Assessing the Spatiotemporal Dynamics of Environmental Sustainability in China
Abstract
:1. Introduction
2. Assessment System and Methods
2.1. Assessment System
- Unlimited supply of natural resources: Individual indicators alone do not convey anything about their tipping points or carrying capacity;
- The potential of technological progress: This is a significant factor in our assessment system as the relevance and significance of indicators can change over time due to technological advancements;
- Sustainability status depending on current situations (mutual dependency);
- Ignoring other essential factors, such as carbon dioxide emissions
2.2. Calculation Procedure
- (1)
- Normality test for pooled data: We computed each variable’s skewness. If its value exceeds 2, we transform the variable by taking either a logarithm or a power;
- (2)
- Z-score calculation: The variables have different averages and variances for which we could not aggregate. Therefore, we calculated a z-score of a variable for which a lower value indicates better sustainability by:
- (3)
- Z-score aggregation: After obtaining z-scores for all variables in the two time periods, we aggregated the z-scores over the variables within the same sustainability sub-component:
- (4)
- Calculation of Sustainability Component Scores (SCS): The sustainability indicator for province i in year t is the mean (again, the equally weighted average) of the sustainability sub-component indicators. That is,
3. Sustainability Components Scores: Spatial and Chronological Patterns
3.1. Spatial Patterns of Sustainability Components in China
3.2. Temporal Features of Sustainability Components in China
3.3. Analysis of the Sustainability Subcomponent
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; Patten, B.C. Defining and predicting sustainability. Ecol. Econ. 1995, 15, 193–196. [Google Scholar] [CrossRef]
- Hara, K.; Uwasu, M.; Yabar, H.; Zhang, H. Sustainability Assessment with Time-Series Scores—A Case Study of Chinese Provinces. Sustain. Sci. 2009, 4, 81–97. [Google Scholar] [CrossRef]
- Barry, N.; Urbel-Piirsalua, E.; Stefan, A.; Lennart, O. Categorizing tools for sustainability assessment. Ecol. Econ. 2007, 80, 498–508. [Google Scholar]
- Yuan, J.H.; Kang, J.G.; Zhao, C.H.; Hu, Z.G. Energy consumption and economic growth: Evidence from China at both aggregated and disaggregated levels. Energy Econ. 2008, 30, 3077–3094. [Google Scholar] [CrossRef]
- Feng, T.; Sun, L.; Zhang, Y. The relationship between energy consumption structure, economic structure and energy intensity in China. Energy Policy 2009, 37, 5457–5483. [Google Scholar] [CrossRef]
- Zhang, B.; Bi, J.; Fan, Z.; Yuan, Z.; Ge, J. Eco-efficiency analysis of Industrial System in China: A Data envelopment analysis approach. Ecol. Econ. 2008, 68, 306–316. [Google Scholar] [CrossRef]
- United Nations Development Programme. The National Human Development Reports for China; United Nations Development Programme, China Country Office: Beijing, China, 2005. [Google Scholar]
- Han, J.; Liang, H.; Hara, K.; Uwasu, M.; Dong, L. Quality of life in China’s largest city, Shanghai: A 20-year subjective and objective composite assessment. J. Clean. Prod. 2018, 173, 135–142. [Google Scholar] [CrossRef]
- Yi, P.; Li, W.; Zhang, D.J. Sustainability assessment and key factors identification of first-tier cities in China. J. Clean. Prod. 2021, 281, 125369. [Google Scholar] [CrossRef]
- Tanguay, A.G.; Rajaonson, J.; Lefebvre, J.F.; Lanoie, P. Measuring the Sustainability of Cities: An Analysis of the Use of Local Indicators. Ecol. Indic. 2010, 10, 407–418. [Google Scholar] [CrossRef]
- Fan, P.; Qi, J. Assessing the Sustainability of Major Cities in China. Sustain. Sci. 2010, 5, 51–68. [Google Scholar] [CrossRef]
- Li, W.; Yi, P. Assessment of city sustainability—Coupling coordinated development among economy, society, and environment. J. Clean. Prod. 2020, 256, 120453. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Y.; Yeh, C.H.; Liu, Y.; Zhou, D.Q. City sustainability evaluation using MCDM with objective weights of interdependent criteria. J. Clean. Prod. 2016, 131, 491–499. [Google Scholar] [CrossRef]
- Van Dijk, M.P.; Zhang, M. Sustainability indices as a tool for urban managers, evidence from four medium-sized Chinese cities. Environ. Impact Assess. Rev. 2004, 25, 667–688. [Google Scholar] [CrossRef]
- Zhou, Y.; Yi, P.; Li, W.; Gong, C. Society, Assessment of city sustainability from the perspective of multi-source data-driven. Sustain. Cities Soc. 2021, 70, 102918. [Google Scholar] [CrossRef]
- Xu, M.; Hu, W.Q.J. A research on coordination between economy, society and environment in China: A case study of Jiangsu. J. Clean. Prod. 2020, 258, 120641. [Google Scholar] [CrossRef]
- Sun, L.; Ni, J.; Borthwick, A.G.L. Rapid Assessment of Sustainability in Mainland China. J. Environ. Manag. 2010, 91, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Yi, P.; Wang, L.; Zhang, D.; Li, W. Sustainability assessment of provincial-level regions in China using composite sustainable indicator. Sustainability 2019, 11, 5289. [Google Scholar] [CrossRef]
- Elkington, J. Towards the sustainable corporation: Win-win-win business strategies for sustainable development. Calif. Manag. Rev. 1994, 36, 90–100. [Google Scholar] [CrossRef]
- Tang, J.; Zhu, H.; Liu, Z.; Jia, F.; Zheng, X. Urban sustainability evaluation under the modified TOPSIS based on grey relational analysis. Int. J. Environ. Res. Public Health 2019, 16, 256. [Google Scholar] [CrossRef]
- Shen, F.; Yang, L.; He, X.; Zhou, C.; Adams, J.M. Understanding the spatial-temporal variation of human footprint in Jiangsu Province, China, its anthropogenic and natural drivers and potential implications. Sci. Rep. 2020, 10, 13316. [Google Scholar] [CrossRef]
- Li, W.; Zhang, D.; Hui, W. Predictive sustainability assessment based on provincial 5-year development plans in China. Environ. Dev. Sustain. 2023, 1–21. [Google Scholar] [CrossRef]
- Li, Y.; Mi, W.; Zhang, Y.; Li, J.; He, Q.; Wang, Y.; Bi, Y. Change of Human Footprint in China and Its Implications for Carbon Dioxide (CO2) Emissions. Remote Sens. 2023, 15, 426. [Google Scholar] [CrossRef]
- Sharma, P, Santanu Bandyopadhyay, SA quantitative framework for sustainability assessment. Clean Technol. Environ. Policy 2023, 25, 2971–2985. [CrossRef]
- Saijo, T. Future design: Bequeathing sustainable natural environments and sustainable societies to future generations. Sustainability, 2020; 12, 6467. [Google Scholar] [CrossRef]
- Kamijo, Y.; Komiya, A.; Mifune, N.; Saijo, T. Negotiating with the future: Incorporating imaginary future generations into negotiations. Sustain. Sci. 2017, 12, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Hara, K.; Yoshioka, R.; Kuroda, M.; Kurimoto, S.; Saijo, T. Reconciling intergenerational conflicts with imaginary future generations—Evidence from a participatory deliberation practice in a municipality in Japan. Sustain. Sci. 2019, 14, 1605–1619. [Google Scholar] [CrossRef]
- Uwasu, M.; Kishita, Y.; Hara, K.; Nomaguchi, Y. Citizen-participatory Scenario Design Methodology with Future Design Approach: A Case Study of Visioning for Low-Carbon Society in Suita City, Japan. Sustainability 2020, 12, 4746. [Google Scholar] [CrossRef]
- Hara, K.; Kitakaji, Y.; Sugino, H.; Yoshioka, R.; Takeda, H.; Hizen, Y.; Saijo, T. Effects of Experiencing the Role of Imaginary Future Generations in Decision-Making—A Case Study of Participatory Deliberation in a Japanese Town. Sustain. Sci. 2021, 16, 1001–1016. [Google Scholar] [CrossRef]
- Esty, C.D.; Levy, M.; Srebotnjak, T.; Sherbinin, A. 2005 Environmental Sustainability Index: Benchmarking National Environmental Stewardship; Yale Center for Environmental Law & Policy: New Haven, CT, USA, 2005. [Google Scholar]
- UNDP. Human Development Report; United Nations Development Programme: Oxford, UK, 1995. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2000. [Google Scholar]
- China Environmental Yearbook; China Environmental Statistics Publishing: Beijing, China, 2000.
- Harger, J.; Meyer, R.E. Definition of indicators for environmentally sustainable development. Chemosphere 1996, 33, 1749–1775. [Google Scholar] [CrossRef]
- Fujita, M.; Krugman, P.; Venables, A.J. The Spatial Economy; The MIT Press: Cambridge, UK, 2000. [Google Scholar]
- Levinson, A.M.; Taylor, S. Unmasking the Pollution Haven Effect. Int. Econ. Rev. 2008, 49, 223–254. [Google Scholar] [CrossRef]
- Hayami, Y. Development Economics; Sobunsha: Tokyo, Japan, 1995; pp. 36–40. [Google Scholar]
Rank | Socioeconomic Status (SS) | Economic Equality (EQ) | Environmental Pressure (EP) | Environmental Efficiency (EF) | Resource Pressure (RP) | Resource Efficiency (RE) |
---|---|---|---|---|---|---|
1 | Shanghai | Tibet | Tibet | Beijing | Ningxia | Tianjin |
2 | Beijing | Guizhou | Hainan | Tibet | Shanxi | Shandong |
3 | Tianjin | Gansu | Anhui | Shanghai | Henan | Beijing |
29 | Yunnan | Jiangsu | Liaoning | Guizhou | Guangdong | Qinghai |
30 | Gansu | Shanghai | Inner Mongolia | Shanxi | Beijing | Tibet |
31 | Guizhou | Zhejiang | Ningxia | Ningxia | Shanghai | Guizhou |
SS | EQ | EP | EF | RP | RE | |
---|---|---|---|---|---|---|
2000 | 0.14 | 0.27 | 0.13 | 0.17 | 0.20 | 0.11 |
2016 | 0.20 | 0.17 | 0.14 | 0.12 | 0.17 | 0.15 |
Cluster | GRP Per Capita | Urban Pop (%) | Pop Density | Primary | Secondary | Tertiary | GRP Growth (%) |
---|---|---|---|---|---|---|---|
A | 2.53 | 56.61 | 164.12 | 12.65 | 46.86 | 40.49 | 474.41 |
B | 1.54 | 50.81 | 203.12 | 6.54 | 52.34 | 41.12 | 356.86 |
C | 1.99 | 51.23 | 271.40 | 11.12 | 49 | 39.88 | 511.44 |
D | 1.39 | 39.06 | 151.69 | 16.63 | 42.19 | 41.18 | 433.42 |
E | 1.64 | 47.80 | 249.58 | 16.23 | 43.76 | 40.01 | 449.14 |
F | 4.27 | 72.80 | 998.35 | 4.68 | 45.33 | 49.99 | 376.34 |
A | Rapid urbanization and high income levels. Characterized by thriving heavy industry and mining |
B | The highest share of the secondary sector in the economy. |
C | Highest economic growth |
D | Inland provinces. The least development and lowest urbanization rate |
E | Mostly located along the Yangtze River. Income and urbanization rates are at low levels. |
F | Highest income level and urbanization rate. |
Cluster A | Cluster B | Cluster C | Cluster D | Cluster E | Cluster F | Pool | |
---|---|---|---|---|---|---|---|
Income gap b/w rural and urban | D | D | U | D | D | D | U |
Forest coverage | IU | I | IU | IU | NS | IU | I |
Waste water charge per capita | U | D | D | U | U | D | D |
Waste water charge per GRP | U | D | D | U | U | IU | U |
COD discharge per capita | I | I | IC | I | IC | IC | IC |
COD discharge per GRP | IC | I | IC | IC | IC | IC | IC |
Industry gas emissions per capita | D | D | D | D | D | D | D |
Industry gas emissions GRP | D | D | D | D | D | I | D |
Industry SOx emissions per capita | I | U | U | I | I | I | I |
Industry SOx emissions per GRP | I | I | I | I | I | I | I |
Solid waste generation per capita | D | D | D | D | D | U | U |
Solid waste generation per GRP | U | NS | NS | IU | NS | NS | IC |
Solid waste utilization | I | I | I | I | I | I | I |
Primary energy consumption per capita | D | D | D | D | D | D | D |
Primary energy consumption per GRP | I | I | I | I | I | I | I |
Electricity consumption per capita | D | D | D | D | D | D | D |
Electricity consumption per GRP | I | I | I | I | I | I | I |
Living water consumption per capita | D | D | D | NS | D | D | D |
Living water consumption per GRP | IC | IC | IC | IC | IC | IC | IC |
Industrial water consumption per GRP | IC | IC | IC | IC | IC | IC | IC |
Variable | Coefficient | Standard Error |
---|---|---|
GRP/capita | −1.19 *** | 0.36 |
(GRP/capita)2 | 0.17 *** | 0.03 |
Beijing SOx lag | −0.25 *** | 0.10 |
Year | 0.08 ** | 0.03 |
Constant | −177.2 ** | 79.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uwasu, M.; Hara, K.; Kuroda, M.; Han, J. Assessing the Spatiotemporal Dynamics of Environmental Sustainability in China. Sustainability 2024, 16, 5322. https://doi.org/10.3390/su16135322
Uwasu M, Hara K, Kuroda M, Han J. Assessing the Spatiotemporal Dynamics of Environmental Sustainability in China. Sustainability. 2024; 16(13):5322. https://doi.org/10.3390/su16135322
Chicago/Turabian StyleUwasu, Michinori, Keishiro Hara, Masashi Kuroda, and Ji Han. 2024. "Assessing the Spatiotemporal Dynamics of Environmental Sustainability in China" Sustainability 16, no. 13: 5322. https://doi.org/10.3390/su16135322
APA StyleUwasu, M., Hara, K., Kuroda, M., & Han, J. (2024). Assessing the Spatiotemporal Dynamics of Environmental Sustainability in China. Sustainability, 16(13), 5322. https://doi.org/10.3390/su16135322