Spatial Heterogeneity Effects of Green Finance on Absolute and Relative Poverty
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Theoretical Analysis of Poverty
2.2. Indicators for Measuring China’s Green Finance Development
2.3. Models and Variables
2.3.1. Models
2.3.2. Variables
3. Empirical Analysis
3.1. Data Selection and Processing
3.2. Empirical Results of Green Finance Development Index
3.3. Empirical Results
3.3.1. Test and Analysis of Spatial Autocorrelation
3.3.2. Spatial Econometric Regression Results
- (1)
- Spatial econometric regression confirms the conclusion that green finance is conducive to targeted poverty alleviation. According to the results in Table 9, for urban areas, when a 1% increase occurs in green finance development, the poverty level will decrease by 0.339% with a 10% significance level; for rural areas, when a 1% increase occurs in green finance development, the poverty level will decrease by 0.749% with a 1% significance level. At the same time, green finance is more conducive to alleviating rural poverty.
- (2)
- Interestingly, we can also see from the table that green finance affects both urban and rural poverty in a negative way. If green finance increases by 1%, the relative poverty of urban and rural areas will increase by 0.097%. In other words, the development of green finance will increase the poverty gap between rural and urban areas. There may be a reason that the financial and economic development of cities is much faster than that of rural areas, and the utilization efficiency of policies and resources is much higher than that of rural areas. With China’s vigorous support for green finance, cities are the first to gain the dividend of green finance development, while rural areas are unable to respond to the call of policies the first time due to various reasons, which leads to the slow development of green finance and, finally, exacerbates the relative poverty between urban and rural areas.
3.3.3. Semi-Parametric Spatial Econometric Regression Results
3.4. Mediating Effect
3.5. Robustness Test
4. Conclusions and Policy Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, W. China’s goal of achieving carbon neutrality before 2060: Experts explain how. Natl. Sci. Rev. 2022, 8, nwac115. [Google Scholar] [CrossRef] [PubMed]
- White, M.A. Environmental finance: Value and risk in an age of ecology. Bus. Strategy Environ. 1996, 5, 198–206. [Google Scholar] [CrossRef]
- Scholtens, B. Finance as a Driver of Corporate Social Responsibility. J. Bus. Ethic 2006, 68, 19–33. [Google Scholar] [CrossRef]
- Soundarrajan, P.; Vivek, N. Green finance for sustainable green economic growth in India. Agric. Econ. 2016, 62, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Ngan, S.L.; Promentilla, M.A.B.; Yatim, P.; Lam, H.L. A Novel Risk Assessment Model for Green Finance: The Case of Malaysian Oil Palm Biomass Industry. Process. Integr. Optim. Sustain. 2018, 3, 75–88. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Rasoulinezhad, E.; Yoshino, N.; Chang, Y.; Morgan, P.J. The energy–pollution–health nexus: A panel data analysis of low- and middle-income asian countries. Singap. Econ. Rev. 2020, 66, 435–455. [Google Scholar] [CrossRef]
- Yu, C.-H.; Wu, X.; Zhang, D.; Chen, S.; Zhao, J. Demand for green finance: Resolving financing constraints on green innovation in China. Energy Policy 2021, 153, 112255. [Google Scholar] [CrossRef]
- Beck, T.; Demirgüç-Kunt, A.; Levine, R. Finance, inequality and the poor. J. Econ. Growth 2007, 12, 27–49. [Google Scholar] [CrossRef]
- Odhiambo, N.M. Finance-growth-poverty nexus in South Africa: A dynamic causality linkage. J. Socio Econ. 2009, 38, 320–325. [Google Scholar] [CrossRef]
- Welle-Strand, A.; Kjøllesdal, K.; Sitter, N. Assessing microfinance: The bosnia and herzegovina case. Manag. Glob. Transit. 2010, 8, 145–166. [Google Scholar]
- Inoue, T.; Hamori, S. How has financial deepening affected poverty reduction in India? Empirical analysis using state-level panel data. Appl. Financ. Econ. 2011, 22, 395–408. [Google Scholar] [CrossRef] [Green Version]
- Abosedra, S.; Shahbaz, M.; Nawaz, K. Modeling Causality Between Financial Deepening and Poverty Reduction in Egypt. Soc. Indic. Res. 2015, 126, 955–969. [Google Scholar] [CrossRef]
- Park, C.Y. Financial Inclusion, Poverty, and Income Inequality in Developing Asia. Soc. Sci. Electron. Publ. 2015, 20, 419–435. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, C. Risk identification, future value and credit capitalization: Research on the theory and policy of poverty alleviation by Internet finance. China Finance Econ. Rev. 2017, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Raberto, M.; Ozel, B.; Ponta, L.; Teglio, A.; Cincotti, S. From financial instability to green finance: The role of banking and credit market regulation in the Eurace model. J. Evol. Econ. 2018, 29, 429–465. [Google Scholar] [CrossRef] [Green Version]
- Ayyagari, M.; Beck, T.; Hoseini, M. Finance, law and poverty: Evidence from India. J. Corp. Financ. 2020, 60, 101515. [Google Scholar] [CrossRef]
- Mhlanga, D.; Denhere, V. Determinants of Financial Inclusion in Southern Africa. Stud. Univ. Babes Bolyai Oeconomica 2020, 65, 39–52. [Google Scholar] [CrossRef]
- Xiong, M.; Li, W.; Teo, B.S.X.; Othman, J. Can China’s Digital Inclusive Finance Alleviate Rural Poverty? An Empirical Analysis from the Perspective of Regional Economic Development and an Income Gap. Sustainability 2022, 14, 16984. [Google Scholar] [CrossRef]
- Li, Z.; Tuerxun, M.; Cao, J.; Fan, M.; Yang, C. Does inclusive finance improve income: A study in rural areas. AIMS Math. 2022, 7, 20909–20929. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, X.; Yang, L. Does Digital Inclusive Finance Narrow the Urban-Rural Income Gap through Primary Distribution and Redistribution? Sustainability 2022, 14, 2120. [Google Scholar] [CrossRef]
- Yu, N.; Wang, Y. Can Digital Inclusive Finance Narrow the Chinese Urban–Rural Income Gap? The Perspective of the Regional Urban–Rural Income Structure. Sustainability 2021, 13, 6427. [Google Scholar] [CrossRef]
- Song, K.; Tang, Y.; Zang, D.; Guo, H.; Kong, W. Does Digital Finance Increase Relatively Large-Scale Farmers’ Agricultural Income through the Allocation of Production Factors? Evidence from China. Agriculture 2022, 12, 1915. [Google Scholar] [CrossRef]
- Ravallion, M.; Wodon, Q. Poor Areas, or Only Poor People? J. Reg. Sci. 1999, 39, 689–711. [Google Scholar] [CrossRef] [Green Version]
- Maurer, N.; Haber, S. Related Lending and Economic Performance: Evidence from Mexico. J. Econ. Hist. 2007, 67, 551–581. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, J.; Jovanovic, B. Financial Development, Growth, and the Distribution of Income. J. Political Econ. 1990, 98, 1076–1107. [Google Scholar] [CrossRef] [Green Version]
- Perez-Moreno, S. Financial development and poverty in developing countries: A causal analysis. Empir. Econ. 2010, 41, 57–80. [Google Scholar] [CrossRef]
- Ji, D.; Liu, Y.; Zhang, L.; An, J.; Sun, W. Green Social Responsibility and Company Financing Cost-Based on Empirical Studies of Listed Companies in China. Sustainability 2020, 12, 6238. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, H.; Zhang, Q.; Liu, T. Peer effects of enterprise green financing behavior: Evidence from China. Front. Environ. Sci. 2022, 10, 132458. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y. Does Green Finance Contribute to Corporate Technological Innovation? The Moderating Role of Corporate Social Responsibility. Sustainability 2022, 14, 5648. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, Y.; Yang, L.; Li, R.; Crabbe, M. Green Credit Policy and Maturity Mismatch Risk in Polluting and Non-Polluting Companies. Sustainability 2021, 13, 3615. [Google Scholar] [CrossRef]
- Dong, Z.; Xu, H.; Zhang, Z.; Lyu, Y.; Lu, Y.; Duan, H. Whether Green Finance Improves Green Innovation of Listed Companies—Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 10882. [Google Scholar] [CrossRef]
- Xiang, X.; Liu, C.; Yang, M. Who is financing corporate green innovation? Int. Rev. Econ. Financ. 2022, 78, 321–337. [Google Scholar] [CrossRef]
- Li, W.; Cui, G.; Zheng, M. Does green credit policy affect corporate debt financing? Evidence from China. Environ. Sci. Pollut. Res. 2021, 29, 5162–5171. [Google Scholar] [CrossRef]
- Chai, S.; Zhang, K.; Wei, W.; Ma, W.; Abedin, M.Z. The impact of green credit policy on enterprises’ financing behavior: Evidence from Chinese heavily-polluting listed companies. J. Clean. Prod. 2022, 363, 132458. [Google Scholar] [CrossRef]
- Peng, B.; Yan, W.; Elahi, E.; Wan, A. Does the green credit policy affect the scale of corporate debt financing? Evidence from listed companies in heavy pollution industries in China. Environ. Sci. Pollut. Res. 2021, 29, 755–767. [Google Scholar] [CrossRef]
- Lai, X.; Yue, S.; Chen, H. Can green credit increase firm value? Evidence from Chinese listed new energy companies. Environ. Sci. Pollut. Res. 2021, 29, 18702–18720. [Google Scholar] [CrossRef]
- Yu, Y.; Yan, Y.; Shen, P.; Li, Y.; Ni, T. Green Financing Efficiency and Influencing Factors of Chinese Listed Construction Companies against the Background of Carbon Neutralization: A Study Based on Three-Stage DEA and System GMM. Axioms 2022, 11, 467. [Google Scholar] [CrossRef]
- Li, X.; Shao, X.; Chang, T.; Albu, L.L. Does digital finance promote the green innovation of China’s listed companies? Energy Econ. 2022, 114, 106254. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.; Song, Y.; Zhu, J. Exploring the impact of green credit policies on corporate financing costs based on the data of Chinese A-share listed companies from 2008 to 2019. J. Clean. Prod. 2022, 375, 134012. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, H.; Tong, A.; Hu, Z.; Duan, H.; Zhang, X.; Wang, Y. The Measurement of Green Finance Development Index and Its Poverty Reduction Effect: Dynamic Panel Analysis Based on Improved Entropy Method. Discret. Dyn. Nat. Soc. 2020, 2020, 8851684. [Google Scholar] [CrossRef]
- Lusardi, A.; Mitchell, O.S. Financial Literacy Around the World: An Overview. J. Pension Econ. Financ. 2011, 10, 497–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Jiang, L.; Duan, H.; Wang, Y.; Jiang, Y.; Lin, X. The Impact of Green Finance Development on China’s Energy Structure Optimization. Discret. Dyn. Nat. Soc. 2021, 2021, 2633021. [Google Scholar] [CrossRef]
- Li, W.; Lin, X.; Wang, H.; Wang, S. High-quality economic development, green credit and carbon emissions. Front. Environ. Sci. 2022, 10, 1653. [Google Scholar] [CrossRef]
Dimension | Basic Indicator | Attribute | Calculation Method |
---|---|---|---|
Economic Dimension | Unemployment rate | − | Unemployment/(Unemployment + employees) |
Per capita gross regional product | + | Gross regional product/regional population | |
Per capita disposable income | + | Regional total disposable income/regional population | |
Environmental Dimensions | Wastewater discharge per unit of financial resources | − | Wastewater discharge/(Deposit + Loan) |
Sulfur dioxide emissions per unit of financial resources | − | SO2 emissions/(Deposit + Loan) | |
Solid waste output per unit of financial resources | − | Solid waste output/(Deposit + Loan) | |
Energy consumption per unit of financial resources | − | Energy consumption/(Deposit + Loan) | |
Coverage rate of nature reserves under unit of financial resources | + | Area of Natural Reserve/(deposit + loan) | |
Forest coverage per unit financial resources | + | Forest coverage/(deposit + loan) | |
Financial Dimension | Number of banking institutions per area | + | Number of banking institutions/regional area |
Number of banking employees per area | + | Number of banking employees/regional area | |
Average number of banking institutions per resident | + | Number of banking institutions/number of regions | |
Average number of banking employees of residents | + | Number of banking practitioners/regional population | |
Bank deposit | + | Deposit balance of financial institutions/GDP | |
Bank loans | + | Loan balance of financial institutions/GDP | |
Insurance density | + | Premium income/number of people | |
Insurance depth | + | Premium income/GDP |
Variable | Variable Name | Variable Meaning | Variable Method |
---|---|---|---|
Explained variable | UPI | Poverty level | Logarithm of urban minimum security number |
RPI | Poverty level | logarithm of rural minimum security number | |
LPK | Poverty level | logarithm of urban minimum security number/Logarithm of rural minimum security number | |
Explanatory variable | GFI | Green financial development level | Green finance development index |
Intermediary variable | TPS | Technical progress | Number of patent licenses per capita |
Control variable | CPI | Inflation level | Consumer price level |
LROAD | Infrastructure construction | Logarithm of highway mileage | |
LGV | Level of government intervention in economy | Logarithm of government expenditure | |
LOPRN | Economic openness | Logarithm of total import and export | |
LEDU | Education | Logarithm of the average number of students enrolled in higher education institutions per 100,000 people | |
LASSET | Level of financial asset development | Logarithm of total assets of financial institutions |
Province | 2004 | … | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|
Beijing | 0.243 | … | 0.348 | 0.368 | 0.396 | 0.409 | 0.406 | 0.429 |
Tianjin | 0.234 | … | 0.274 | 0.284 | 0.297 | 0.304 | 0.307 | 0.303 |
Hebei | 0.166 | … | 0.211 | 0.228 | 0.245 | 0.264 | 0.236 | 0.25 |
Shanxi | 0.166 | … | 0.193 | 0.205 | 0.216 | 0.219 | 0.268 | 0.284 |
Liaoning | 0.199 | … | 0.224 | 0.234 | 0.247 | 0.253 | 0.247 | 0.254 |
Jilin | 0.233 | … | 0.197 | 0.202 | 0.212 | 0.219 | 0.218 | 0.226 |
Heilongjiang | 0.204 | … | 0.192 | 0.198 | 0.205 | 0.217 | 0.217 | 0.23 |
Shanghai | 0.268 | … | 0.418 | 0.414 | 0.429 | 0.433 | 0.458 | 0.477 |
Jiangsu | 0.19 | … | 0.261 | 0.275 | 0.295 | 0.27 | 0.317 | 0.331 |
Zhejiang | 0.202 | … | 0.279 | 0.288 | 0.3 | 0.311 | 0.317 | 0.331 |
Anhui | 0.183 | … | 0.2 | 0.211 | 0.221 | 0.236 | 0.236 | 0.237 |
Fujian | 0.235 | … | 0.216 | 0.222 | 0.23 | 0.238 | 0.241 | 0.251 |
Jiangxi | 0.188 | … | 0.195 | 0.199 | 0.205 | 0.212 | 0.213 | 0.221 |
Shandong | 0.188 | … | 0.232 | 0.24 | 0.265 | 0.285 | 0.275 | 0.294 |
Henan | 0.202 | … | 0.219 | 0.23 | 0.244 | 0.275 | 0.27 | 0.271 |
Hubei | 0.241 | … | 0.201 | 0.211 | 0.216 | 0.232 | 0.238 | 0.248 |
Hunan | 0.195 | … | 0.191 | 0.199 | 0.208 | 0.216 | 0.227 | 0.238 |
Guangdong | 0.202 | … | 0.302 | 0.321 | 0.344 | 0.367 | 0.275 | 0.353 |
Chongqing | 0.26 | … | 0.195 | 0.205 | 0.206 | 0.216 | 0.234 | 0.24 |
Sichuan | 0.202 | … | 0.24 | 0.252 | 0.27 | 0.272 | 0.276 | 0.276 |
Guizhou | 0.26 | … | 0.176 | 0.181 | 0.187 | 0.194 | 0.196 | 0.2 |
Yunnan | 0.223 | … | 0.187 | 0.194 | 0.2 | 0.206 | 0.206 | 0.205 |
Shanxi | 0.208 | … | 0.195 | 0.203 | 0.21 | 0.217 | 0.229 | 0.23 |
Gansu | 0.167 | … | 0.187 | 0.196 | 0.204 | 0.203 | 0.203 | 0.205 |
Qinghai | 0.432 | … | 0.18 | 0.181 | 0.188 | 0.189 | 0.192 | 0.199 |
Year | Moran’s I | Z | p |
---|---|---|---|
2004 | −0.102 | −0.508 | 0.306 |
2005 | −0.080 | −0.314 | 0.377 |
2006 | −0.023 | 0.134 | 0.447 |
2007 | 0.031 | 0.523 | 0.300 |
2008 | 0.133 | 1.309 | 0.095 |
2009 | 0.184 | 1.667 | 0.048 |
2010 | 0.186 | 1.703 | 0.044 |
2011 | 0.234 | 2.067 | 0.019 |
2012 | 0.291 | 2.534 | 0.006 |
2013 | 0.258 | 2.267 | 0.012 |
2014 | 0.266 | 2.319 | 0.010 |
2015 | 0.268 | 2.268 | 0.012 |
2016 | 0.267 | 2.227 | 0.013 |
2017 | 0.220 | 1.872 | 0.031 |
2018 | 0.319 | 2.691 | 0.004 |
2019 | 0.277 | 2.327 | 0.010 |
Statistic | Prob. | ||
---|---|---|---|
Urban | LM-lag | 4.455 | 0.035 |
LM-err | 0.329 | 0.566 | |
Rural | LM-lag | 37.686 | ≤0.001 |
LM-err | 0.161 | 0.688 | |
Urban relative poverty to Rural | LM-lag | 1.711 | 0.191 |
LM-err | 252.510 | 0.000 |
LR Test | Wald Test | Hausman Test | |||
---|---|---|---|---|---|
SAR | SEM | ||||
Urban | Statistic | 20.830 | 21.140 | 21.690 | 129.940 |
Prob. | 0.004 | 0.003 | 0.002 | 0.000 | |
Rural | Statistic | 13.650 | 13.040 | 13.310 | 67.400 |
Prob. | 0.057 | 0.071 | 0.064 | 0.000 | |
Urban relative poverty to Rural | Statistic | 34.820 | 36.620 | 38.340 | 226.920 |
Prob. | 0.000 | 0.000 | 0.000 | 0.000 |
LR chi2 | Prob. | ||
---|---|---|---|
Urban | Time | 774.770 | ≤0.001 |
Ind | 59.440 | ≤0.001 | |
Rural | Time | 317.520 | ≤0.001 |
Ind | 36.950 | ≤0.001 | |
Urban relative poverty to Rural | Time | 621.280 | ≤0.001 |
Ind | 0.000 | ≤0.001 |
Urban | Rural | Urban Relative Poverty to Rural | |
---|---|---|---|
GFI | −0.339 * | −0.749 *** | −0.097 *** |
CPI | −0.001 | −0.030 *** | 0.002 |
LROAD | −0.176 * | −0.033 | 0.035 * |
LGV | 0.888 ** | −0.001 | −0.038 *** |
LOPRN | −0.057 | −0.100 *** | −0.015 * |
LEDU | −0.085 | 0.475 *** | 0.013 |
LASSET | 0.046 | −0.064 | 0.009 |
R2 | 0.342 | 0.249 | 0.428 |
Urban | Rural | Urban Relative Poverty to Rural | |||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Direct Effect | Indirect Effect | Total Effect | Direct Effect | Indirect Effect | Total Effect | Direct Effect | Indirect Effect | Total Effect |
GFI | −356 * | −1.308 *** | −1.665 *** | −0.892 *** | −1.587 * | −2.479 ** | −0.110 *** | 0.350 *** | −0.239 *** |
CPI | −0.001 | 0.005 | 0.004 | −0.031 *** | 0.005 | −0.025 | 0.002 | 0.001 | 0.003 |
LROAD | −0.169 | 0.002 | −0.166 | −0.022 | 0.003 | −0.019 | 0.034 * | 0.040 | 0.754 |
LGV | 0.091 ** | −0.025 | 0.065 | 0.021 | 0.214 | 0.236 | −0.037 *** | −0.004 | −0.042 *** |
LOPEN | −0.013 | −0.044 | −0.057 | −0.062 | 0.552 ** | 0.490 * | −0.016 * | 0.009 | −0.007 |
LEDU | −0.081 | −0.070 | −0.151 | 0.403 ** | −0.887 | −0.484 | 0.014 | −0.003 | 0.010 |
LASSET | 0.053 | 0.384 ** | 0.438 ** | −0.041 | 0.221 | 0.180 | 0.116 | −0.423 | −0.030 |
Urban | Rural | Urban Relative Poverty to Rural | |
---|---|---|---|
GFI | Partial derivative figure | Partial derivative figure | Partial derivative figure |
CPI | −0.004 *** | −0.030 *** | 0.030 |
LROAD | 0.013 | 0.013 | 1.441 |
LGV | −0.051 ** | −0.045 * | 0.410 |
LOPRN | −0.051 | −0.045 | −1.314 |
LEDU | −0.061 | −0.097 | −4.438 ** |
LASSET | 0.083 ** | −0.083 ** | 1.277 |
Variable | Model (4) | Model (5) | Model (6) |
---|---|---|---|
GFI | −1.906 *** (0.353) | 89 *** (7.521) | −1.060 *** (0.402) |
TPS | −0.009 ** (0.002) | ||
_coms | 4.624 *** (0.923) | −36.332 * (19.907) | 4.276 *** (0.909) |
Bootstrap test (Indirect effect) | −0.791 *** (z = −4.258, p = 0.000) | ||
Bootstrap test (Direct effect) | −0.791 *** (z = −2.877, p = 0.004) | ||
[95%Conf.Interval] | (−1.179, −0.518) | ||
R2 | 0.915 | 0.677 | 0.821 |
Variable | Model (4) | Model (5) | Model (6) |
---|---|---|---|
GFI | −1.532 *** (0.198) | 89.363 *** (7.521) | −1.796 *** (0.223) |
TPS | 0.003 ** (0.001) | ||
_coms | 8.102 *** (0.547) | −36.332 * (19.907) | 8.624 *** (0.542) |
Bootstrap test (Indirect effect) | −1.471 *** (z = −6.057, p = 0.000) | ||
Bootstrap test (Direct effect) | 0.408 (z = 0.941, p = 0.346) | ||
[95%Conf.Interval] | (−2.135, −1.081) | ||
R2 | 0.600 | 0.6717 | 0.608 |
Variable | Model (4) | Model (5) | Model (6) |
---|---|---|---|
GFI | −0.269 *** (0.058) | 144.428 *** (7.242) | −0.038 * (0.012) |
TPS | −0.001 *** (0.003) | ||
_coms | 1.020 *** (0.013) | −24.407 *** (1.881) | 0.978 *** (0.019) |
Bootstrap test (Indirect effect) | −0.142 *** (z = −3.707, p = 0.000) | ||
Bootstrap test (Direct effect) | 0.316 *** (z = 3.677, p = 0.000) | ||
[95%Conf.Interval] | (−1.187, −0.536) | ||
R2 | 0.423 | 0.677 | 0.421 |
Urban | Rural | Urban Relative Poverty to Rural | |
---|---|---|---|
GFI | −0.580 *** | −1.137 *** | −0.117 ** |
CPI | −0.002 | −0.041 *** | −0.007 *** |
LROAD | −0.137 | −0.088 | 0.022 |
LGV | 0.038 | −0.061 | −0.020 ** |
LOPRN | −0.051 | −0.082 | −0.019 |
LEDU | −0.075 | 0.666 *** | 0.137 *** |
LASSET | 0.193 | −0.102 | −0.007 |
R2 | 0.432 | 0.362 | 0.436 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Wang, H.; Lin, Z. Spatial Heterogeneity Effects of Green Finance on Absolute and Relative Poverty. Sustainability 2023, 15, 6206. https://doi.org/10.3390/su15076206
Tang Y, Wang H, Lin Z. Spatial Heterogeneity Effects of Green Finance on Absolute and Relative Poverty. Sustainability. 2023; 15(7):6206. https://doi.org/10.3390/su15076206
Chicago/Turabian StyleTang, Yonghong, Hui Wang, and Zirong Lin. 2023. "Spatial Heterogeneity Effects of Green Finance on Absolute and Relative Poverty" Sustainability 15, no. 7: 6206. https://doi.org/10.3390/su15076206
APA StyleTang, Y., Wang, H., & Lin, Z. (2023). Spatial Heterogeneity Effects of Green Finance on Absolute and Relative Poverty. Sustainability, 15(7), 6206. https://doi.org/10.3390/su15076206