|
Y1 | 61.42 | 24.92 | −2.15 | −0.01 | −0.81 | 8.47 | 5.05 |
Y2 | 24.92 | 23.14 | 0.61 | 0.02 | 0.15 | −15.87 | −5.23 |
Y3 | −2.15 | 0.61 | 0.35 | 0.00 | 0.10 | −1.47 | −1.13 |
Y4 | −0.01 | 0.02 | 0.00 | 0.00 | 0.00 | 0.12 | −0.01 |
Y5 | −0.81 | 0.15 | 0.10 | 0.00 | 0.07 | 1.01 | −0.37 |
Y6 | 8.47 | −15.87 | −1.47 | 0.12 | 1.01 | 149.80 | 11.31 |
Y7 | 5.05 | −5.23 | −1.13 | −0.01 | −0.37 | 11.31 | 4.93 |
Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | |
---|---|---|---|---|---|---|---|
Y1 | 1 | 0.66 | −0.46 | −0.01 | −0.40 | 0.09 | 0.29 |
Y2 | 0.66 | 1 | 0.21 | 0.05 | 0.12 | −0.27 | −0.49 |
Y3 | −0.46 | 0.21 | 1 | 0.00 | 0.68 | −0.20 | −0.86 |
Y4 | −0.01 | 0.05 | 0.00 | 1 | 0.25 | 0.15 | −0.04 |
Y5 | −0.40 | 0.12 | 0.68 | 0.25 | 1 | 0.32 | −0.65 |
Y6 | 0.09 | −0.27 | −0.20 | 0.15 | 0.32 | 1 | 0.42 |
Y7 | 0.29 | −0.49 | −0.86 | −0.04 | −0.65 | 0.42 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, M.-Q.; Qiu, Z.-C.; Shen, S.-L.; Li, Y.-C.; Zhou, J.-J.; Xu, H. Geotechnical Site Characterizations Using a Bayesian-Optimized Multi-Output Gaussian Process. Sustainability 2024, 16, 5759. https://doi.org/10.3390/su16135759
Peng M-Q, Qiu Z-C, Shen S-L, Li Y-C, Zhou J-J, Xu H. Geotechnical Site Characterizations Using a Bayesian-Optimized Multi-Output Gaussian Process. Sustainability. 2024; 16(13):5759. https://doi.org/10.3390/su16135759
Chicago/Turabian StylePeng, Ming-Qing, Zhi-Chao Qiu, Si-Liang Shen, Yu-Cheng Li, Jia-Jie Zhou, and Hui Xu. 2024. "Geotechnical Site Characterizations Using a Bayesian-Optimized Multi-Output Gaussian Process" Sustainability 16, no. 13: 5759. https://doi.org/10.3390/su16135759
APA StylePeng, M.-Q., Qiu, Z.-C., Shen, S.-L., Li, Y.-C., Zhou, J.-J., & Xu, H. (2024). Geotechnical Site Characterizations Using a Bayesian-Optimized Multi-Output Gaussian Process. Sustainability, 16(13), 5759. https://doi.org/10.3390/su16135759