A Qualitative Investigation of European Grain Legume Supply Markets through the Lens of Agroecology in Four Companies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigation
2.2. Case Selection
Norway | Germany | Portugal | Denmark | |
---|---|---|---|---|
Quantities of legumes processed 1 | High | Medium | Medium | Low |
Number of employees 2 | Medium | Few | Few | Few |
Number of retailers 3 | Many | Few | Few | Few (one) |
Technology level | High | Medium | Medium | Low |
Further refining of legumes, e.g., flour | Yes | Yes | Yes | No |
Seeking large-scale market expansion | Yes | Yes | No | No |
Final categorisation | Large | Medium | Medium | Small |
Norway | Germany | Portugal | Denmark | |
---|---|---|---|---|
Population density (persons per km2) [40,41] | 14 | 225 | 112 | 135 |
Arable land (% of total) [42,43] | 2.1 | 33.7 | 10.7 | 56.6 |
Total number of farms [39,44] | 40,000 | 276,000 | 259,000 | 35,000 |
Average size of farms (ha) [45,46] | 22 | 42.7 | 7.6 | 52.4 |
Livestock density (unit/ha) [47] | 1.26 | 1.1 | 0.6 | 1.6 |
Cultivation of cereals, non-food, fodder, and other crops (% of total) [48] | 36, 0.2, 63, 0.8 | 55, 12, 13, 20 | 29, 1, 32, 38 | 60, 7, 24, 9 |
Animal husbandry: cattle, horses, pigs, sheep, goats and poultry (% of total) [47] | 48, 2, 15, 20, 0, 15 | 49, 1.5, 36, 0.5, 0, 13 | 50, 1.5, 20, 10, 1, 17.5 | 28, 1, 66, 0.5, 0, 4.5 |
2.3. Company Case Study Typologies
2.3.1. The World Is My Oyster
2.3.2. Bigger Is Better
2.3.3. Southern Comfort
2.3.4. Local Is Beautiful
2.4. Analytical Framework
3. Results
3.1. Company Case Study Investigation
3.1.1. The World Is My Oyster
3.1.2. Bigger Is Better
3.1.3. Southern Comfort
3.1.4. “Local Is Beautiful”
3.2. Summary of Characteristics
4. Discussion
4.1. Sustainability Outreach of the Legume Supply Markets
4.2. Contributions to Regime Change
4.3. Inclusive Agrifood System Actions
4.4. Ability to Disrupt Dominant Businesses
4.5. Rare Farm and Fork Presence of Grain Legumes
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kuyper, E.M.; Engle-Stone, R.; Arsenault, J.R.; Arimond, M.; Adams, K.P.; Dewey, K.G. Dietary gap assessment: An approach for evaluating whether a country’s food supply can support healthy diets at the population level. Public Health Nutr. 2017, 20, 2277–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zander, P.; Preissel, S.; Reckling, M.; Bues, A.; Schläfke, N.; Kuhlman, T.; Bachinger, J.; Uthes, S.; Stoddard, F.; Murphy-Bokern, D.; et al. Grain legume decline and potential recovery in European agriculture: A review. Agron. Sustain. Dev. 2016, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Foyer, C.H.; Lam, H.M.; Nguyen, H.T.; Siddique, K.H.M.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 16112. [Google Scholar] [CrossRef] [PubMed]
- Magrini, M.; Anton, M.; Cholez, C.; Corre-hellou, G.; Duc, G.; Jeuffroy, M.; Meynard, J.; Pelzer, E.; Voisin, A.; Walrand, S. Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional bene fits? Analyzing lock-in in the French agri-food system. Ecol. Econ. 2016, 126, 152–162. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil. 2008, 311, 1–18. [Google Scholar] [CrossRef]
- Jensen, E.S.; Hauggaard-Nielsen, H. How can increased use of biological N2 fixation in agriculture benefit the environment. Plant Soil 2003, 252, 177–186. [Google Scholar] [CrossRef]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Bodde, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- International Panel of Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva Switzerland, 2014; Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (accessed on 17 May 2021).
- Hauggaard-Nielsen, H.; Jørnsgaard, B.; Kinane, J.; Jensen, E.S. Grain legume-Cereal intercropping: The practical application of diversity competition and facilitation in arable and organic cropping systems. Renew. Agri. Food Syst. 2008, 23, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology, and the design of climate change resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef] [Green Version]
- Hauggaard-Nielsen, H.; Gooding, M.; Ambus, P.; Corre-Hellou, G.; Crozat, Y.; Dahlmann, C.; Dibet, A.; von Fragstein, P.; Pristeri, A.; Monti, M.; et al. Pea-barley intercropping and short-term subsequent crop effects across European organic cropping conditions. Nutr. Cycl. Agro-Ecosys. 2009, 85, 141–155. [Google Scholar] [CrossRef]
- Watson, C.A.; Reckling, M.; Preissel, S.; Kuhlman, T.; Nemecek, T.; Topp, C.F.E.; Vanhatalo, A.; Zander, P.; Murphy-bokern, D.; Stoddard, F.L. Grain Legume Production and Use in European Agricultural Systems. Adv. Agron. 2017, 144, 235–303. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, C.S.; Singh, V.; Chapman, M.A. Winged bean: An underutilized tropical legume on the path of improvement to help mitigate food and nutrition security. Sci. Hort. 2020, 260, 108789. [Google Scholar] [CrossRef]
- Robinson, R.A.; Sutherland, W.J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 2002, 39, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Preissel, S.; Reckling, M.; Schläfke, N.; Zander, P. Field Crops Research Magnitude, and farm-economic value of grain legume pre-crop benefits in Europe: A review. Field Crops Res. 2015, 175, 64–79. [Google Scholar] [CrossRef] [Green Version]
- European Commission (EC). Press Release United States Is Europe’s Main Soya Beans Supplier with Imports Up by 112%; EC: Brussels, Belgium, 2019. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_19_161 (accessed on 21 May 2021).
- Altieri, M.A. Linking ecologists and traditional farmers in the search for sustainable agriculture. Front. Ecol. Environ. 2004, 2, 35–42. [Google Scholar] [CrossRef]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sustain. Dev. 2020, 40, 5. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Nati. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Gliessman, S. Transforming food systems with agroecology-editorial. Agroecol. Sust. Food 2016, 40, 187–189. [Google Scholar] [CrossRef]
- Wezel, A.; Bellon, S.; Doré, T.; Francis, C.; Vallod, D.; David, C. Agroecology as a science, a movement, and a practice. A review. Agron. Sustain. Dev. 2009, 29, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Wezel, A.; Goette, J.; Lagneaux, E.; Passuello, G.; Reisman, E.; Rodier, C.; Turpin, G. Agroecology in Europe: Research, education, collective action networks, and alternative food systems. Sustainability 2018, 10, 1214. [Google Scholar] [CrossRef] [Green Version]
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Invertebr. Biodivers. Bioindic. Sustain. Landsc. Pract. Use Invertebr. Assess Sustain. Land Use 1999, 74, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Catalogna, M.; Dubois, M.; Navarrete, M. Diversity of experimentation by farmers engaged in agroecology. Agron. Sustain. Dev. 2018, 38, 50. [Google Scholar] [CrossRef] [Green Version]
- Duru, M.; Therond, O.; Martin, G.; Martin-Clouaire, R.; Magne, M.A.; Justes, E.; Journet, E.P.; Aubertot, J.N.; Savary, S.; Bergez, J.E.; et al. How to implement biodiversity-based agriculture to enhance ecosystem services: A review. Agron. Sustain. Dev. 2015, 35, 1259–1281. [Google Scholar] [CrossRef]
- Lowe, E.; Evans, L.K. Industrial Ecology, and industrial ecosystems. J. Clean Prod. 1995, 3, 47–53. [Google Scholar] [CrossRef]
- Ayris, R.; Ayris, L. (Eds.) Handbook of Industrial Ecology; Edward Elgar: Cheltenham, UK; Northampton, MA, USA, 2002. [Google Scholar]
- Jelenski, L.W.; Graedel, T.E.; Laudise, R.A.; McCall, D.W.; Patel, C.K.N. Industrial ecology: Concepts and approaches. Proc. Natl. Acad. Sci. USA 1992, 89, 793–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altieri, M.A. Agroecology: The Science of Sustainable Agriculture; IT Publications: Boulder, CO, USA; Westview Press: Boulder, CO, USA, 1995. [Google Scholar]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide Decline of the Entomofauna: A Review of Its Drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Silici, L. Agroecology: What It Is and What It Has to Offer; IIED Issue Paper; IIED: London, UK, 2014; Available online: https://pubs.iied.org/pdfs/14629IIED.pdf (accessed on 15 March 2022).
- Flyvbjerg, B. Five misunderstandings about case study research. Qual. Inq. 2006, 12, 219–245. [Google Scholar] [CrossRef] [Green Version]
- Collier, D.; LaPorte, J.; Seawright, J. Putting Typologies to work: Concept formation, Measurement, and Analytical Rigor. Polit. Res. Q. 2012, 65, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Yin, R.K. Case Study Research—Design and Methods, 5th ed.; SAGE Publications Inc.: New York, NY, USA, 2013. [Google Scholar]
- European Commission (EC). User Guide to SME Definition; EC: Brussel, Belgium, 2016. Available online: https://ec.europa.eu/regional_policy/sources/conferences/state-aid/sme/smedefinitionguide_en.pdf (accessed on 8 June 2021).
- Sangoma. SME and Large Business. 2020. Available online: https://www.sangoma.com/articles/smb-sme-large-enterprise-size-business-matters (accessed on 8 June 2021).
- Eurostat. Total nr. of Farms in Thousands in Denmark, Germany and Portugal. 2016. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Agriculture_statistics_-_family_farming_in_the_EU#Structural_profile_of_farms_-_analysis_of_EU_Member_States (accessed on 15 June 2021).
- Indexmundi. Density of Population Pers/km2 in Denmark, Germany and Portugal. 2018. Available online: https://www.indexmundi.com/map/?v=21000 (accessed on 15 June 2021).
- Europea International. Density of Population Pers/km2 in Norway. 2018. Available online: https://europea.org/agriculture-in-norway-01 (accessed on 15 June 2021).
- Indexmundi. Arable Land in % in Denmark, Germany and Portugal. 2016. Available online: https://www.indexmundi.com/facts/indicators/AG.LND.ARBL.ZS/map/Europe (accessed on 15 June 2021).
- Trading Economics. Arable Land in % in Norway. 2016. Available online: https://tradingeconomics.com/Norway/arable-land-percent-of-land-area-wb-data.html (accessed on 17 June 2021).
- Europea International. Total nr of Farms in Thousands in Norway. 2019. Available online: https://europea.org/agriculture-in-norway-01/ (accessed on 15 June 2021).
- Eurostat. Average Size Farms in ha in Denmark, Germany and Portugal. 2016. Available online: https://eceuropa.eu/eurostat/statistics-explained/index.php/Agriculture_statistics_-_family_farming_in_the_EU#Structural_profile_of_farms_-_analysis_of_EU_Member_States (accessed on 15 June 2021).
- Tine.no. Average Size Farms in ha in Norway. 2016. Available online: https://www.tine.no/sok?q=average+size+farm (accessed on 17 June 2021).
- Eurostat. Share in % Cereals, Industrial and-Fodder Crops Plus Others in Denmark, Germany, Portugal and Norway. 2017. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?Title=File:Share_of_different_crops_in_arable_land,EU28_and_Norway,_2013.png (accessed on 16 June 2021).
- Eurostat. Livestock Density (Unit/ha) in Denmark, Germany, Portugal and Norway. 2017. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Livestock_density,_EU-28_and_Norway,_2013_png&direction=prev&oldid=332637 (accessed on 18 June 2021).
- Meynard, J.M.; Jeuffroy, M.H.; Bail, M.L.; Amélie, L.; Magrini, M.B. Designing coupled innovations for the sustainability transition of agri-food systems. Agric. Syst. 2017, 157, 330–339. [Google Scholar] [CrossRef]
- European Commission (EC). Farm to Fork Strategy; EC: Brussel, Belgium, 2020. Available online: https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 24 May 2021).
- European Commission (EC). The European Green Deal; EC: Brussel, Belgium, 2020. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 24 May 2021).
- European Commission (EC). Biodiversity Strategy; EC: Brussel, Belgium, 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CLEX:52011DC0244&from=EN (accessed on 28 May 2021).
- European Commission (EC). Common Agricultural Policy; EC: Brussel, Belgium, 2022. Available online: https://agriculture.ec.europa.eu/system/files/2022-07/csp-overview-28-plans-overview-june-2022_en.pdf (accessed on 8 February 2021).
- Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M.; Hauggaard-Nelsen, H.; Alves, B.J.R.; Morrison, M.J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron. Sustain. Dev. 2012, 32, 329–364. [Google Scholar] [CrossRef] [Green Version]
- Biizjournals. Could a Tiny Legume Play a Role in the World’s Future Food Needs? 2019. Available online: https://www.bizjournals.com/bizwomen/news/latest-news/2019/09/could-a-tiny-legume-play-a-big-role-in-the-world-s.html?page=all (accessed on 8 September 2022).
- Fehlenberg, V.; Baumann, M.; Gasparri, N.I.; Piquer-Rodriguez, M.; Gavier-Pizarro, G.; Kuemmerle, T. The role of soybean production as an underlying driver of deforestation in the South American Chaco. Global. Environ. Chang. 2017, 45, 24–34. [Google Scholar] [CrossRef]
- Friel, S.; Dangour, A.D.; Garnett, T.; Lock, K.; Chalabi, Z.; Roberts, I.; Butler, A.; Butler, C.D.; Waage, J.; McMichael, A.J.; et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Food and agriculture. Health Clim. Chang. 2009, 374, 2016–2025. [Google Scholar] [CrossRef] [PubMed]
- IPES-Food, 2022. The Politics of Protein: Examining Claims about Livestock, Fish, ‘Alternative Proteins’ and Sustainability. Available online: https://www.ipes-food.org/pages/politicsofprotein (accessed on 5 September 2022).
- Wezel, A.; Herren, B.G.; Kerr, R.B.; Barrios, E.; Goncalves, A.L.R.; Sinclair, F. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron. Sustain. Dev. 2020, 40, 1–13. [Google Scholar] [CrossRef]
- Nemecek, T.; Richthofen, J.S.; Dubois, G.; Casta, P.; Charles, R.; Pahlf, H. Environmental impacts of introducing grain legumes into European crop rotations. Eur. J. Agron. 2008, 28, 380–393. [Google Scholar] [CrossRef]
Principle | Actions | |
---|---|---|
Level 1 | Increase the efficiency of industrial and conventional practices to reduce costly, scarce, or environmentally damaging inputs. | Help farmers maintain or increase production output. |
Level 2 | Transition to replace external input-extensive agricultural practices with more sustainable and environmentally friendly strategies. | Adaptation and modification of alternative practices from, e.g., organic and biodynamic farming and conservation agriculture. |
Level 3 | Redesign the agroecosystem to combat the root causes of Levels 1 and 2, creating beneficial ecological processes locally. | Reintroduce farming practices, such as diversified rotations, multiple cropping, agroforestry, and symbiosis between agriculture and animals. |
Level 4 | Re-establish a more direct connection between those who grow food and those who consume it. | Form new local communities of growers and consumers for alternative economy models and food culture. |
Level 5 | Build a new global food system that is not only sustainable, but helps restore and protect the earth’s life and support systems, on which we all depend. | Global-scale initiatives beyond the food sector, re-thinking how we relate to the earth’s resources and to our basic values, beliefs, and ethical views. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lybæk, R.; Hauggaard-Nielsen, H. A Qualitative Investigation of European Grain Legume Supply Markets through the Lens of Agroecology in Four Companies. Sustainability 2023, 15, 6103. https://doi.org/10.3390/su15076103
Lybæk R, Hauggaard-Nielsen H. A Qualitative Investigation of European Grain Legume Supply Markets through the Lens of Agroecology in Four Companies. Sustainability. 2023; 15(7):6103. https://doi.org/10.3390/su15076103
Chicago/Turabian StyleLybæk, Rikke, and Henrik Hauggaard-Nielsen. 2023. "A Qualitative Investigation of European Grain Legume Supply Markets through the Lens of Agroecology in Four Companies" Sustainability 15, no. 7: 6103. https://doi.org/10.3390/su15076103