Constructing an Ecological Network Based on Heat Environment Risk Assessment: An Optimisation Strategy for Thermal Comfort Coupling Society and Ecology
Abstract
:1. Introduction
2. Data Sources and Overview of Research Area
2.1. Study Area
2.2. Data
3. Methods
3.1. Thermal Environmental Risk Assessment
3.1.1. Hazards—Environmental Thermal Comfort
3.1.2. Exposure—Human-Development Footprint
3.1.3. Vulnerability—Natural Geographic Risk
3.1.4. Assessment Methodology
3.2. Thermal Environment Network Construction
3.2.1. Screening of Ecological Sources
3.2.2. MCR-Based Network Construction
3.2.3. Ecological Node Extraction
4. Results
4.1. Thermal Environmental Hazards, Exposure, and Vulnerability
4.2. Comprehensive Thermal Environment Risk
4.3. Screening of Thermal Risk Source Areas
4.4. Thermal Environment Ecological Network Construction
4.5. Node Identification for Ecological Networks
5. Discussion
5.1. Thermal Environmental Risk Optimisation under Socio-Ecological Trade-Offs
5.1.1. Spatial Correlation Analysis of Thermal Environmental Risk
5.1.2. Strategies for Optimising Thermal Environmental Risks
5.2. Optimisation Strategies for Thermal Environmental Ecological Networks
5.2.1. Network Pattern Optimisation Based on Urban Green Infrastructure
5.2.2. Network Structure Optimisation Based on Node Characteristics
5.3. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Lin, L.; Zhang, B.; Xu, H.; Xue, J.; Fu, Y.; Zeng, Y.; Li, F. Sustainable urban development based on an adaptive cycle model: A coupled social and ecological land-use development model. Ecol. Indic. 2023, 154, 110666. [Google Scholar] [CrossRef]
- Donateo, A.; Palusci, O.; Pappaccogli, G.; Esposito, A.; Martilli, A.; Santiago, J.L.; Buccolieri, R. Analysis of urban heat island and human thermal comfort in a Mediterranean city: A case study of Lecce (Italy). Sustain. Cities Soc. 2023, 98, 104849. [Google Scholar] [CrossRef]
- Li, L.; Zhan, W.; Hu, L.; Chakraborty, T.C.; Wang, Z.; Fu, P.; Wang, D.; Liao, W.; Huang, F.; Fu, H.; et al. Divergent urbanization-induced impacts on global surface urban heat island trends since 1980s. Remote Sens. Environ. 2023, 295, 113650. [Google Scholar] [CrossRef]
- Wang, Z. Compound environmental impact of urban mitigation strategies: Co-benefits, trade-offs, and unintended consequence. Sustain. Cities Soc. 2021, 75, 103284. [Google Scholar] [CrossRef]
- Flores Quiroz, N.; Gibson, L.; Conradie, W.S.; Ryan, P.; Heydenrych, R.; Moran, A.; van Straten, A.; Walls, R. Analysis of the 2017 Knysna fires disaster with emphasis on fire spread, home losses and the influence of vegetation and weather conditions: A South African case study. Int. J. Disaster Risk Reduct. 2023, 88, 103618. [Google Scholar] [CrossRef]
- Jang, K.; Bayon, G.; Vogt, C.; Forwick, M.; Ahn, Y.; Kim, J.H.; Nam, S.I. Non-linear response of glacier melting to Holocene warming in Svalbard recorded by sedimentary iron (oxyhydr)oxides. Earth Planet. Sci. Lett. 2023, 607, 118054. [Google Scholar] [CrossRef]
- Rao, P.; Tassinari, P.; Torreggiani, D. Exploring the land-use urban heat island nexus under climate change conditions using machine learning approach: A spatio-temporal analysis of remotely sensed data. Heliyon 2023, 9, e18423. [Google Scholar] [CrossRef]
- Wu, Y.; Hou, H.; Wang, R.; Murayama, Y.; Wang, L.; Hu, T. Effects of landscape patterns on the morphological evolution of surface urban heat island in Hangzhou during 2000–2020. Sustain. Cities Soc. 2022, 79, 103717. [Google Scholar] [CrossRef]
- Marzouk, M.; Attia, K.; Azab, S. Assessment of coastal vulnerability to climate change impacts using GIS and remote sensing: A case study of Al-Alamein New City. J. Clean. Prod. 2021, 290, 125723. [Google Scholar] [CrossRef]
- Ning, W.; Hu, Y.; Feng, S.; Cao, M.; Luo, J. Ecological risk assessment and transmission of soil heavy metals in pastoral areas of the Tibetan plateau based on network environment analysis. Sci. Total Environ. 2023, 905, 167197. [Google Scholar] [CrossRef]
- Yang, Y.; Feng, Z.; Wu, K.; Lin, Q. How to construct a coordinated ecological network at different levels: A case from Ningbo city, China. Ecol. Inform. 2022, 70, 101742. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Y.; Liu, Y.; Zhang, X.; Fang, X. Where is the pathway to sustainable urban development? Coupling coordination evaluation and configuration analysis between low-carbon development and eco-environment: A case study of the Yellow River Basin, China. Ecol. Indic. 2022, 144, 109473. [Google Scholar] [CrossRef]
- Fang, C.; Liu, H.; Li, G. International progress and evaluation on interactive coupling effects between urbanization and the eco-environment. J. Geogr. Sci. 2016, 26, 1081–1116. [Google Scholar] [CrossRef]
- Simpson, N.P.; Mach, K.J.; Constable, A.; Hess, J.; Hogarth, R.; Howden, M.; Lawrence, J.; Lempert, R.J.; Muccione, V.; Mackey, B.; et al. A framework for complex climate change risk assessment. One Earth 2021, 4, 489–501. [Google Scholar] [CrossRef]
- Hsu, A.; Sheriff, G.; Chakraborty, T.; Manya, D. Disproportionate exposure to urban heat island intensity across major US cities. Nat. Commun. 2021, 12, 2721. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zha, Y. Population exposure to extreme heat in China: Frequency, intensity, duration and temporal trends. Sustain. Cities Soc. 2020, 60, 102282. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, Z.; Liu, X.; Zheng, W.; Yin, L. Urban heat islands and their effects on thermal comfort in the US: New York and New Jersey. Ecol. Indic. 2023, 154, 110765. [Google Scholar] [CrossRef]
- Zhang, K.; Cao, C.; Chu, H.; Zhao, L.; Zhao, J.; Lee, X. Increased heat risk in wet climate induced by urban humid heat. Nature 2023, 617, 738–742. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Li, J.; Gao, C. Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities. Sustain. Cities Soc. 2020, 63, 102425. [Google Scholar] [CrossRef]
- Gao, J.; Gong, J.; Yang, J.; Li, J.; Li, S. Measuring spatial connectivity between patches of the heat source and sink (SCSS): A new index to quantify the heterogeneity impacts of landscape patterns on land surface temperature. Landsc. Urban Plan. 2022, 217, 104260. [Google Scholar] [CrossRef]
- Hu, L.; Li, Q. Greenspace, bluespace, and their interactive influence onurban thermal environments. Environ. Res. Lett. 2020, 15, 034041. [Google Scholar] [CrossRef]
- Feng, R.; Wang, F.; Wang, K.; Wang, H.; Li, L. Urban ecological land and natural-anthropogenic environment interactively drive surface urban heat island: An urban agglomeration-level study in China. Environ. Int. 2021, 157, 106857. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, J.; Yang, G.; Schlaberg, J. Reverse thinking: A new method from the graph perspective for evaluating and mitigating regional surface heat islands. Remote Sens. 2021, 13, 1127. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, R.; Zeng, J. Optimizing ecological and economic benefits in areas with complex land-use evolution based on spatial subdivisions. Landsc. Urban Plan. 2023, 236, 104782. [Google Scholar] [CrossRef]
- Lin, J.; Qiu, S.; Tan, X.; Zhuang, Y. Measuring the relationship between morphological spatial pattern of green space and urban heat island using machine learning methods. Build. Environ. 2023, 228, 109910. [Google Scholar] [CrossRef]
- Pili, S.; Serra, P.; Salvati, L. Landscape and the city: Agro-forest systems, land fragmentation and the ecological network in Rome, Italy. Urban For. Urban Green. 2019, 41, 230–237. [Google Scholar] [CrossRef]
- Shuai, N.; Hu, Y.; Gao, M.; Guo, Z.; Bai, Y. Construction and optimization of ecological networks in karst regions based on multi-scale nesting: A case study in Guangxi Hechi, China. Ecol. Inform. 2023, 74, 101963. [Google Scholar] [CrossRef]
- Qian, W.; Li, X. A cold island connectivity and network perspective to mitigate the urban heat island effect. Sustain. Cities Soc. 2023, 94, 104525. [Google Scholar] [CrossRef]
- Mokhtari, Z.; Barghjelveh, S.; Sayahnia, R.; Karami, P.; Qureshi, S.; Russo, A. Spatial pattern of the green heat sink using patch- and network-based analysis: Implication for urban temperature alleviation. Sustain. Cities Soc. 2022, 83, 103964. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban Syst. 2015, 54, 181–194. [Google Scholar] [CrossRef]
- Qiu, J.; Li, X.; Qian, W. Optimizing the spatial pattern of the cold island to mitigate the urban heat island effect. Ecol. Indic. 2023, 154, 110550. [Google Scholar] [CrossRef]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Liu, F.; Liu, J.; Zhang, Y.; Hong, S.; Fu, W.; Wang, M.; Dong, J. Construction of a cold island network for the urban heat island effect mitigation. Sci. Total Environ. 2024, 915, 169950. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, X.; Zeng, Y.; Koga, M.; Vejre, H. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban For. Urban Green. 2018, 29, 113–121. [Google Scholar] [CrossRef]
- Yao, X.; Yu, K.; Zeng, X.; Lin, Y.; Ye, B.; Shen, X.; Liu, J. How can urban parks be planned to mitigate urban heat island effect in “furnace cities”? An accumulation perspective. J. Clean. Prod. 2022, 330, 129852. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, Y.; Tong, C. Spatiotemporal evolution of urban green space and its impact on the urban thermal environment based on remote sensing data: A case study of Fuzhou City, China. Urban For. Urban Green. 2019, 41, 333–343. [Google Scholar] [CrossRef]
- Feng, R.; Wang, F.; Liu, S.; Qi, W.; Zhao, Y.; Wang, Y. How urban ecological land affects resident heat exposure: Evidence from the mega-urban agglomeration in China. Landsc. Urban Plan. 2023, 231, 104643. [Google Scholar] [CrossRef]
- Qiyamud, D.I.; Abdur, R.J.; Abdur, R.H.; Irfan, U.; Muhmmad, S. Flood risk assessment of the population in Afghanistan: A spatial analysis of hazard, exposure, and vulnerability. Nat. Hazards Res. 2024, 4, 46–55. [Google Scholar] [CrossRef]
- Espinoza, N.S.; dos Santos, C.A.C.; de Oliveira, M.B.L.; Silva, M.T.; Santos, C.A.G.; Silva, R.M.; Mishra, M.; Ferreira, R.R. Assessment of urban heat islands and thermal discomfort in the Amazonia biome in Brazil: A case study of Manaus city. Build. Environ. 2023, 227, 109772. [Google Scholar] [CrossRef]
- Shahfahad; Naikoo, M.W.; Towfiqul Islam, A.R.M.; Mallick, J.; Rahman, A. Land use/land cover change and its impact on surface urban heat island and urban thermal comfort in a metropolitan city. Urban Clim. 2022, 41, 101052. [Google Scholar] [CrossRef]
- Mushore, T.D.; Mutanga, O.; Odindi, J.; Sadza, V.; Dube, T. Pansharpened landsat 8 thermal-infrared data for improved Land Surface Temperature characterization in a heterogeneous urban landscape. Remote Sens. Appl. 2022, 26, 100728. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez, C.J.; Paolinib, M. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Giles, B.D.; Balafoutis, C.; Maheras, P. Too hot for comfort: The heatwaves in Greece in 1987 and 1988. Int. J. Biometeorol. 1990, 34, 98–104. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Y.; Zheng, Z.; Wu, Z. Spatiotemporal coupling analysis between human footprint and ecosystem service value in the highly urbanized Pearl River Delta urban Agglomeration, China. Ecol. Indic. 2023, 148, 110033. [Google Scholar] [CrossRef]
- Williams, B.A.; Venter, O.; Allan, J.R.; Atkinson, S.C.; Rehbein, J.A.; Ward, M.; Di Marco, M.D.; Grantham, H.S.; Ervin, J.; Goetz, S.J.; et al. Change in Terrestrial Human Footprint Drives Continued Loss of Intact Ecosystems. One Earth 2020, 3, 371–382. [Google Scholar] [CrossRef]
- Wei, Q.; Halike, A.; Yao, K.; Chen, L.; Balati, M. Construction and optimization of ecological security pattern in Ebinur Lake Basin based on MSPA-MCR models. Ecol. Indic. 2022, 138, 108857. [Google Scholar] [CrossRef]
- Han, Y.; Yu, C.; Feng, Z.; Du, H.; Huang, C.; Wu, K. Construction and optimization of ecological security pattern based on spatial syntax classification—Taking Ningbo, China, as an example. Land 2021, 10, 380. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, J.; Yang, G. How to build a heat network to alleviate surface heat island effect? Sustain. Cities Soc. 2021, 74, 103135. [Google Scholar] [CrossRef]
- Qiu, S.; Xu, C.; Wang, F.; Yu, Q. Potential grading refrigeration system? Based on urban agglomeration thermal environment analysis perspective. Sustain. Cities Soc. 2023, 97, 104736. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Q.; Ji, M.; Sun, Y.; Feng, Y.; Yang, F.; Zhang, Z. Ecological network construction and gradient zoning optimization strategy in urban-rural fringe: A case study of Licheng District, Jinan City, China. Ecol. Indic. 2023, 150, 110251. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, Z.; Zhong, Q.; Zhang, Q.; Zhang, L.; Zhang, R.; Yi, Y.; Zhang, G.; Li, X.; Liu, J. Delimitation of ecological corridors in a highly urbanizing region based on circuit theory and MSPA. Ecol. Indic. 2022, 142, 109258. [Google Scholar] [CrossRef]
- Fan, S.; Axmacher, J.C.; Shu, H.; Liu, Y. Ecological network design based on optimizing ecosystem services: Case study in the Huang-Huai-Hai region, China. Ecol. Indic. 2023, 150, 110264. [Google Scholar] [CrossRef]
- Ramsay, E.E.; Duffy, G.A.; Burge, K.; Taruc, R.R.; Fleming, G.M.; Faber, P.A.; Chown, S.L. Spatio-temporal development of the urban heat island in a socioeconomically diverse tropical city. Environ. Pollut. 2023, 316, 120443. [Google Scholar] [CrossRef]
- Ngamsiriudom, T.; Tanaka, T. Making an urban environmental climate map of the Bangkok Metropolitan Region, Thailand: Analysis of air temperature, wind distributions, and spatial environmental factors. World Dev. 2023, 3, 100105. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, M.; Wang, A.; Zhang, X.; Chen, T. How do varying socio-economic driving forces affect China’s carbon emissions? New evidence from a multiscale geographically weighted regression model. Environ. Sci. Pollut. Res. Int. 2021, 28, 41242–41254. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Murayama, Y. An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustain. Cities Soc. 2017, 32, 557–568. [Google Scholar] [CrossRef]
- Motazedian, A.; Coutts, A.M.; Tapper, N.J. The microclimatic interaction of a small urban park in central Melbourne with its surrounding urban environment during heat events. Urban For. Urban Green. 2020, 52, 126688. [Google Scholar] [CrossRef]
- Liu, X.; Ming, Y.; Liu, Y.; Yue, W.; Han, G. Influences of landform and urban form factors on urban heat island: Comparative case study between Chengdu and Chongqing. Sci. Total Environ. 2022, 820, 153395. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, H.; Zhang, S.; Jin, Z.; Zhang, Y.; Wang, Y.; Shi, Y.; Jiang, J.; Chen, X.; Liu, M. Long-term trends in surface thermal environment and its potential drivers along the urban development gradients in rapidly urbanizing regions of China. Sustain. Cities Soc. 2024, 105, 105324. [Google Scholar] [CrossRef]
- Hou, H.; Longyang, Q.; Su, H.; Zeng, R.; Xu, T.; Wang, Z. Prioritizing environmental determinants of urban heat islands: A machine learning study for major cities in China. Int. J. Appl. Earth Obs. 2023, 122, 103411. [Google Scholar] [CrossRef]
- Dong, J.Y.; Guo, M.; Wang, X.; Yang, X.; Zhang, Y.H.; Zhang, P.D. Dramatic loss of seagrass Zostera marina L. suitable habitat under projected climate change in coastal areas of the Bohai Sea and Shandong peninsula, China. J. Exp. Mar. Biol. Ecol. 2023, 565, 151915. [Google Scholar] [CrossRef]
- Zeren Cetin, I.; Varol, T.; Ozel, H.B. A geographic information systems and remote sensing–based approach to assess urban micro-climate change and its impact on human health in Bartin, Turkey. Environ. Monit. Assess. 2023, 195, 540. [Google Scholar] [CrossRef]
- Zheng, Z.; Lin, X.; Chen, L.; Yan, C.; Sun, T. Effects of urbanization and topography on thermal comfort during a heat wave event: A case study of Fuzhou, China. Sustain. Cities Soc. 2024, 102, 105233. [Google Scholar] [CrossRef]
- Gui, X.; Wang, L.; Yao, R.; Yu, D.; Li, C. Investigating the urbanization process and its impact on vegetation change and urban heat island in Wuhan, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 30808–30825. [Google Scholar] [CrossRef]
- Sikorski, P.; Gawryszewska, B.; Sikorska, D.; Chormański, J.; Schwerk, A.; Jojczyk, A.; Ciężkowski, W.; Archiciński, P.; Łepkowski, M.; Dymitryszyn, I.; et al. The value of doing nothing–How informal green spaces can provide comparable ecosystem services to cultivated urban parks. Ecosyst. Serv. 2021, 50, 101339. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, S. Scale dependence of urban green space cooling efficiency: A case study in Beijing metropolitan area. Sci. Total Environ. 2023, 898, 165563. [Google Scholar] [CrossRef]
- Niza, I.L.; Luz, I.M.d.; Bueno, A.M.; Broday, E.E. Thermal Comfort and Energy Efficiency: Challenges, Barriers, and Step towards Sustainability. Smart Cities 2022, 5, 1721–1741. [Google Scholar] [CrossRef]
- Hong, W.; Guo, R.; Li, X.; Liao, C. Measuring urban ecological network resilience: A disturbance scenario simulation method. Cities 2022, 131, 104057. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
- Lin, J.; Yang, W.; Yu, K.; Geng, J.; Liu, J. Identification and construction of ecological nodes in the Fuzhou ecological corridors. Forests 2022, 13, 1837. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, W.; Zhang, J.; Zheng, Y. Constructing an urban heat island network based on connectivity perspective: A case study of Harbin, China. Ecol. Indic. 2024, 159, 111665. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, N.; Chen, A.; Qiu, J.; He, C.; Cao, Y. Identification of a wetland ecological network for urban heat island effect mitigation in Changchun, China. Ecol. Indic. 2023, 150, 110248. [Google Scholar] [CrossRef]
- Xiang, Y.; Cen, Q.; Peng, C.; Huang, C.; Wu, C.; Teng, M.; Zhou, Z. Surface urban heat island mitigation network construction utilizing source-sink theory and local climate zones. Build. Environ. 2023, 243, 110717. [Google Scholar] [CrossRef]
- Gizem, A.; Cagla, M.A.; Ipek, G.D. Educational building retrofit under climate change and urban heat island effect. J. Build. Eng. 2021, 40, 102294. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, Y.; Tan, X.; Wang, B.; Zhou, C.; Xiang, Y. Rational zoning and optimization of agricultural distribution in Guangdong Province based on resource carrying capacity. Acta Ecol. Sin. 2023, 43, 820–834. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Jiao, M. Location matters: Planting urban trees in the right places improves cooling. Front. Ecol. Environ. 2022, 20, 147–151. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, J.; Wang, X.; Peng, J. Using stepping-stone theory to evaluate the maintenance of landscape connectivity under China’s ecological control line policy. J. Clean. Prod. 2021, 296, 126356. [Google Scholar] [CrossRef]
Range (°C) | Discomfort Index Classification |
---|---|
>32 | State of medical emergency |
29–32 | Everyone feels severe stress |
27–29 | Most of population suffers discomfort |
24–27 | Over 50% population feels discomfort |
21–24 | Under 50% population feels discomfort |
<21 | No discomfort |
Goal Layer | Criterion Layer | Indicator Layer | Indicator Weight | Unit | Elaboration of Indicator | Trend |
---|---|---|---|---|---|---|
Vulnerability to thermal environmental risks | Topographical conditions | Elevation | 0.1209 | m | Temperature decreases with increasing altitude; the higher the altitude, the lower the thermal risk vulnerability index. | − |
Slope | 0.1991 | ° | The greater the slope, the more prone it is to various types of geological hazards and the greater the thermal risk vulnerability index. | + | ||
Site attributes | Land use | 0.0771 | — | The greater the intensity of land-use development, the greater the thermal environmental vulnerability. | + | |
NDVI | 0.1211 | % | Vegetation cover can mitigate thermal risk; the higher the vegetation cover, the lower the thermal risk vulnerability. | − | ||
Natural climate | Rainfall | 0.1899 | mm | Rainwater volatilisation and heat absorption can provide cooling effect, the higher the rainfall, the lower the vulnerability. | − | |
Wind speed | 0.1381 | m/s | High wind speed is conducive to the realisation of hot airflow, thus reducing thermal environmental vulnerability. | − | ||
Dryness index | 0.1537 | — | A high dryness index increases environmental comfort, thus reducing thermal vulnerability. | − |
Indicators | Weight | Grade | |||||
---|---|---|---|---|---|---|---|
10 | 8 | 6 | 4 | 2 | 0 | ||
Hazards | 0.363 | >32 | 29–32 | 27–29 | 24–27 | 21–24 | <21 |
Exposure | 0.304 | >1.5 | 1–1.5 | 0.5–1 | 0–0.5 | −0.5–0 | <−0.5 |
Vulnerability | 0.243 | >−0.3 | −0.35–−0.3 | −0.4–0.35 | −0.45–0.4 | −0.5–0.45 | <−0.5 |
Resistance Factor | Weight | Grade | Resistance Value | Trend | Resistance Factor | Weight | Grade | Resistance Value | Trend |
---|---|---|---|---|---|---|---|---|---|
Elevation (m) | 0.11 | <200 | 1 | + | Land use | 0.12 | Water | 1 | + |
200–400 | 3 | Forests | 3 | ||||||
400–800 | 5 | Farmland | 5 | ||||||
800–1000 | 7 | Unused land | 7 | ||||||
>1000 | 9 | Building | 9 | ||||||
Slope (°) | 0.15 | <8° | 1 | + | Population density | 0.17 | >50 | 1 | + |
8°–15° | 3 | 10–50 | 3 | ||||||
15°–25° | 5 | 5–10 | 5 | ||||||
25°–35° | 7 | 1–5 | 7 | ||||||
>35° | 9 | <1 | 9 | ||||||
Evaporation (mm) | 0.12 | >1400 | 1 | + | Precipitation (mm) | 0.11 | >2000 | 1 | + |
1300–1400 | 3 | 1900–2000 | 3 | ||||||
1200–1300 | 5 | 1800–1900 | 5 | ||||||
1100–1200 | 7 | 1700–1800 | 7 | ||||||
<1100 | 9 | <1700 | 9 | ||||||
NDVI | 0.11 | >0.9 | 1 | + | Road network density | 0.11 | <50 | 1 | + |
0.75–0.9 | 3 | 50–100 | 3 | ||||||
0.5–0.75 | 5 | 100–150 | 5 | ||||||
0.25–0.5 | 7 | 150–200 | 7 | ||||||
<0.25 | 9 | >200 | 9 |
Year | Level 1 Ecological Source Area | Level 1 Ecological Source Area | Level 1 Ecological Source Area | ||||||
---|---|---|---|---|---|---|---|---|---|
Number | Area (km2) | Percentage (%) | Number | Area (km2) | Percentage (%) | Number | Area (km2) | Percentage (%) | |
2005 | 5 | 3853.59 | 83.00% | 9 | 616.97 | 13.29% | 16 | 172.17 | 3.71% |
2020 | 3 | 1710.75 | 56.64% | 18 | 894.21 | 29.61% | 33 | 415.32 | 13.75% |
Year | Indicators | R2 | Adj.R2 | AICc | AIC | RSS |
---|---|---|---|---|---|---|
2005 | Exposure | 0.693 | 0.671 | 21,753.488 | 21,638.337 | 3709.958 |
Vulnerability | 0.705 | 0.685 | 21,192.971 | 21,089.927 | 3570.227 | |
2020 | Exposure | 0.763 | 0.747 | 18,564.149 | 18,455.667 | 2862.112 |
Vulnerability | 0.806 | 0.793 | 16,133.122 | 16,030.760 | 2350.376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, D.; Wang, Z.; Gao, X.; Chen, S.; Chen, R.; Gao, Y. Constructing an Ecological Network Based on Heat Environment Risk Assessment: An Optimisation Strategy for Thermal Comfort Coupling Society and Ecology. Sustainability 2024, 16, 4109. https://doi.org/10.3390/su16104109
Gao D, Wang Z, Gao X, Chen S, Chen R, Gao Y. Constructing an Ecological Network Based on Heat Environment Risk Assessment: An Optimisation Strategy for Thermal Comfort Coupling Society and Ecology. Sustainability. 2024; 16(10):4109. https://doi.org/10.3390/su16104109
Chicago/Turabian StyleGao, Dongdong, Zeqi Wang, Xin Gao, Shunhe Chen, Rong Chen, and Yuan Gao. 2024. "Constructing an Ecological Network Based on Heat Environment Risk Assessment: An Optimisation Strategy for Thermal Comfort Coupling Society and Ecology" Sustainability 16, no. 10: 4109. https://doi.org/10.3390/su16104109
APA StyleGao, D., Wang, Z., Gao, X., Chen, S., Chen, R., & Gao, Y. (2024). Constructing an Ecological Network Based on Heat Environment Risk Assessment: An Optimisation Strategy for Thermal Comfort Coupling Society and Ecology. Sustainability, 16(10), 4109. https://doi.org/10.3390/su16104109