Uptake and Level of Use of Climate-Smart Agricultural Practices by Small-Scale Urban Crop Farmers in eThekwini Municipality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection and Description of the Study Area
2.2. Research Design
2.3. Conceptual Framework
2.4. Description and Selection of Respondents
2.5. Data Collection
2.6. Data Management and Analysis
2.6.1. Descriptive Statistics
2.6.2. Composite Score Index
2.6.3. Ordered Probit Model
- Description of the explanatory variables used in the ordered probit model
3. Results and Discussion
3.1. Socio-Economic Characteristics of Respondents
3.2. Awareness of Climate-Smart Agricultural Practices by Small-Scale Urban Crop Farmers in eThekwini Municipality
3.3. Information Sources of Climate-Smart Agricultural Practices by Small-Scale Urban Crop Farmers in eThekwini Municipality
3.4. Climate-Smart Agriculture Practices Adoption and Their Level of Use by Small-Scale Urban Crop Farmers in eThekwini Municipality
3.5. Factors Influencing the Level of Use of Climate-Smart Agricultural Practices by Small-Scale Urban Crop Farmers in eThekwini Municipality
4. Conclusions and Recommendations
- -
- Gender-sensitive programmes that address unequal gender participation in UA activities; for example, ensuring equal access to resources, information, and gender-specific training.
- -
- Strengthening support (training, access to credit, and extension services) for farmer groups and networks to leverage peer learning and resource sharing.
- -
- Implementing age-specific interventions for older urban farmers, such as labour-saving technologies and simple practices requiring less physical activity.
- -
- Developing and implementing targeted educational programmes prioritising broadcasting CSA practices benefits catering to prominent demographics; for example, using simple and accessible language and media.
- -
- Leveraging seasoned urban farmers’ vast knowledge and experience through a mentorship programme to capacitate younger or less experienced urban farmers through practical learning, thus fostering support networks to sustain agricultural innovation and resilience.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pathak, M.; Patel, S.; Some, S. Climate change mitigation and Sustainable Development Goals: Evidence and research gaps. PLoS Clim. 2024, 3, e0000366. [Google Scholar] [CrossRef]
- Food and Agriculture Organization; International Fund for Agricultural Development; United Nations Children’s Fund; World Food Programme; World Health Organization. The State of Food Security and Nutrition in the World 2023: Urbanization, Agrifood Systems, Transformation and Healthy Diets across the Rural-Urban Continuum; Food and Agriculture Organization: Rome, Italy, 2023; pp. 1–316. [Google Scholar]
- Ahmad, A.; Ashraf, S.S. Sustainable food and feed sources from microalgae: Food security and the circular bioeconomy. Algal Res. 2023, 74, 103185. [Google Scholar] [CrossRef]
- Bryan, E.; Alvi, M.; Huyer, S.; Ringler, C. Addressing gender inequalities and strengthening women’s agency to create more climate-resilient and sustainable food systems. Glob. Food Secur. 2024, 40, 100731. [Google Scholar] [CrossRef]
- Javeed, H.M.R.; Ali, M.; Qamar, R.; Sarwar, M.A.; Jabeen, R.; Ihsan, M.Z.; Zamir, M.S.I.; Shahzad, M.; Khalid, S.; Saeed, M.F. Food Security Issues in Changing Climate. In Climate Change Impacts on Agriculture: Concepts, Issues and Policies for Developing Countries; Springer International Publishing: Cham, Switzerland, 2023; pp. 89–104. [Google Scholar]
- Mansour, S.; Ghoneim, E.; El-Kersh, A.; Said, S.; Abdelnaby, S. Spatiotemporal Monitoring of Urban Sprawl in a Coastal City Using GIS-Based Markov Chain and Artificial Neural Network (ANN). Remote Sens. 2023, 15, 601. [Google Scholar] [CrossRef]
- Udo, W.S.; Ochuba, N.A.; Akinrinola, O.; Ololade, Y.J. The role of theoretical models in IoT-based irrigation systems: A Comparative Study of African and US Agricultural Strategies for Water Scarcity Management. Int. J. Sci. Res. Arch. 2024, 11, 600–606. [Google Scholar]
- Statista Agriculture in South Africa—Statistics & Facts. Available online: https://www.statista.com/topics/9876/agriculture-in-south-africa/#topicOverview (accessed on 11 March 2024).
- Devi, B.; Devi, J.; Bhattacharyya, N. Subsistence Agriculture—An Approach Towards Food Security in Changing Climate. In Food Production, Diversity, and Safety Under Climate Change; Springer Nature: Cham, Switzerland, 2024; pp. 53–62. [Google Scholar]
- Kapari, M.; Hlophe-Ginindza, S.; Nhamo, L.; Mpandeli, S. Contribution of smallholder farmers to food security and opportunities for resilient farming systems. Front. Sustain. Food Syst. 2023, 7, 1149854. [Google Scholar] [CrossRef]
- Haruna, L.Z.; Sennuga, S.O.; Bamidele, J.; Bankole, O.L.; Alabuja, F.O.; Preyor, T.J.; Barnabas, T.M. factors influencing farmers’ adoption of improved technologies in Maize Production in Kuje Area Council of FCT-Abuja, Nigeria. GPH-Int. J. Agric. Res. 2023, 6, 25–41. [Google Scholar]
- Rafael, B.M. The Importance of Agricultural Development Projects: A Focus on Sustenance and Employment Creation in Kenya, Malawi, Namibia, Rwanda, and Uganda. J. Agric. Chem. Environ. 2023, 12, 152–170. [Google Scholar] [CrossRef]
- Enyew, T.M. Determinants of farmers’ willingness to pay for irrigation improvements in Northcentral Ethiopia. Agric. Water Manag. 2024, 298, 108841. [Google Scholar] [CrossRef]
- Okoronkwo, D.J.; Ozioko, R.I.; Ugwoke, R.U.; Nwagbo, U.V.; Nwobodo, C.; Ugwu, C.H.; Okoro, G.G.; Mbah, E.C. Climate smart agriculture? Adaptation strategies of traditional agriculture to climate change in sub-Saharan Africa. Front. Clim. 2024, 6, 1272320. [Google Scholar] [CrossRef]
- Costa Jr, C.; Thornton, P.; Wollenberg, E. Global hotspots of climate change adaptation and mitigation in agriculture. Front. Sustain. Food Syst. 2023, 7, 1216205. [Google Scholar] [CrossRef]
- Tantoh, H.B.; McKay, T.J. Utilizing the water-land-food security nexus to review the underperformance of smallholder farmers in the Eastern Cape, South Africa. Front. Sustain. Food Syst. 2023, 7, 1143630. [Google Scholar] [CrossRef]
- Grebitus, C. Small-scale urban agriculture: Drivers of growing produce at home and in community gardens in Detroit. PLoS ONE 2021, 16, e0256913. [Google Scholar] [CrossRef] [PubMed]
- Kronsted, S. Ghetto go green: Small scale urban farming for youth health and wellbeing in informal settlements in Kampala, Uganda. Cities Health 2024, 4, 1–7. [Google Scholar] [CrossRef]
- Ashinze, U.K.; Edeigba, B.A.; Umoh, A.A.; Biu, P.W.; Daraojimba, A.I. Urban green infrastructure and its role in sustainable cities: A comprehensive review. World J. Adv. Res. Rev. 2024, 21, 928–936. [Google Scholar] [CrossRef]
- Vhumbunu, C.H.; Adetiba, T.C. Climate-smart Agriculture in Urban Farming: Experiences from Selected Suburbs in Windhoek, Namibia. Afr. J. Dev. Stud. 2024, 13, 347–366. [Google Scholar]
- Chandra, A.; McNamara, K.E.; Dargusch, P. Climate-smart agriculture: Perspectives and framings. Clim. Policy 2018, 18, 526–541. [Google Scholar] [CrossRef]
- Ma, W.; Rahut, D.B. Climate-smart agriculture: Adoption, impacts, and implications for sustainable development. Mitig. Adapt. Strateg. Glob. Chang. 2024, 29, 44. [Google Scholar] [CrossRef]
- Veste, M.; Sheppard, J.P.; Abdulai, I.; Ayisi, K.K.; Borrass, L.; Chirwa, P.W.; Funk, R.; Kapinga, K.; Morhart, C.; Mwale, S.E. The Need for Sustainable Agricultural Land-Use Systems: Benefits from Integrated Agroforestry Systems. In Sustainability of Southern African Ecosystems under Global Change: Science for Management and Policy Interventions; Springer International Publishing: Cham, Switzerland, 2024; pp. 587–623. [Google Scholar]
- Asprooth, L.; Norton, M.; Galt, R. The adoption of conservation practices in the Corn Belt: The role of one formal farmer network, Practical Farmers of Iowa. Agric. Hum. Values 2023, 40, 1559–1580. [Google Scholar] [CrossRef]
- Mizik, T. How can precision farming work on a small scale? A systematic literature review. Precis. Agric. 2023, 24, 384–406. [Google Scholar] [CrossRef]
- Negera, M.; Alemu, T.; Hagos, F.; Haileslassie, A. Determinants of adoption of climate smart agricultural practices among farmers in Bale-Eco region, Ethiopia. Heliyon 2022, 8, e09824. [Google Scholar] [CrossRef]
- Kanosvamhira, T.P. Urban Agriculture and the Sustainability Nexus in South Africa: Past, Current, and Future Trends. In Urban Forum; Springer: Dordrecht, The Netherlands, 2024; pp. 83–100. [Google Scholar]
- Fantini, A. Urban and peri-urban agriculture as a strategy for creating more sustainable and resilient urban food systems and facing socio-environmental emergencies. Agroecol. Sustain. Food Syst. 2023, 47, 47–71. [Google Scholar] [CrossRef]
- Crush, J.; Riley, L. Rural bias and urban food security. In Urban Food Systems Governance and Poverty in African Cities; Routledge: London, UK, 2018; pp. 42–55. [Google Scholar]
- Chitakira, M.; Ngcobo, N.Z. Uptake of climate smart agriculture in peri-urban areas of South Africa’s economic hub requires up-scaling. Front. Sustain. Food Syst. 2021, 5, 706738. [Google Scholar] [CrossRef]
- Wakweya, R.B. Challenges and prospects of adopting climate-smart agricultural practices and technologies: Implications for food security. J. Agric. Food Res. 2023, 14, 100698. [Google Scholar] [CrossRef]
- University of Zululand Department of Geography. Map showing the study areas in eThekwini Municipality, KwaZulu-Natal. In KwaDlangezwa. 2022. [Google Scholar]
- Dawson, J.; Hutchings, K.; Sedick, S.; Clark, B. uThongathi Estuary Management Plan Final Report; KwaZulu-Natal Department of Economic Development, Tourism and Environmental Affairs: Tokai, South Africa, 2021; pp. 1–58. [Google Scholar]
- eThekwini Municipality Medium Term Revenue and Expenditure Framework 2022/2023 to 2024/2025. Available online: https://www.durban.gov.za/storage/Documents/Budget%20Reports/Medium%20Term%20Revenue%20and%20Expenditure%20Framework/EThekwini%20Municipality%20Medium%20Term%20Budget%202022-2023.pdf (accessed on 11 March 2024).
- Stats SA Census of Commerical Agriculture COCA 2017. Available online: https://www.statssa.gov.za/publications/Report-11-02-01/CoCA%202017%20Fact%20Sheets.pdf (accessed on 11 March 2024).
- Statistics SA. General Household Survey. Report: P0318: Pretoria, South Africa, 2019; Statistics SA: Pretoria, South Africa, 2019. [Google Scholar]
- Odindi, J.; Bangamwabo, V.; Mutanga, O. Assessing the Value of Urban Green Spaces in Mitigating Multi-Seasonal Urban Heat using MODISLand Surface Temperature (LST) and Landsat 8 data. Int. J. Environ. Res. 2015, 9, 9–18. [Google Scholar]
- Olanrewaju, C.C.; Reddy, M. Assessment and prediction of flood hazards using standardized precipitation index—A case study of eThekwini metropolitan area. J. Flood Risk Manag. 2022, 15, e12788. [Google Scholar] [CrossRef]
- Department of Cooperative Governance & Traditional Affairs eThekwini Metropolitan KZN. Profile and Analysis District Development Model. Available online: https://www.cogta.gov.za/ddm/wp-content/uploads/2020/07/Metro-Profile_Ethekwini.pdf (accessed on 27 May 2024).
- Maier, C.; Thatcher, J.B.; Grover, V.; Dwivedi, Y.K. Cross-sectional research: A critical perspective, use cases, and recommendations for IS research. Int. J. Inf. Manag. 2023, 70, 102625. [Google Scholar] [CrossRef]
- Bongole, A.J.; Hella, J.P.; Bengesi, K.M. Combining climate smart agriculture practises pays off: Evidence on food security from southern highland zone of Tanzania. Front. Sustain. Food Syst. 2022, 6, 541798. [Google Scholar] [CrossRef]
- Younus, A.M.; Zaidan, M.N. The influence of quantitative research in business & information technology: An appropriate research methodology philosophical reflection. Am. J. Interdiscip. Res. Dev. 2022, 4, 61–79. [Google Scholar]
- Brouziyne, Y.; El Bilali, A.; Epule Epule, T.; Ongoma, V.; Elbeltagi, A.; Hallam, J.; Moudden, F.; Al-Zubi, M.; Vadez, V.; McDonnell, R. Towards lower greenhouse gas emissions agriculture in North Africa through climate-smart agriculture: A systematic review. Climate 2023, 11, 139. [Google Scholar] [CrossRef]
- Mpala, T.A.; Simatele, M.D. Climate-smart agricultural practices among rural farmers in Masvingo district of Zimbabwe: Perspectives on the mitigation strategies to drought and water scarcity for improved crop production. Front. Sustain. Food Syst. 2024, 7, 1298908. [Google Scholar] [CrossRef]
- Mponela, P.; Dziwornu, M.G.; Agyarko-Fosu, F.; Inusah, S.; Odonkor, E.N.; Sackey, T.A.; Mamah, S.A.; Akpatsu, I.B. Climate-Smart Agriculture Implementation Evidence in Ghana: Supporting Scaling Strategies for Enhanced Resilience in Ghana; AICCRA Ghana Cluster Reports: Accra, Ghana, 2023; 8p. [Google Scholar]
- Tadesse, B.; Ahmed, M. Impact of adoption of climate smart agricultural practices to minimize production risk in Ethiopia: A systematic review. J. Agric. Food Res. 2023, 13, 100655. [Google Scholar] [CrossRef]
- Njogu, J.W.; Karuku, G.; Busienei, J.; Gathiaka, J.K. Assessing determinants of scaling up pathways for adopted CSA Climate Smart Agricultural practices: Evidence from Climate Smart Villages in Nyando Basin, Kenya. Cogent Food Agric. 2024, 10, 2316362. [Google Scholar] [CrossRef]
- Ojoko, E.A.; Akinwunmi, J.A.; Yusuf, S.A.; Oni, O.A. Factors influencing the level of use of climate-smart agricultural practices (CSAPs) in Sokoto state, Nigeria. J. Agric. Sci. Belgrade 2017, 62, 315–327. [Google Scholar] [CrossRef]
- Ahmed, F.F.; Naphtali, J. Socioeconomic characteristics and food diversity amongst high income households: A case study of Maiduguri metropolis, Borno state, Nigeria. Am. J. Soc. Manag. Sci. 2014, 5, 19–26. [Google Scholar]
- Ntawuruhunga, D.; Ngowi, E.E.; Mangi, H.O.; Salanga, R.J.; Shikuku, K.M. Climate-smart agroforestry systems and practices: A systematic review of what works, what doesn’t work, and why. For. Policy Econ. 2023, 150, 102937. [Google Scholar] [CrossRef]
- Teklu, A.; Simane, B.; Bezabih, M. Multiple adoption of climate-smart agriculture innovation for agricultural sustainability: Empirical evidence from the Upper Blue Nile Highlands of Ethiopia. Clim. Risk Manag. 2023, 39, 100477. [Google Scholar] [CrossRef]
- Amadu, F.O.; Miller, D.C.; McNamara, P.E. Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecol. Econ. 2020, 167, 106443. [Google Scholar] [CrossRef]
- Tilahun, G.; Bantider, A.; Yayeh, D. Impact of adoption of climate-smart agriculture on food security in the tropical moist montane ecosystem: The case of Geshy watershed, Southwest Ethiopia. Heliyon 2023, 9, e22620. [Google Scholar] [CrossRef]
- Bhardwaj, P. Types of sampling in research. J. Pract. Cardiovasc. Sci. 2019, 5, 157. [Google Scholar] [CrossRef]
- Andrade, C. The inconvenient truth about convenience and purposive samples. Indian J. Psychol. Med. 2021, 43, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Tourangeau, R. Choosing a mode of survey data collection. In The Palgrave Handbook of Survey Research; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 43–50. [Google Scholar]
- Simon, D. Surveys. In The Routledge Handbook of Second Language Acquisition and Individual Differences; Routledge: London, UK, 2022; pp. 399–412. [Google Scholar]
- Pearson, N.; Naylor, P.-J.; Ashe, M.C.; Fernandez, M.; Yoong, S.L.; Wolfenden, L. Guidance for conducting feasibility and pilot studies for implementation trials. Pilot Feasibility Stud. 2020, 6, 167. [Google Scholar] [CrossRef] [PubMed]
- Bond, C.; Lancaster, G.A.; Campbell, M.; Chan, C.; Eddy, S.; Hopewell, S.; Mellor, K.; Thabane, L.; Eldridge, S. Pilot and feasibility studies: Extending the conceptual framework. Pilot Feasibility Stud. 2023, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.; Acharya, S.; Parsons, M.; Ranasinghe, U.; Fleming, K.; Harris, M.L.; Kuzulugil, D.; Byles, J.; Philcox, A.; Tavener, M. Australian general practitioners’ perspectives on integrating specialist diabetes care with primary care: Qualitative study. BMC Health Serv. Res. 2023, 23, 1264. [Google Scholar] [CrossRef] [PubMed]
- Kassim, A.B.; Newton, S.K.; Dormechele, W.; Rahinatu, B.B.; Yanbom, C.T.; Yankson, I.K.; Otupiri, E. Effects of a community-level intervention on maternal health care utilization in a resource-poor setting of Northern Ghana. BMC Public Health 2023, 23, 1491. [Google Scholar] [CrossRef]
- Amankwah, A. Climate variability, agricultural technologies adoption, and productivity in rural Nigeria: A plot-level analysis. Agric. Food Secur. 2023, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Antwi-Agyei, P.; Amanor, K. Typologies and drivers of the adoption of climate smart agricultural practices by smallholder farmers in rural Ghana. Curr. Res. Environ. Sustain. 2023, 5, 100223. [Google Scholar] [CrossRef]
- Ali, H.; Menza, M.; Hagos, F.; Haileslassie, A. Impact of climate-smart agriculture adoption on food security and multidimensional poverty of rural farm households in the Central Rift Valley of Ethiopia. Agric. Food Secur. 2022, 11, 62. [Google Scholar] [CrossRef]
- Williams, R.A.; Quiroz, C. Ordinal Regression Models; SAGE Publications Limited: London, UK, 2020. [Google Scholar]
- Mousavi, E.; Sehhati, M. A generalized multi-aspect distance metric for mixed-type data clustering. Pattern Recognit. 2023, 138, 109353. [Google Scholar] [CrossRef]
- Daykin, A.R.; Moffatt, P.G. Analyzing ordered responses: A review of the ordered probit model. Underst. Stat. 2002, 1, 157–166. [Google Scholar] [CrossRef]
- Ye, F.; Lord, D. Comparing three commonly used crash severity models on sample size requirements: Multinomial logit, ordered probit and mixed logit models. Anal. Methods Accid. Res. 2014, 1, 72–85. [Google Scholar] [CrossRef]
- Thobejane, M.P. Factors that Influence In-Migration in the Gauteng Province. Educor Multidiscip. J. 2020, 4, 6. [Google Scholar]
- Atta-Aidoo, J.; Antwi-Agyei, P.; Dougill, A.J.; Ogbanje, C.E.; Akoto-Danso, E.K.; Eze, S. Adoption of climate-smart agricultural practices by smallholder farmers in rural Ghana: An application of the theory of planned behavior. PLoS Clim. 2022, 1, e0000082. [Google Scholar] [CrossRef]
- Maulu, S.; Hasimuna, O.J.; Mutale, B.; Mphande, J.; Siankwilimba, E. Enhancing the role of rural agricultural extension programs in poverty alleviation: A review. Cogent Food Agric. 2021, 7, 1886663. [Google Scholar] [CrossRef]
- Mapiye, O.; Makombe, G.; Molotsi, A.; Dzama, K.; Mapiye, C. Information and communication technologies (ICTs): The potential for enhancing the dissemination of agricultural information and services to smallholder farmers in sub-Saharan Africa. Inf. Dev. 2021, 39, 638–658. [Google Scholar] [CrossRef]
- Sardar, A.; Kiani, A.K.; Kuslu, Y. Does adoption of climate-smart agriculture (CSA) practices improve farmers’ crop income? Assessing the determinants and its impacts in Punjab province, Pakistan. Environ. Dev. Sustain. 2021, 23, 10119–10140. [Google Scholar] [CrossRef]
- Serote, B.; Mokgehle, S.; Senyolo, G.; du Plooy, C.; Hlophe-Ginindza, S.; Mpandeli, S.; Nhamo, L.; Araya, H. Exploring the Barriers to the Adoption of Climate-Smart Irrigation Technologies for Sustainable Crop Productivity by Smallholder farmers: Evidence from South Africa. Agriculture 2023, 13, 246. [Google Scholar] [CrossRef]
- Belay, A.D.; Kebede, W.M.; Golla, S.Y. Determinants of climate-smart agricultural practices in smallholder plots: Evidence from Wadla district, northeast Ethiopia. Int. J. Clim. Chang. Strateg. Manag. 2023, 15, 619–637. [Google Scholar] [CrossRef]
- Gurjar, D.; Meena, R.; Meena, K.; Yadav, G. Climate Smart Agriculture and Water Management: Issues and Challenges. In Innovative Approaches for Sustainable Development; Springer: Cham, Switzerland, 2022; pp. 329–338. [Google Scholar]
- Atsiaya, G.O.; Gido, E.O.; Waluse Sibiko, K. Uptake of climate-smart agricultural practices among smallholder sorghum farmers in Busia County, Kenya. Cogent Food Agric. 2023, 9, 2204019. [Google Scholar] [CrossRef]
- Mogaka, B.O.; Bett, H.K.; Karanja Ng’ang’a, S. Socioeconomic factors influencing the choice of climate-smart soil practices among farmers in western Kenya. J. Agric. Food Res. 2021, 5, 100168. [Google Scholar] [CrossRef]
- Akter, A.; Geng, X.; Mwalupaso, G.E.; Lu, H.; Hoque, F.; Ndungu, M.K.; Abbas, Q. Income and yield effects of climate-smart agriculture (CSA) adoption in flood prone areas of Bangladesh: Farm level evidence. Clim. Risk Manag. 2022, 37, 100455. [Google Scholar] [CrossRef]
- Statista Average Monthly Earnings in South Africa from November 2018 to November 2022. Available online: https://www.statista.com/statistics/1227081/average-monthly-earnings-in-south-africa/ (accessed on 13 May 2024).
- Autio, A.; Johansson, T.; Motaroki, L.; Minoia, P.; Pellikka, P. Constraints for adopting climate-smart agricultural practices among smallholder farmers in Southeast Kenya. Agric. Syst. 2021, 194, 103284. [Google Scholar] [CrossRef]
- Kifle, T.; Ayal, D.Y.; Mulugeta, M. Factors influencing farmers adoption of climate smart agriculture to respond climate variability in Siyadebrina Wayu District, Central highland of Ethiopia. Clim. Serv. 2022, 26, 100290. [Google Scholar] [CrossRef]
- Jellason, N.P.; Conway, J.S.; Baines, R.N. Understanding impacts and barriers to adoption of climate-smart agriculture (CSA) practices in North-Western Nigerian drylands. J. Agric. Educ. Ext. 2021, 27, 55–72. [Google Scholar] [CrossRef]
- Ikendi, S. Ecological conservation, biodiversity, and agricultural education as integrated approaches for envisioning the future of sustainable agriculture in North America. Int. J. Sustain. Dev. World Ecol. 2023, 30, 152–163. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Roy, M.; McDonald, L.M.; Emendack, Y. Reflections on farmers’ social networks: A means for sustainable agricultural development? Environ. Dev. Sustain. 2021, 23, 2973–3008. [Google Scholar] [CrossRef]
- Kwapong, N.A.; Whitfield, S.; Ambuko, J.; Ankrah, D.A.; Swanepoel, F. Using participatory videos in understanding farmers experiences with climate smart agricultural practices: Reflections from Ghana. Front. Sustain. Food Syst. 2024, 7, 1282993. [Google Scholar] [CrossRef]
- Maka, L.; Ngotho, T.; Walker, S.; Ngcamphalala, S.; Maboa, L. An assessment of climate-smart agriculture (CSA) practices skills amongst extension practitioners in South Africa. S. Afr. J. Agric. Ext. 2021, 49, 70–83. [Google Scholar] [CrossRef]
- Kabir, K.H.; Sarker, S.; Uddin, M.N.; Leggette, H.R.; Schneider, U.A.; Darr, D.; Knierim, A. Furthering climate-smart farming with the introduction of floating agriculture in Bangladeshi wetlands: Successes and limitations of an innovation transfer. J. Environ. Manag. 2022, 323, 116258. [Google Scholar] [CrossRef]
- Ouédraogo, M.; Partey, S.T.; Zougmoré, R.B.; Nyuor, A.B.; Zakari, S.; Traoré, K.B. Uptake of Climate-Smart Agriculture in West Africa: What Can We Learn from Climate-Smart Villages of Ghana, Mali and Niger? Available online: https://oar.icrisat.org/10753/1/Uptake%20of%20Climate-Smart%20Agriculture%20in%20West%20Africa.pdf (accessed on 25 March 2024).
- Manono, B.O. New Zealand dairy farm effluent, irrigation and soil biota management for sustainability: Farmer priorities and monitoring. Cogent Food Agric. 2016, 2, 1221636. [Google Scholar] [CrossRef]
- Yang, C.; Wu, H.; Cai, M.; Zhou, Y.; Guo, C.; Han, Y.; Zhang, L. Valorization of biomass-derived polymers to functional biochar materials for supercapacitor applications via pyrolysis: Advances and perspectives. Polymers 2023, 15, 2741. [Google Scholar] [CrossRef]
- Srinivasan, K.; Yadav, V.K. An empirical investigation of barriers to the adoption of smart technologies integrated urban agriculture systems. J. Decis. Syst. 2023, 1–35. [Google Scholar] [CrossRef]
- Antwi, K.; Antwi-Agyei, P. Intra-gendered perceptions and adoption of climate-smart agriculture: Evidence from smallholder farmers in the Upper East Region of Ghana. Environ. Chall. 2023, 12, 100736. [Google Scholar] [CrossRef]
- Wahab, I.; Hall, O.; Jirström, M. “The maize is the cost of the farming, and the cassava is our profit”: Smallholders’ perceptions and attitudes to poor crop patches in the eastern region of Ghana. Agric. Food Secur. 2022, 11, 14. [Google Scholar] [CrossRef]
- Jena, P.R.; Tanti, P.C.; Maharjan, K.L. Determinants of adoption of climate resilient practices and their impact on yield and household income. J. Agric. Food Res. 2023, 14, 100659. [Google Scholar] [CrossRef]
- Diro, S.; Tesfaye, A.; Erko, B. Determinants of adoption of climate-smart agricultural technologies and practices in the coffee-based farming system of Ethiopia. Agric. Food Secur. 2022, 11, 42. [Google Scholar] [CrossRef]
- Masi, M.; De Rosa, M.; Vecchio, Y.; Bartoli, L.; Adinolfi, F. The long way to innovation adoption: Insights from precision agriculture. Agric. Food Econ. 2022, 10, 27. [Google Scholar] [CrossRef]
- Thottadi, B.P.; Singh, S. Climate-smart agriculture (CSA) adaptation, adaptation determinants and extension services synergies: A systematic review. Mitig. Adapt. Strateg. Glob. Chang. 2024, 29, 22100. [Google Scholar] [CrossRef]
- Kangogo, D.; Dentoni, D.; Bijman, J. Adoption of climate-smart agriculture among smallholder farmers: Does farmer entrepreneurship matter? Land Use Policy 2021, 109, 105666. [Google Scholar] [CrossRef]
Variable | Description and Measurement (Type) | Expected Outcome (+/−) |
---|---|---|
Gender | SSUC farmer’s gender (female = 0; male = 1) (dummy) | − |
Marital status | Marital status of the SSUC farmer (single = 0; wedded (married, divorced, widowed) = 1) (dummy) | +/− |
Membership of agricultural-related group | Whether the SSUC farmer belonged to an agricultural-related group or association (no = 0; yes = 1) (dummy) | + |
Frequency of extension visits | Whether the SSUC farmer had frequent contact with the extension agents or never (never = 0; frequent (often, very often and seasonally) = 1) (dummy) | + |
Access to agricultural credit | Whether the SSUC farmer had ready access to credit (no = 0; yes = 1) (dummy) | + |
Access to irrigation | Whether the SSUC farmer had ready access to irrigation technology (no = 0; yes = 1) (dummy) | + |
Employment status | SSUC farmer’s employment status (unemployed = 0; formally employed = 1) (dummy) | − |
Age | Age of the SSUC farmer in years (continuous) | +/− |
Education (schooling years) | Number of years of formal schooling by the SSUC farmer (continuous) | + |
Household size | Number of members of the SSUC farmer’s household (continuous) | + |
Farm experience | Number of years of farming experience by the SSUC farmer (continuous) | + |
Average distance to the farming site/farm | The distance from home to the farm site in kilometres (continuous) | + |
Farm income | Total yearly income from farm enterprise/s (actual farm income records or monetary value of yield if absent) (continuous) | + |
Variable | Frequency | Percentage (%) | ||
---|---|---|---|---|
Gender | ||||
Male | 121 | 29.00 | ||
Female | 291 | 71.00 | ||
Marital status | ||||
Wedded (married, divorced, widowed) | 159 | 38.59 | ||
Single | 253 | 61.41 | ||
Membership of an agricultural-related group | ||||
Yes | 195 | 47.33 | ||
No | 217 | 52.67 | ||
Frequency of extension visits | ||||
Had extension visits | 220 | 53.4 | ||
Never | 192 | 46.60 | ||
Access to credit | ||||
Yes | 87 | 21.12 | ||
No | 325 | 78.88 | ||
Access to irrigation | ||||
Yes | 367 | 89.08 | ||
No | 45 | 10.92 | ||
Employment status | ||||
Employed formally | 29 | 7.04 | ||
Unemployed | 383 | 92.96 | ||
Mean | Max | Min | SD | |
Age | 54.607 | 80 | 28 | 11.898 |
Education (years) | 8.228 | 18 | 0 | 4.230 |
Household size | 8.289 | 19 | 1 | 3.450 |
Farming experience | 5 | 52 | 19.388 | 10.153 |
* Average distance to farming site/farm (km) | 0.1 | 12 | 2.88 | 2.29 |
Farm income (annual) (ZAR) | 12,600 | 361,800 | 155,563.80 | 60,903.44 |
CSA Practices | Composite Score Index | Ranking |
---|---|---|
Crop diversification | 3.694 | 1 |
Crop rotation | 3.619 | 2 |
Mulching | 3.608 | 3 |
Drought tolerant crops | 3.459 | 4 |
Organic manure use | 3.442 | 5 |
Cover crops usage | 2.381 | 6 |
Soil conservation | 1.750 | 7 |
Wetland usage | 1.627 | 8 |
Conservation agriculture | 1.313 | 9 |
Agroforestry | 1.209 | 10 |
Category of users of CSA practices | Frequency | Percentage (%) |
Low | 70 | 17 |
Medium | 272 | 66 |
High | 70 | 17 |
Total | 412 | 100 |
Low User Category | Medium User Category | High User Category | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | dy/dx | Std Error | p-Value | dy/dx | Std Error | p-Value | dy/dx | Std Error | p-Value |
Gender (male/female) | 0.0555967 | 0.0182633 | 0.002 ** | −0.0067406 | 0.0089151 | 0.450 | −0.0488561 | 0.0156769 | 0.002 ** |
Marital status (wedded/single) | 0.0141137 | 0.0176194 | 0.423 | −0.0017112 | 0.0030805 | 0.579 | −0.0124025 | 0.0154305 | 0.422 |
Membership of farm-related group (yes/no) | −0.0520075 | 0.0214701 | 0.015 * | 0.0063054 | 0.0082207 | 0.443 | 0.0457021 | 0.0194401 | 0.019 * |
Frequency of extension visits (had extension visits/never) | 0.0107625 | 0.0191888 | 0.575 | −0.0013048 | 0.0027769 | 0.638 | −0.0094576 | 0.0169555 | 0.577 |
Access to credit (yes/no) | 0.0149816 | 0.0180709 | 0.407 | −0.0018164 | 0.003098 | 0.558 | −0.0131653 | 0.0159936 | 0.410 |
Access to irrigation (yes/no) | −0.0302821 | 0.0260504 | 0.245 | 0.0036714 | 0.0055894 | 0.511 | 0.0266107 | 0.0229515 | 0.246 |
Employment status (formally employed/unemployed) | −0.0443992 | 0.027723 | 0.109 | 0.005383 | 0.0081481 | 0.509 | 0.0390162 | 0.0230514 | 0.091 |
Age (years) | 0.0014574 | 0.0007988 | 0.068 * | −0.0001767 | 0.0002207 | 0.423 | −0.0012807 | 0.0007556 | 0.090 * |
Education (schooling years) | −0.006225 | 0.0028901 | 0.031 * | 0.0007547 | 0.0010036 | 0.452 | 0.0054703 | 0.0025823 | 0.034 * |
Household size | 0.0306111 | 0.0033313 | 0.000 *** | −0.0037113 | 0.0045363 | 0.413 | −0.0268998 | 0.0045698 | 0.000 *** |
Farming experience | −0.0033247 | 0.000993 | 0.001 *** | 0.0004031 | 0.0005126 | 0.432 | 0.0029216 | 0.0009233 | 0.002 ** |
Distance to the farming site/farm (km) | 0.0041956 | 0.0034211 | 0.220 | −0.0005087 | 0.0006958 | 0.465 | −0.0036869 | 0.0031284 | 0.239 |
Awareness of CSA practices (yes/no) | −0.0336987 | 0.0219767 | 0.125 | 0.0040857 | 0.005266 | 0.438 | 0.029613 | 0.020437 | 0.147 |
Observations | 412 | ||||||||
LR chi2(13) | 312.19 | ||||||||
Prob > chi2 | 0.0000 | ||||||||
Pseudo R2 | 0.5914 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khumalo, N.Z.; Mdoda, L.; Sibanda, M. Uptake and Level of Use of Climate-Smart Agricultural Practices by Small-Scale Urban Crop Farmers in eThekwini Municipality. Sustainability 2024, 16, 5348. https://doi.org/10.3390/su16135348
Khumalo NZ, Mdoda L, Sibanda M. Uptake and Level of Use of Climate-Smart Agricultural Practices by Small-Scale Urban Crop Farmers in eThekwini Municipality. Sustainability. 2024; 16(13):5348. https://doi.org/10.3390/su16135348
Chicago/Turabian StyleKhumalo, Nolwazi Z., Lelethu Mdoda, and Melusi Sibanda. 2024. "Uptake and Level of Use of Climate-Smart Agricultural Practices by Small-Scale Urban Crop Farmers in eThekwini Municipality" Sustainability 16, no. 13: 5348. https://doi.org/10.3390/su16135348
APA StyleKhumalo, N. Z., Mdoda, L., & Sibanda, M. (2024). Uptake and Level of Use of Climate-Smart Agricultural Practices by Small-Scale Urban Crop Farmers in eThekwini Municipality. Sustainability, 16(13), 5348. https://doi.org/10.3390/su16135348