Recommendation System for Sustainable Day and Night-Time Cultural Tourism Using the Mean Signed Error-Centric Recurrent Neural Network for Riyadh Historical Sites
Abstract
:1. Introduction
1.1. Research Questions
- (i)
- How do you recognize the suitable time (day-time or night-time) for visiting the tourist sites in Riyadh?
- (ii)
- How do you localize historical sites and the hotels surrounding them during tourism?
- (iii)
- How do you determine the positive and negative reviews about the opening and closing times of the tourism sites in Riyadh?
- (iv)
- How do you identify the environmental conditions around the tourist sites and plan your visit accordingly?
1.2. Problem Definition
2. Literature Survey
3. Proposed Tourism Recommendation System Framework
3.1. Processing of Location-Based Data
3.1.1. Localization
Algorithm 1: SHD-KM Technique. |
Input: Locations Output: Clusters Begin Initialize Cluster Centres For each cluster centres do Compute distance between each hotel using the equation, End for Compute new centroid Return final cluster End |
3.1.2. Hotel Ranking
Algorithm 2: TM-BWO Technique. |
Input: Clustered Hotels Output: Ranked Hotels Begin Initialize the population using tent map as, Evaluate the fitness as, Select the parents randomly do Select and Generate Offspring using the notation, Eliminate weak members based on cannibalism rate End For Calculate the members to mutate For do Mutate Randomly by exchanging the elements Generate the new solution End For Save the best solution End While Return End |
3.1.3. Keyword Embedding
3.2. Processing of Google Data
3.2.1. Keyword Extraction
3.2.2. Polarity Estimation
3.2.3. Timing Segregation
3.3. Environmental Data
Pre-Processing
3.4. Data Fusion
3.5. Recommendation
4. Results and Discussion
4.1. Dataset Description
4.2. Performance Analysis of MSE-RNN-Based Recommendations
4.3. Performance Analysis of R-PCC-Based Segregation
4.4. Performance Analysis of TM-BWO-Based Ranking
4.5. Performance Analysis of SHD-KM-Based Localization
4.6. Comparative Analysis
4.7. Evaluation Summary
5. Conclusions
6. Limitations and Future Work Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kontogianni, A.; Alepis, E. Smart tourism: State of the art and literature review for the last six years. Array 2020, 6, 100020. [Google Scholar] [CrossRef]
- Lin, H.-H.; Ling, Y.; Lin, J.-C.; Liang, Z.-F. Research on the development of religious tourism and the sustainable development of rural environment and health. Int. J. Environ. Res. Public Health 2021, 18, 2731. [Google Scholar] [CrossRef] [PubMed]
- UN Tourism. UNWTO Congress to Discuss the Links between Cultural Heritage and Creative Tourism. 2016. Available online: https://www.unwto.org/archive/europe/press-release/2016-11-23/unwto-congress-discuss-links-between-cultural-heritage-and-creative-tourism (accessed on 4 April 2024).
- Seyfi, S.; Hall, C.M.; Rasoolimanesh, S.M. Exploring memorable cultural tourism experiences. J. Herit. Tour. 2020, 15, 341–357. [Google Scholar] [CrossRef]
- Bay, M.A.; Alnaim, M.M.; Albaqawy, G.A.; Noaime, E. The heritage jewel of Saudi Arabia: A descriptive analysis of the heritage management and development activities in the At-Turaif district in Ad-Dir’iyah, a world heritage site (WHS). Sustainability 2022, 14, 10718. [Google Scholar] [CrossRef]
- Chaudhari, K.; Thakkar, A. A comprehensive survey on travel recommender systems. Arch. Comput. Methods Eng. 2020, 27, 1545–1571. [Google Scholar] [CrossRef]
- Kalvet, T.; Olesk, M.; Tiits, M.; Raun, J. Innovative tools for tourism and cultural tourism impact assessment. Sustainability 2020, 12, 7470. [Google Scholar] [CrossRef]
- Font, X.; Torres-Delgado, A.; Crabolu, G.; Palomo Martinez, J.; Kantenbacher, J.; Miller, G. The impact of sustainable tourism indicators on destination competitiveness: The European tourism indicator system. J. Sustain. Tour. 2023, 31, 1608–1630. [Google Scholar] [CrossRef]
- Hamid, R.A.; Albahri, A.S.; Alwan, J.K.; Al-Qaysi, Z.T.; Albahri, O.S.; Zaidan, A.A.; Alnoor, A.; Alamoodi, A.H.; Zaidan, B.B. How smart is e-tourism? A systematic review of smart tourism recommendation system applying data management. Comput. Sci. Rev. 2021, 39, 100337. [Google Scholar] [CrossRef]
- Kulkarni, S.; Rodd, S.F. Context Aware recommendation systems: A review of the state of the art techniques. Comput. Sci. Rev. 2020, 37, 100255. [Google Scholar] [CrossRef]
- Nguyen, L.V.; Nguyen, T.H.; Jung, J.J. Tourism recommender system based on cognitive similarity between cross-cultural users. In Intelligent Environments 2021: Workshop Proceedings of the 17th International Conference on Intelligent Environments; IOS Press: Amsterdam, The Netherlands, 2021; pp. 225–232. [Google Scholar] [CrossRef]
- Abbasi-Moud, Z.; Vahdat-Nejad, H.; Sadri, J. Tourism recommendation system based on semantic clustering and sentiment analysis. Expert Syst. Appl. 2021, 167, 114324. [Google Scholar] [CrossRef]
- Esmaeili, L.; Mardani, S.; Golpayegani, S.A.H.; Madar, Z.Z. A novel tourism recommender system in the context of social commerce. Expert Syst. Appl. 2020, 149, 113301. [Google Scholar] [CrossRef]
- Al Fararni, K.; Nafis, F.; Aghoutane, B.; Yahyaouy, A.; Riffi, J.; Sabri, A. Hybrid recommender system for tourism based on big data and AI: A conceptual framework. Big Data Min. Anal. 2021, 4, 47–55. [Google Scholar] [CrossRef]
- Nitu, P.; Coelho, J.; Madiraju, P. Improvising personalized travel recommendation system with recency effects. Big Data Min. Anal. 2021, 4, 139–154. [Google Scholar] [CrossRef]
- Ray, B.; Garain, A.; Sarkar, R. An ensemble-based hotel recommender system using sentiment analysis and aspect categorization of hotel reviews. Appl. Soft Comput. 2021, 98, 106935. [Google Scholar] [CrossRef]
- De Luca, G.; Dastgerdi, A.S.; Francini, C.; Liberatore, G. Sustainable cultural heritage planning and management of overtourism in art cities: Lessons from atlas world heritage. Sustainability 2020, 12, 3929. [Google Scholar] [CrossRef]
- Hong, M.; Jung, J.J. Multi-criteria tensor model for tourism recommender systems. Expert Syst. Appl. 2021, 170, 114537. [Google Scholar] [CrossRef]
- Nan, X.; Kanato, K.; Wang, X. Design and implementation of a personalized tourism recommendation system based on the data mining and collaborative filtering algorithm. Comput. Intell. Neurosci. 2022, 2022, 1424097. [Google Scholar] [CrossRef] [PubMed]
- Chiu, M.C.; Huang, J.H.; Gupta, S.; Akman, G. Developing a personalized recommendation system in a smart product service system based on unsupervised learning model. Comput. Ind. 2021, 128, 103421. [Google Scholar] [CrossRef]
- Zheng, W.; Liao, Z.; Lin, Z. Navigating through the complex transport system: A heuristic approach for city tourism recommendation. Lang. Learn. J. 2020, 81, 104162. [Google Scholar] [CrossRef]
- Mishra, R.K.; Jothi, J.A.A.; Urolagin, S.; Irani, K. Knowledge based topic retrieval for recommendations and tourism promotions. Int. J. Inf. Manag. Data Insights 2023, 3, 100145. [Google Scholar] [CrossRef]
- Cuomo, M.T.; Tortora, D.; Foroudi, P.; Giordano, A.; Festa, G.; Metallo, G. Digital transformation and tourist experience co-design: Big social data for planning cultural tourism. Technol. Forecast. Soc. Chang. 2021, 162, 120345. [Google Scholar] [CrossRef]
- Nuanmeesri, S. Development of community tourism enhancement in emerging cities using gamification and adaptive tourism recommendation. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 8549–8563. [Google Scholar] [CrossRef]
- Sperlí, G. A cultural heritage framework using a Deep Learning based Chatbot for supporting tourist journey. Expert Syst. Appl. 2021, 183, 115277. [Google Scholar] [CrossRef]
- Jiang, R.; Dai, B. Cultural Tourism Attraction Recommendation Model Based on Optimized Weighted Association Rule Algorithm. Syst. Soft Comput. 2024, 6, 200094. [Google Scholar] [CrossRef]
- Historical Place, List of Historical Places in Riyadh, Smartscrapers. 2024. Available online: https://rentechdigital.com/smartscraper/business-report-details/saudi-arabia/riyadh-region/riyadh/historical-places (accessed on 4 April 2024).
- Hotel Location, Global Company Database; Datantify: Poznań, Poland, 2024; Available online: https://datantify.com/database/industry:hotel,location:saudi-arabia (accessed on 4 April 2024).
- Hotel Review Data, MoayadMagadmi, Saudi Arabia Booking; Kaggle: San Francisco, CA, USA, 2024; Available online: https://www.kaggle.com/datasets/moayadmagadmi/saudi-arabia-bookingcom (accessed on 4 April 2024).
- Climate Dataset, Saudi Arabia Hourly Climate Integrated Surface Data; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2024; Available online: https://datasource.kapsarc.org/explore/dataset/saudi-hourly-weather-data/information/?disjunctive.station_name&disjunctive.wind_direction_quality&disjunctive.wind_type&disjunctive.wind_speed_quality&disjunctive.sky_ceiling_quality&disjunctive.visibility_distance_quality&disjunctive.visibility_variability_quality&disjunctive.air_temperature_quality&disjunctive.air_temperature_dew_point_quality&disjunctive.atmospheric_sea_level_pressure_quality (accessed on 4 April 2024).
- Pollution Data, Annual Average of Air Pollutants Concentration by Monitoring Station; Federal Competitiveness and Statistics Authority: Dubai, United Arab Emirates, 2024; Available online: https://datasource.kapsarc.org/explore/dataset/annual-average-of-air-pollutants-concentration-by-monitoring-station/information/?disjunctive.station_name (accessed on 4 April 2024).
Methods | MSE |
---|---|
Proposed MSE-RNN | 0.034 |
RNN | 0.068 |
CNN | 0.102 |
DBN | 0.134 |
ANN | 0.192 |
Methods | Process Time (ms) |
---|---|
Proposed R-PCC | 837 |
PCC | 1176 |
SCC | 1257 |
BA | 1320 |
KCC | 1582 |
Methods | Localization Time (ms) |
---|---|
Proposed SHD-KM | 9654 |
KM | 10,491 |
K-Medoid | 10,829 |
CLARA | 11,934 |
BIRCH | 12,382 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeribi, F.; Perumal, U.; Alhameed, M.H. Recommendation System for Sustainable Day and Night-Time Cultural Tourism Using the Mean Signed Error-Centric Recurrent Neural Network for Riyadh Historical Sites. Sustainability 2024, 16, 5566. https://doi.org/10.3390/su16135566
Jeribi F, Perumal U, Alhameed MH. Recommendation System for Sustainable Day and Night-Time Cultural Tourism Using the Mean Signed Error-Centric Recurrent Neural Network for Riyadh Historical Sites. Sustainability. 2024; 16(13):5566. https://doi.org/10.3390/su16135566
Chicago/Turabian StyleJeribi, Fathe, Uma Perumal, and Mohammed Hameed Alhameed. 2024. "Recommendation System for Sustainable Day and Night-Time Cultural Tourism Using the Mean Signed Error-Centric Recurrent Neural Network for Riyadh Historical Sites" Sustainability 16, no. 13: 5566. https://doi.org/10.3390/su16135566
APA StyleJeribi, F., Perumal, U., & Alhameed, M. H. (2024). Recommendation System for Sustainable Day and Night-Time Cultural Tourism Using the Mean Signed Error-Centric Recurrent Neural Network for Riyadh Historical Sites. Sustainability, 16(13), 5566. https://doi.org/10.3390/su16135566