Application of AI Identification Method and Technology to Boron Isotope Geochemical Process and Provenance Tracing of Water Pollution in River Basins
Abstract
:1. Introduction
2. Geochemical Process of Boron Isotope in Water Pollution and Provenance Tracing Method
2.1. Artificial Intelligence (AI) Technology
2.2. Convolutional Neural Networks
2.3. Determination Methods and Geochemical Progress of Boron Isotopes
2.4. Surface River Water Quality Model
2.5. Pollution Source Method
3. Experiment of Boron Isotope Geochemical Process and Provenance Tracing
3.1. Overall Design of Water Pollution Traceability Management System
3.2. Quantitative Analysis of the Sources of Pollutants in the Fenhe River Basin
- (1)
- Rainwater input
- (2)
- Human input
- (3)
- Rock weathering
3.3. Comparison of Sampling Covariance Update Methods
4. Results and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, M.; Liu, Y.; Zhang, Y.; Dahlgren, R.A.; Chen, D. Coupling stable isotopes and water chemistry to assess the role of hydrological and biogeochemical processes on riverine nitrogen sources. Water Res. 2019, 150, 418–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.Q.; Fang, M.; Ye, X.Y. Research Progress on the Sources of Inorganic Nitrogen Pollution in Groundwater and Identification Methods. Huan Jing Ke Xue = Huanjing Kexue 2018, 39, 5266–5275. [Google Scholar] [PubMed]
- Guinoiseau, D.; Louvat, P.; Paris, G.; Chen, J.B.; Chetelat, B.; Rocher, V. Are boron isotopes a reliable tracer of anthropogenic inputs to rivers over time? Sci. Total Environ. 2018, 626, 1057–1068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, H.G.; Lu, B.; Garrard, R.; Neupauer, R.M. Identify source location and release time for pollutants undergoing super-diffusion and decay: Parameter analysis and model evaluation. Adv. Water Resour. 2017, 107, 517–524. [Google Scholar] [CrossRef]
- Efthimiou, G.C.; Kovalets, I.V.; Argyropoulos, C.D.; Venetsanos, A.S. Evaluation of an inverse modelling methodology for the prediction of a stationary point pollutant source in complex urban environments. Build. Environ. 2018, 143, 107–119. [Google Scholar] [CrossRef]
- Cremeans, M.M.; Devlin, J.F.; Mcknight, U.S.; Bjerg, P.L. Application of new point measurement device to quantify groundwater-surface water interactions. J. Contam. Hydrol. 2018, 211, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; He, J.T.; Wang, M.L.; Cui, Y.F. Comparison and Analysis of the Quantitative Methods for Pollutant Sources Load in Groundwater Contamination Risk Assessment. Huan Jing Ke Xue= Huanjing Kexue 2017, 38, 2754–2762. [Google Scholar] [PubMed]
- Jeon, J.; Choi, H.; Shin, D.; Kim, L.H. Installation and operation of automatic nonpoint pollutant source measurement system for cost-effective monitoring. Membr. Water Treat. 2019, 10, 99–104. [Google Scholar]
- He, W.; Lian, J.; Du, H.; Ma, C. Source tracking and temperature prediction of discharged water in a deep reservoir based on a 3-D hydro-thermal-tracer model. J. Hydro-Environ. Res. 2018, 20, 9–21. [Google Scholar] [CrossRef]
- Gulcicek, O.; Demirel, Z.A. Applying Isotope Techniques and Modeling to Identify the Nitrogen Source in Goksu Delta. Pol. J. Environ. Stud. 2019, 28, 3179–3195. [Google Scholar] [CrossRef]
- Li, S.; Yuan, Y.; Li, X.; Liu, K.; Yu, H. Building up a Risk Assessment Index System of Groundwater Pollution in Shale Gas Development. Res. Environ. Sci. 2018, 31, 911–918. [Google Scholar]
- Zhang, J.; Zhang, S.; Zhang, W.; Liu, B.; Gong, C.; Jiang, M.; Lv, X.; Sheng, L. Partitioning daily evapotranspiration from a marsh wetland using stable isotopes in a semiarid region. Nord. Hydrol. 2018, 49, 1005–1015. [Google Scholar] [CrossRef]
- Cui, M.; Chen, Y.; Zheng, M.; Li, J.; Tang, J.; Han, Y.; Song, D.; Yan, C.; Zhang, F.; Zhang, G.; et al. Emissions and characteristics of particulate matter from rainforest burning in the Southeast Asia. Atmos. Environ. 2018, 191, 194–204. [Google Scholar] [CrossRef]
- Ma, J.; Sun, Y.; Zhang, M.; Yang, M.; Gong, X.; Yu, F.; Zheng, J. Comparative Study of Graphene Hydrogels and Aerogels Reveals the Important Role of Buried Water in Pollutant Adsorption. Environ. Sci. Technol. 2017, 51, 12283–12292. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Shin, J.Y.; Lee, G.; Sung, Y.; Kim, J. Analysis of Water Pollutant Load Characteristics and Its Contributions During Dry Season: Focusing on Major Streams Inflow into South-Han River of Chungju-dam Downstream. J. Korean Soc. Environ. Eng. 2018, 40, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Shen, X.; Shao, B.; Wu, F. Sensitive analysis of steroid estrogens and bisphenol a in small volumes of water using isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry. Environ. Pollut. 2018, 235, 881–888. [Google Scholar] [CrossRef]
- Tao, Y.; Dan, D.; Kun, L.; Chengda, H.; Haibing, C.; Guo, F.; Qiujin, X.; Fuhong, S.; Fengchang, W. δ 15 N and nutrient stoichiometry of water, aquatic organisms and environmental implications in Taihu lake. China Environ. Pollut. 2018, 237, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, R.; Okochi, H.; Ogata, H.; Katsumi, N.; Asai, D.; Nakano, T. Geochemical and stable isotope characteristics of urban heavy rain in the downtown of Tokyo, Japan. Atmos. Res. 2017, 194, 109–118. [Google Scholar] [CrossRef]
- Tatariw, C.; Flournoy, N.; Kleinhuizen, A.A. Salt marsh denitrification is impacted by oiling intensity six years after the Deepwater Horizon oil spill. Environ. Pollut. 2018, 243, 1606–1614. [Google Scholar] [CrossRef] [PubMed]
- Menoud, M.; Veen, C.; Necki, J.; Bartyzel, J.; Rckmann, T. Methane (CH4) sources in Krakow, Poland: Insights from isotope analysis. Atmos. Chem. Phys. 2021, 21, 13167–13185. [Google Scholar] [CrossRef]
- Mwaura, J.; Umezawa, Y.; Nakamura, T.; Kamau, J. Evidence of chronic anthropogenic nutrients within coastal lagoon reefs, adjacent to urban and tourism centers, Kenya: A stable isotope approach. Mar. Pollut. Bull. 2017, 119, 74–86. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, L.I. Research on The Water Pollution Monitoring and Rapid Decision-Making System Based on Artificial Intelligence Agent. J. Environ. Prot. Ecol. 2019, 20, 1565–1573. [Google Scholar]
- Al, K. Paramount feat to sway and purge pollution by adopting computational intelligence. Turk. J. Comput. Math. Educ. 2021, 12, 3353–3358. [Google Scholar]
- Raknys, A.V.; Gudelis, D.; Guogis, A. The Analysis of Opportunities of the Application of Big Data and Artificial Intelligence Technologies in Public Governance and Social Policy. Soc. Teor. Emp. Polit. Ir Prakt. 2021, 22, 88–100. [Google Scholar] [CrossRef]
- Miranda, R.; Pablo, J.; Garcia-Ubaque Augusto, C.; Cespedes, S. Bioinspired Engineering and Complex Systems Engineering: A Theoretical Framework for Water Management. Res. J. Appl. Sci. Eng. Technol. 2018, 15, 281–287. [Google Scholar] [CrossRef]
- Hu, F.; Liu, J.; Zhou, S.; Han, S. Research and exploration on rational utilization of urban water resources and environment. Desalination Water Treat. 2018, 122, 165–169. [Google Scholar] [CrossRef]
- Nadiri, A.; Aghdam, F.S.; Safari, S. Comparison of Artificial Intelligence and Geostatistics Methods Abilities for Spatial Prediction of Arsenic Anomaly in Chahardoli plain. J. Environ. Stud. 2017, 43, 417–436. [Google Scholar]
- Ao, A.; Mmh, A.; Asb, C. Multi hours ahead prediction of surface ozone gas concentration: Robust artificial intelligence approach. Atmos. Pollut. Res. 2020, 11, 1572–1587. [Google Scholar]
Index | Unit | Standard | Fixed Step | Memory Matrix | Mix |
---|---|---|---|---|---|
Proposed sample total acceptance rate tar | % | 50.49 | 31.71 | 60.75 | 60.48 |
Iteration time-consuming eti | s | 311.53 | 21.35 | 20.64 | 18.49 |
Execute time-consuming ete | s | 696.76 | 356.27 | 376.84 | 377.85 |
Index | Unit | Standard | Fixed Step | Memory Matrix | Mix |
---|---|---|---|---|---|
Proposed sample total acceptance rate tar | % | 59.91 | 64.55 | 61.52 | 60.39 |
Iteration time-consuming eti | s | 368.66 | 80.87 | 79.67 | 76.59 |
Execute time-consuming ete | s | 743.12 | 421.32 | 432.72 | 449.31 |
Index | Unit | Standard | Fixed Step | Memory Matrix | Mix |
---|---|---|---|---|---|
Proposed sample total acceptance rate tar | % | 52.41 | 52.24 | 60.85 | 60.33 |
Iteration time-consuming eti | s | 808.58 | 544.84 | 531.28 | 531.23 |
Execute time-consuming ete | s | 1213.97 | 923.80 | 867.50 | 885.08 |
Index | Unit | Standard | Fixed Step | Memory Matrix | Mix |
---|---|---|---|---|---|
Proposed sample total acceptance rate tar | % | 48.38 | 43.40 | 76.36 | 74.87 |
Iteration time-consuming eti | s | 2847.40 | 2379.19 | 2498.04 | 2923.10 |
Execute time-consuming ete | s | 3343.03 | 3128.38 | 2978.38 | 3432.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, G.; Yan, H.; Yu, Z. Application of AI Identification Method and Technology to Boron Isotope Geochemical Process and Provenance Tracing of Water Pollution in River Basins. Sustainability 2023, 15, 5942. https://doi.org/10.3390/su15075942
Hou G, Yan H, Yu Z. Application of AI Identification Method and Technology to Boron Isotope Geochemical Process and Provenance Tracing of Water Pollution in River Basins. Sustainability. 2023; 15(7):5942. https://doi.org/10.3390/su15075942
Chicago/Turabian StyleHou, Gang, Hui Yan, and Zhengzheng Yu. 2023. "Application of AI Identification Method and Technology to Boron Isotope Geochemical Process and Provenance Tracing of Water Pollution in River Basins" Sustainability 15, no. 7: 5942. https://doi.org/10.3390/su15075942