Conversion of Post-Refining Waste MONG to Gaseous Fuel in a Rotary Gasifier
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Setup
2.2. Experimental Methodology
2.3. Calculations of Energy and Mass Balance
2.4. LCA Analysis
3. Results
4. Discussion
5. Conclusions
- -
- Utilization of biodiesel manufacturing waste, which has currently no significant application;
- -
- Production of high-calorific-value gaseous fuel;
- -
- Production of sustainable fuel with a net zero emission of CO2;
- -
- Potential application of solid waste ash for fertilizer production.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, A.; Audi, M.; Roussel, Y. Natural resources depletion, renewable energy consumption and environmental degradation: A comparative analysis of developed and developing world. Int. J. Energy Econ. Policy 2021, 11, 251–260. [Google Scholar] [CrossRef]
- Motevali, A.; Hooshmandzadeh, N.; Fayyazi, E.; Valipour, M.; Yue, J. Environmental Impacts of Biodiesel Production Cycle from Farm to Manufactory: An Application of Sustainable Systems Engineering. Atmosphere 2023, 14, 399. [Google Scholar] [CrossRef]
- Zakari, A.; Adedoyin, F.F.; Bekun, F.V. The effect of energy consumption on the environment in the OECD countries: Economic policy uncertainty perspectives. Environ. Sci. Pollut. Res. 2021, 28, 52295–52305. [Google Scholar] [CrossRef] [PubMed]
- Khanal, A. Does energy consumption impact the environment? Evidence from australia using the jj bayer-hanck cointegration technique and the autoregressive distributed lag test. Int. J. Energy Econ. Policy 2021, 11, 185–194. [Google Scholar] [CrossRef]
- Talapko, J.; Talapko, D.; Matić, A.; Škrlec, I. Microorganisms as New Sources of Energy. Energies 2022, 15, 6365. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. New Energy Technologies: Microalgae, Photolysis and Airborne Wind Turbines. Science 2019, 1, 43. [Google Scholar] [CrossRef]
- Hafezi, R.; Alipour, M. Energy Security and Sustainable Development. In Affordable and Clean Energy: Encyclopedia of the UN Sustainable Development Goals; Springer: Cham, Switzerland, 2020; pp. 1–12. [Google Scholar]
- Pham, T.S. Pumped Storage Power Plant, Solutions to Ensure Water Sustainability and Environmental Protection. In Advances in Research on Water Resources and Environmental Systems; Springer International Publishing: Cham, Switzerland, 2023; pp. 111–119. [Google Scholar]
- Cherp, A.; Vinichenko, V.; Tosun, J.; Gordon, J.A.; Jewell, J. National growth dynamics of wind and solar power compared to the growth required for global climate targets. Nat. Energy 2021, 6, 742–754. [Google Scholar] [CrossRef]
- Karunathilake, H.; Witharana, S. Fossil fuels and global energy economics. Ref. Modul. Earth Syst. Environ. Sci. 2023. [Google Scholar] [CrossRef]
- Lujala, P.; Le Billon, P.; Gaulin, N. Phasing Out Fossil Fuels: Determinants of Production Cuts and Implications for an International Agreement. Glob. Environ. Politics 2022, 22, 95–128. [Google Scholar] [CrossRef]
- Bruce, P.; Catlow, R.; Edwards, P. Energy materials to combat climate change. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 3225. [Google Scholar] [CrossRef]
- Jia, X.; Wang, C.; Lee, C.Y.; Yu, C.; Wallace, G.G. Energy materials for transient power sources. MRS Bull. 2020, 45, 121–128. [Google Scholar] [CrossRef]
- Sharma, R.; Tiwari, S. Waste to energy prospect towards sustainability: A review. Int. J. Tech. Res. Sci. 2020, 3, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Kaur, M.; Punj, S.; Singh, K. Biomass as a sustainable resource for value-added modern materials: A review. Biofuels Bioprod. Biorefining 2020, 14, 673–695. [Google Scholar] [CrossRef]
- dell’Erba, I.E.; Hoppe, C.E.; Williams, R.J.J. Synthesis and Properties of Organic–Inorganic Hybrid Materials Based on Glycerol. Ind. Eng. Chem. Res. 2012, 51, 7793–7799. [Google Scholar] [CrossRef]
- Thiruketheeswaranathan, S. Application of Life Cycle Assessment Tool on Biodiesel Production: Assessing the Environmental Impact of Biodiesel. Middle East J. Appl. Sci. Technol. 2022, 5, 1–6. [Google Scholar] [CrossRef]
- Wong, W.Y.; Lim, S.; Pang, Y.L.; Shuit, S.H.; Lam, M.K.; Tan, I.S. A comprehensive review of the production methods and effect of parameters for glycerol-free biodiesel production. Renew. Sustain. Energy Rev. 2023, 182, 113397. [Google Scholar] [CrossRef]
- Nguyen, V.G.; Pham, M.T.; Le, N.V.L.; Le, H.C.; Truong, T.H.; Cao, D.N. A comprehensive review on the use of biodiesel for diesel engines. Int. J. Renew. Energy Dev. 2023, 12, 720–740. [Google Scholar] [CrossRef]
- Wani, M.R.; Sachan, V. Comparison of Performance of Internal Combustion Engine Fuelled with Diesel and Biodiesel (used Vegetable Oil) Blends. Int. J. Mech. Eng. 2023, 10, 7–12. [Google Scholar] [CrossRef]
- Available online: https://www.theglobaleconomy.com/rankings/diesel_fuel_consumption/ (accessed on 4 March 2024).
- Demirbas, A. Biofuels securing the planet’s future energy needs. Energy Convers. Manag. 2009, 50, 2239–2249. [Google Scholar] [CrossRef]
- Fatih Demirbas, M. Biorefineries for biofuel upgrading: A critical review. Appl. Energy 2009, 86, S151–S161. [Google Scholar] [CrossRef]
- Bohon, M.D.; Metzger, B.A.; Linak, W.P.; King, C.J.; Roberts, W.L. Glycerol combustion and emissions. Proc. Combust. Inst. 2011, 33, 2717–2724. [Google Scholar] [CrossRef]
- Vicente, G.; Martinez, M.; Aracil, J. Optimisation of integrated biodiesel production. Part I. A study of the biodiesel purity and yield. Bioresour. Technol. 2007, 98, 1724–1733. [Google Scholar] [CrossRef] [PubMed]
- Malayil, S.; Surendran, A.N.; Kate, K.; Satyavolu, J. Utilization of residual fatty acids in matter organic non-glycerol from a soy biodiesel plant in filaments used for 3D printing. J. Bioresour. Bioprod. 2023, 8, 215–223. [Google Scholar] [CrossRef]
- Bagnato, G.; Iulianelli, A.; Sanna, A.; Basile, A. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors. Membranes 2017, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Kachel-Jakubowska, M.; Matwijczuk, A.; Gagoś, M. Analysis of the physicochemical properties of post-manufacturing waste derived from production of methyl esters from rapeseed oil. Int. Agrophys. 2017, 31, 175–182. [Google Scholar] [CrossRef]
- Niedziółka, I.; Szpryngiel, M.; Kachel-Jakubowska, M.; Kraszkiewicz, A.; Zawiślak, K.; Sobczak, P. Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass. Renew. Energy 2015, 76, 312–317. [Google Scholar] [CrossRef]
- Hiremath, A.; Kannabiran, M.; Rangaswamy, V. 1,3-Propanediol production from crude glycerol from jatropha biodiesel process. New Biotechnol. 2011, 28, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Sun, Y.; Tan, C.; Li, H.; Zheng, X.J.; Jin, K.Q. Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii. Bioresour. Technol. 2013, 142, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Bouaid, A.; Vázquez, R.; Martinez, M.; Aracil, J. Effect of free fatty acids contents on biodiesel quality. Pilot plant studies. Fuel 2016, 174, 54–62. [Google Scholar] [CrossRef]
- Hu, S.; Luo, X.; Wan, C.; Li, Y. Characterization of Crude Glycerol from Biodiesel Plants. J. Agric. Food Chem. 2012, 60, 5915–5921. [Google Scholar] [CrossRef]
- Chol, C.G.; Dhabhai, R.; Dalai, A.K.; Reaney, M. Purification of crude glycerol derived from biodiesel production process: Experimental studies and techno-economic analyses. Fuel Process. Technol. 2018, 178, 78–87. [Google Scholar] [CrossRef]
- Mayowa, J. Biodiesel Production Innovation Based on Jatropha Curcas and Soybean Oil. Int. J. Pap. Adv. Sci. Rev. 2023, 4, 10–15. [Google Scholar] [CrossRef]
- Baioni e Silva, G.; Manicardi, T.; Longati, A.A.; Lora, E.E.S.; Milessi, T.S. Parametric comparison of biodiesel transesterification processes using non-edible feedstocks: Castor bean and jatropha oils. Biofuels Bioprod. Biorefining 2023, 17, 297–311. [Google Scholar] [CrossRef]
- Ong, H.C.; Tiong, Y.W.; Goh, B.H.H.; Gan, Y.Y.; Mofijur, M.; Fattah, I.M.R. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges. Energy Convers. Manag. 2021, 228, 113647. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Sakinah, A.M.M.; Zularisam, A.W.; Pandey, A. Glycerol waste to value added products and its potential applications. Syst. Microbiol. Biomanufacturing 2021, 1, 378–396. [Google Scholar] [CrossRef] [PubMed]
- Rouhany, M.; Montgomery, H. Global Biodiesel Production: The State of the Art and Impact on Climate Change. Biodiesel Prod. Combust. 2019, 8, 1–14. [Google Scholar]
- Donkin, S.S.; Koser, S.L.; White, H.M.; Doane, P.H.; Cecava, M.J. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. J. Dairy Sci. 2009, 92, 5111–5119. [Google Scholar] [CrossRef]
- Lawong, W.; Shuriyapha, C. Capital Cost Comparison of Heat Energy obtained from Glycerine Fuel and Cooking gas used for Bio-diesel Production Process. Procedia Eng. 2012, 32, 449–454. [Google Scholar] [CrossRef]
- Balla, V.K.; Tadimeti, J.G.D.; Sudan, K.; Satyavolu, J.; Kate, K.H. First report on fabrication and characterization of soybean hull fiber: Polymer composite filaments for fused filament fabrication. Prog. Addit. Manuf. 2021, 6, 39–52. [Google Scholar] [CrossRef]
- Sajid, M.; Raheem, A.; Ullah, N.; Asim, M.; Ur Rehman, M.S.; Ali, N. Gasification of municipal solid waste: Progress, challenges, and prospects. Renew. Sustain. Energy Rev. 2022, 168, 112815. [Google Scholar] [CrossRef]
- Suriya, K.K.A.; Farzan, K.; Yogesh, C.U.; Bala, B.S.S. Conversion process of natural gas into liquid fuels. J. Future Eng. Technol. 2022, 18, 45. [Google Scholar] [CrossRef]
- Sandesh, K.; Ujwal, P. Trends and perspectives of liquid biofuel—Process and industrial viability. Energy Convers. Manag. X 2021, 10, 100075. [Google Scholar] [CrossRef]
- Gracz, W.; Marcinkowski, D.; Golimowski, W.; Szwajca, F.; Strzelczyk, M.; Wasilewski, J. Multifaceted Comparison Efficiency and Emission Characteristics of Multi-Fuel Power Generator Fueled by Different Fuels and Biofuels. Energies 2021, 14, 3388. [Google Scholar] [CrossRef]
- Akimoto, Y.; Minei, Y.; Okajima, K. Evaluation of Impurity Concentration Process and Mitigation Operation in Fuel Cell System for Using Biogas. Reactions 2021, 2, 115–128. [Google Scholar] [CrossRef]
- Cheng, Y.; Thow, Z.; Wang, C.H. Biomass gasification with CO2 in a fluidized bed. Powder Technol. 2016, 296, 87–101. [Google Scholar] [CrossRef]
- Benedetti, V.; Patuzzi, F.; Baratieri, M. Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. Appl. Energy 2018, 227, 92–99. [Google Scholar] [CrossRef]
- Schneider, J.; Grube, C.; Herrmann, A.; Rönsch, S. Atmospheric entrained-flow gasification of biomass and lignite for decentralized applications. Fuel Process. Technol. 2016, 152, 72–82. [Google Scholar] [CrossRef]
- Karl, J.; Pröll, T. Steam gasification of biomass in dual fluidized bed gasifiers: A review. Renew. Sustain. Energy Rev. 2018, 98, 64–78. [Google Scholar] [CrossRef]
- Wang, D.; Yuan, W.; Ji, W. Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning. Appl. Energy 2011, 88, 1656–1663. [Google Scholar] [CrossRef]
- Frolov, S.M. Organic Waste Gasification: A Selective Review. Fuels 2021, 2, 556–650. [Google Scholar] [CrossRef]
- Bojanovský, J.; Máša, V.; Hudák, I.; Skryja, P.; Hopjan, J. Rotary Kiln, a Unit on the Border of the Process and Energy Industry—Current State and Perspectives. Sustainability 2022, 14, 13903. [Google Scholar] [CrossRef]
- Mushtaq, A.; Bin Mukhtar, H.; Mohd Shariff, A. FTIR Study of Enhanced Polymeric Blend Membrane with Amines. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 1811–1820. [Google Scholar] [CrossRef]
- Zhang, W.; Kim, S.; Wahl, L.; Khare, R.; Hale, L.; Hu, J. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation. Science 2023, 379, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Petchesi, I. Life Cycle Analysis of GHG and Air Pollutant Emissions from Renewable and Conventional Electricity, Heating, and Transport Fuel Options in the EU until 2030; ETC/ACC Technical Paper 2009/18; European Topic Centre on Air and Climate Change: Bilthoven, The Netherlands, 2009. [Google Scholar]
- PN-EN ISO 21663:2021-06; Solid Secondary Fuels—Instrumental Methods for the Determination of Carbon (C), Hydrogen (H), Nitrogen (N) and Sulphur (S). Polish Committee for Standardization: Warsaw, Poland, 2021.
- Sitka, A.; Szulc, P.; Smykowski, D.; Jodkowski, W. Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier. Renew. Energy 2021, 175, 422–429. [Google Scholar] [CrossRef]
- Casasso, A.; Capodaglio, P.; Simonetto, F.; Sethi, R. Environmental and Economic Benefits from the Phase-out of Residential Oil Heating: A Study from the Aosta Valley Region (Italy). Sustainability 2019, 11, 3633. [Google Scholar] [CrossRef]
Ash (Raw Sample), % | Ash (Dried Sample), % | VM, % | Moisture, % |
---|---|---|---|
12.6 | 31.5 | 86.1 | 59.0 |
C | H | N | S |
---|---|---|---|
49.0 | 8.3 | 0.40 | 0 |
Parameter | Unit | Value |
---|---|---|
- | 0.59 | |
kg/h | 6.50 | |
kg/h | 2.65 | |
kg/h | 3.85 | |
kg/h | 0.83 | |
MJ/kg | 13.30 | |
kW | 24.02 |
Parameter | Unit | Value |
---|---|---|
kg/h | 5.67 | |
kg/h | 1.82 | |
kg/m3 | 1.46 | |
W2G | MJ/kg | 35.07 |
kW | 17.69 | |
kW | 6.33 |
Process 1: Generation of 1 MWt of heat using MONG pyrolysis gas | |
Main substrate | RAW MONG: 366.6 kg/h MONG pyrolysis gas: 102.7 kg/h |
Main product | Heat supply: 1 MWt |
Solid byproducts/waste | Mass flux of ash (as fertilizer): 46.8 kg/h |
Emission to the atmosphere | CO: 0.1–0.4 kg/h |
CO2: 0.0 kg/h (biomass emission, carbon neutral) | |
NOX: 0.1 kg/h | |
SO2: 0.0 kg/h | |
Process 2: Generation of 1 MWt of heat using natural gas | |
Main substrate | Natural gas: 73.5 kg/h |
Main product | Heat supply: 1 MWt |
Solid waste | 0 kg/h |
Emission to the atmosphere | CO: 0.1–0.4 kg/h |
CO2: 233 kg/h | |
NOX: 0.2–0.8 kg/h | |
SO2: 1.8 kg/h | |
Process 3: Generation of 1 MWt of heat using lignite | |
Main substrate | Lignite: 491.1 kg/h |
Main product | Heat supply: 1 MWt |
Solid waste | 115.9 kg/h |
Emission to the atmosphere | CO: 0.6 kg/h |
CO2: 307–416 kg/h | |
NOX: 0.3–0.8 kg/h | |
SO2: 0.4–0.7 kg/h | |
Process 4: Generation of 1 MWt of heat using hard coal | |
Main substrate | Coal: 167.4 kg/h |
Main product | Heat supply: 1 MWt |
Solid waste | 42.4 kg/h |
Emission to the atmosphere | CO: 0.2–0.6 kg/h |
CO2: 260–331 kg/h | |
NOX: 0.5–0.8 kg/h | |
SO2: 0.4–0.7 kg/h |
Comparison of Processes | ||||
---|---|---|---|---|
Environmental Impact | Process 1 | Process 2 | Process 3 | Process 4 |
Natural resources depletion | 0.0 kg/h | 73.5 kg/h | 491.1 kg/h | 167.4 kg/h |
Waste deposition | 0.0 kg/h * | 0.0 kg/h | 115.9 kg/h | 42.4 kg/h |
Global warming | 0.0 kg/h CO2 eq. | 233 kg/h CO2 eq. | 307–416 CO2 eq. | 260–331 CO2 eq. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitka, A.; Szulc, P.; Smykowski, D.; Anwajler, B.; Tietze, T.; Jodkowski, W. Conversion of Post-Refining Waste MONG to Gaseous Fuel in a Rotary Gasifier. Sustainability 2024, 16, 4251. https://doi.org/10.3390/su16104251
Sitka A, Szulc P, Smykowski D, Anwajler B, Tietze T, Jodkowski W. Conversion of Post-Refining Waste MONG to Gaseous Fuel in a Rotary Gasifier. Sustainability. 2024; 16(10):4251. https://doi.org/10.3390/su16104251
Chicago/Turabian StyleSitka, Andrzej, Piotr Szulc, Daniel Smykowski, Beata Anwajler, Tomasz Tietze, and Wiesław Jodkowski. 2024. "Conversion of Post-Refining Waste MONG to Gaseous Fuel in a Rotary Gasifier" Sustainability 16, no. 10: 4251. https://doi.org/10.3390/su16104251
APA StyleSitka, A., Szulc, P., Smykowski, D., Anwajler, B., Tietze, T., & Jodkowski, W. (2024). Conversion of Post-Refining Waste MONG to Gaseous Fuel in a Rotary Gasifier. Sustainability, 16(10), 4251. https://doi.org/10.3390/su16104251