Assessing the Implication of Climate Change to Forecast Future Flood Using SWAT and HEC-RAS Model under CMIP5 Climate Projection in Upper Nan Watershed, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Topographic, Soil, and Land Use Data
2.2.2. Hydro-Meteorological Data
2.2.3. Discharge Data
2.2.4. Observed Flood Map
2.3. Model Description
2.3.1. SWAT Model
2.3.2. HEC-RAS Model
2.3.3. Coupled SWAT Model and HEC-RAS Model
2.4. Model Setup
2.4.1. SWAT Model
- (1)
- Muang Nan (N64): This study area was divided into 29 sub-watersheds and 1414 HRUs. Data available for Muang Nan are from 1990 to 2020. Using the available data, the SWAT model was set up with a warm-up period of 5 years, calibration for 15 years, and validation for 11 years.
- (2)
- Wiangsa (N1): This study area was divided into 25 sub-watersheds and 1437 HRUs. Data available for Wiangsa were from 1980 to 2020. Using the available data, the SWAT model was set up with a warm-up period of 5 years, calibration for 20 years, and validation for 14 years.
2.4.2. HEC-RAS Model
- (1)
- August 2018, daily discharge.
- (2)
- Historical (1980–2020), daily discharge by using the return period.
- (3)
- Future (2021–2080), daily discharge by using the return period.
- (4)
- Future (2021–2080), daily discharge by using maximum flood in the near future (2025–2040), medium future (2041–2060), and far future (2061–2080).
2.5. Model Evaluation
2.5.1. SWAT Model
2.5.2. HEC-RAS Model
2.6. Future Climate Change Projection
2.7. Statistical Test
3. Results
3.1. Future Precipitation
3.1.1. Selecting the Fittest GCM
3.1.2. Change in Rainfall Characteristics
3.2. Future Streamflow
3.2.1. Parameter Sensitivity, Calibration, and Validation
3.2.2. Effect of Climate Change on Streamflow
3.3. Effect of Climate Change on Flood Events
3.3.1. Model Evaluation
3.3.2. Flood Probability
3.3.3. Flooding in Near Future, Medium Future, and Far Future
3.3.4. Change in Flooded Area
3.3.5. Impact on Land Use
4. Discussion
4.1. Change in Rainfall Characteristics
4.2. Effect on Future Streamflow
4.3. Effect on Future Flood Events
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pörtner, H.-O.; Roberts, D.C.; Poloczanska, E.S.; Mintenbeck, K.; Tignor, M.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability Summary for Policymakers; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust Responses of the Hydrological Cycle to Global Warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Petpongpan, C.; Ekkawatpanit, C.; Bailey, R.T.; Kositgittiwong, D.; Saraphirom, P. Evaluating Surface Water-groundwater Interactions in Consequence of Changes in Climate and Groundwater Extraction. Water Resour. Manag. 2022, 36, 5767–5783. [Google Scholar] [CrossRef]
- Gunathilake, M.B.; Amaratunga, Y.V.; Perera, A.; Chathuranika, I.M.; Gunathilake, A.S.; Rathnayake, U. Evaluation of Future Climate and Potential Impact on Streamflow in the Upper Nan River Basin of Northern Thailand. Adv. Meteorol. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Komori, D.; Rangsiwanichpong, P.; Inoue, N.; Ono, K.; Watanabe, S.; Kazama, S. Distributed probability of slope failure in Thailand under climate change. Clim. Risk Manag. 2018, 20, 126–137. [Google Scholar] [CrossRef]
- Akpodiogaga-a, P.; Odjugo, O. General Overview of Climate Change Impacts in Nigeria. J. Hum. Ecol. 2010, 29, 47–55. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Athar, H.; Jones, P.D.; Rahman, M.A. Recent climate change in the Arabian Peninsula: Annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int. J. Climatol. 2012, 32, 953–966. [Google Scholar] [CrossRef]
- Shen, G.; Hwang, S.N. Spatial–Temporal snapshots of global natural disaster impacts Revealed from EM-DAT for 1900–2015. Geomat. Nat. Hazards Risk 2019, 10, 912–934. [Google Scholar] [CrossRef] [Green Version]
- Farid, M.; Gunawan, B.; Syahril, M.; Kusuma, B.; Habibi, S.A. Assessment of flood risk reduction in Bengawan Solo river: A case study of Sragen Regency. Int. J. Geomate 2020, 18, 229–234. [Google Scholar] [CrossRef]
- Thamtanajit, K. The Impacts Of Natural Disaster On Student Achievement: Evidence From Severe Floods in Thailand. J. Dev. Areas 2020, 54. [Google Scholar] [CrossRef]
- Ozturk, U.; Wendi, D.; Crisologo, I.; Riemer, A.; Agarwal, A.; Vogel, K.; López-Tarazón, J.A.; Korup, O. Science of the Total Environment Rare flash floods and debris flows in southern Germany. Sci. Total Environ. 2018, 626, 941–952. [Google Scholar] [CrossRef]
- Tay, C.W.J.; Yun, S.-H.; Chin, S.T.; Bhardwaj, A.; Jong, J.; Hill, E.M. Rapid flood and damage mapping using synthetic aperture radar in response to Typhoon Hagibis, Japan. Sci. Data 2020, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dottori, F.; Szewczyk, W.; Ciscar, J.-C.; Zhao, F.; Alfieri, L.; Hirabayashi, Y.; Bianchi, A.; Mongelli, I.; Frieler, K.; Betts, R.A.; et al. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Chang. 2018, 8, 781–786. [Google Scholar] [CrossRef]
- Chokkavarapu, N.; Mandla, V.R. Comparative study of GCMs, RCMs, downscaling and hydrological models: A review toward future climate change impact estimation. SN Appl. Sci. 2019, 1, 1698. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.; Chandler, R.E.; Cox, P.M.; Huthnance, J.M.; Rougier, J.; Stephenson, D.B. Quantifying future climate change. Nat. Clim. Chang. 2012, 2, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Vecchi, G.A.; Wittenberg, A.T. El Niño and our future climate: Where do we stand? Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 260–270. [Google Scholar] [CrossRef]
- Ulbrich, U.; Leckebusch, G.C.; Pinto, J.G. Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol. 2009, 96, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Chen, C.A.; Hsu, H.H.; Liang, H.C. Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the Western North Pacific and East Asia. Weather Clim. Extrem. 2021, 31, 100303. [Google Scholar] [CrossRef]
- Rojpratak, S.; Supharatid, S. Regional extreme precipitation index: Evaluations and projections from the multi-model ensemble CMIP5 over Thailand. Weather Clim. Extrem. 2022, 37, 100475. [Google Scholar] [CrossRef]
- Niu, Z.; Feng, L.; Chen, X.; Yi, X. Evaluation and future projection of extreme climate events in the yellow river basin and yangtze river basin in china using ensembled cmip5 models data. Int. J. Environ. Res. Public Health 2021, 18, 6029. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Han, L.; Zheng, J.; Ding, R.; Li, J.; Hou, Z.; Chao, J. Evaluation of the performance of CMIP5 and CMIP6 models in simulating the victoria mode-el niño relationship. J. Clim. 2021, 34, 7625–7644. [Google Scholar] [CrossRef]
- Deng, X.; Perkins-Kirkpatrick, S.E.; Lewis, S.C.; Ritchie, E.A. Evaluation of Extreme Temperatures Over Australia in the Historical Simulations of CMIP5 and CMIP6 Models. Earth’s Futur. 2021, 9, e2020EF001902. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J.; Lin, W.; Xu, H. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci. Bull. 2020, 65, 1415–1418. [Google Scholar] [CrossRef]
- Punyawansiri, S.; Kwanyuen, B. Forecasting the Future Temperature Using a Downscaling Method by LARS-WG Stochastic Weather Generator at the Local Site of Phitsanulok Province, Thailand. Atmos. Clim. Sci. 2020, 10, 538–552. [Google Scholar] [CrossRef]
- Babel, M.S.; Sirisena, T.A.J.G.; Singhrattna, N. Incorporating large-scale atmospheric variables in long-term seasonal rainfall forecasting using artificial neural networks: An application to the Ping Basin in Thailand. Hydrol. Res. 2017, 48, 867–882. [Google Scholar] [CrossRef] [Green Version]
- Pattnayak, K.C.; Kar, S.C.; Dalal, M.; Pattnayak, R.K. Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries. Glob. Planet. Chang. 2017, 152, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Pomoim, N.; Zomer, R.J.; Hughes, A.C.; Corlett, R.T. The sustainability of thailand’s protected-area system under climate change. Sustainability 2021, 13, 2868. [Google Scholar] [CrossRef]
- Tabucanon, A.S.; Rittima, A.; Raveephinit, D.; Phankamolsil, Y.; Sawangphol, W.; Kraisangka, J.; Talaluxmana, Y.; Vudhivanich, V.; Xue, W. Impact of climate change on reservoir reliability: A case of bhumibol dam in ping river basin, Thailand. Environ. Nat. Resour. J. 2021, 19, 266–281. [Google Scholar] [CrossRef]
- Ankit, P.C.; Sangam, S. Climate Change Impacts and Adaptation Strategies on Maize and Rice Yield in Nan River Basin, Thailand. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 13–17 December 2021. [Google Scholar]
- Kyaw, K.M.; Rittima, A.; Phankamolsil, Y.; Tabucanon, A.S.; Sawangphol, W.; Kraisangka, J.; Vudhivanich, V. Assessing Reservoir Reoperation Performances through Adapted Rule Curve and Hedging Policies under Climate Change Scenarios: In--depth Investigation of Case Study of Bhumibol Dam in Thailand. Eng. Access 2022, 8, 179–185. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014 Synthesis Report Summary for Policymakers; IPCC: Cambridge, UK, 2014. [Google Scholar]
- Dukat, P.; Bednorz, E.; Ziemblińska, K.; Urbaniak, M. Trends in drought occurrence and severity at mid-latitude European stations (1951–2015) estimated using standardized precipitation (SPI) and precipitation and evapotranspiration (SPEI) indices. Meteorol. Atmos. Phys. 2022, 134, 1–21. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Ebrahimi, M.; Nejadsoleymani, H. An overview of climate change in Iran: Facts and statistics. Environ. Syst. Res. 2019, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Yang, Y.C.E.; Ryan, R.; Yu, Q.; Brabec, E. Assessing climate change-induced flooding mitigation for adaptation in Boston’s Charles River watershed, USA. Landsc. Urban Plan. 2017, 167, 25–36. [Google Scholar] [CrossRef]
- Kharel, G.; Zheng, H.; Kirilenko, A. Can land-use change mitigate long-term flood risks in the Prairie Pothole Region? The case of Devils Lake, North Dakota, USA. Reg. Environ. Chang. 2016, 16, 2443–2456. [Google Scholar] [CrossRef]
- Novelo-Casanova, D.A.; Rodríguez-Vangort, F. Flood risk assessment. Case of study: Motozintla de Mendoza, Chiapas, Mexico. Geomat. Nat. Hazards Risk 2016, 7, 1538–1556. [Google Scholar] [CrossRef] [Green Version]
- Boithias, L.; Sauvage, S.; Lenica, A.; Roux, H.; Abbaspour, K.C.; Larnier, K.; Dartus, D.; Sánchez-Pérez, J.M. Simulating flash floods at hourly time-step using the SWAT model. Water 2017, 9, 929. [Google Scholar] [CrossRef] [Green Version]
- Eingrüber, N.; Korres, W. Climate change simulation and trend analysis of extreme precipitation and floods in the mesoscale Rur catchment in western Germany until 2099 using Statistical Downscaling Model (SDSM) and the Soil & Water Assessment Tool (SWAT model). Sci. Total Environ. 2022, 838, 155775. [Google Scholar] [CrossRef]
- Urzică, A.; Mihu-Pintilie, A.; Stoleriu, C.C.; Cîmpianu, C.I.; Huţanu, E.; Pricop, C.I.; Grozavu, A. Using 2D HEC-RAS modeling and embankment dam break scenario for assessing the flood control capacity of a multireservoir system (Ne Romania). Water 2021, 13, 57. [Google Scholar] [CrossRef]
- Birhanu, D.; Kim, H.; Jang, C.; Park, S. Flood Risk and Vulnerability of Addis Ababa City Due to Climate Change and Urbanization. Procedia Eng. 2016, 154, 696–702. [Google Scholar] [CrossRef] [Green Version]
- Hounkpè, J.; Diekkrüger, B.; Afouda, A.A.; Sintondji, L.O.C. Land use change increases flood hazard: A multi-modelling approach to assess change in flood characteristics driven by socio-economic land use change scenarios. Nat. Hazards 2019, 98, 1021–1050. [Google Scholar] [CrossRef]
- Desalegn, H.; Mulu, A. Mapping flood inundation areas using GIS and HEC-RAS model at Fetam River, Upper Abbay Basin, Ethiopia. Sci. Afr. 2021, 12, e00834. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Zhao, Y.; Long, Y. Using SWAT Model to Assess the Impacts of Land Use and Climate Changes on Flood in the Upper Weihe River, China. Water 2022, 14, 2098. [Google Scholar] [CrossRef]
- Kartikasari, A.N.I.; Halik, G.; Wiyono, R.U.A. Land Use Scenario Modelling for Floods Mitigation in Bedadung Watershed, East Java Indonesia. J. Eng. Sci. Technol. 2022, 17, 2020–2034. [Google Scholar]
- Rohmat, F.I.W.; Sa’adi, Z.; Stamataki, I.; Kuntoro, A.A.; Farid, M.; Suwarman, R. Flood modeling and baseline study in urban and high population environment: A case study of Majalaya, Indonesia. Urban Clim. 2022, 46, 101332. [Google Scholar] [CrossRef]
- Prasanchum, H.; Sirisook, P.; Lohpaisankrit, W. Flood risk areas simulation using SWAT and Gumbel distribution method in Yang Catchment, Northeast Thailand. Geogr. Tech. 2020, 15, 29–39. [Google Scholar] [CrossRef]
- Wangpimool, W.; Pongput, K.; Supriyasilp, T.; Sakolnakhon, K.P.N. Hydrological Evaluation with SWAT Model and Numerical Weather Prediction for Flash Flood Warning System in Thailand. J. Earth Sci. Eng. 2013, 6, 349–357. [Google Scholar]
- Maskong, H.; Jothiyangkoon, C.; Hirunteeyakul, C. Flood Hazard Mapping Using on-Site Surveyed Flood Map, HECRAS V.5 and GIS Tool: A Case Study of Nakhon Ratchasima Municipality, Thailand. Int. J. Geomate 2019, 16, 1–8. [Google Scholar] [CrossRef]
- Roy, B.; Khan, M.S.M.; Islam, A.K.M.S.; Mohammed, K.; Khan, M.J.U. Climate-induced flood inundation for the Arial Khan River of Bangladesh using open-source SWAT and HEC-RAS model for RCP8.5-SSP5 scenario. SN Appl. Sci. 2021, 3, 1–13. [Google Scholar] [CrossRef]
- Loi, N.K.; Liem, N.D.; Tu, L.H.; Hong, N.T.; Truong, C.D.; Tram, V.N.Q.; Nhat, T.T.; Anh, T.N.; Jeong, J. Automated procedure of real-time flood forecasting in vu gia—Thu bon river basin, vietnam by integrating swat and hec-ras models. J. Water Clim. Chang. 2019, 10, 535–545. [Google Scholar] [CrossRef]
- Warren, R.; Arnell, N.; Nicholls, R.; Levy, P.; Price, J. Understanding the Regional Impacts of Climate Change. Tyndall Cent. Clim. Chang. Res. Work. Pap. 2006, 27–60, Working Paper 90. Available online: http://www.tyndall.ac.uk/publications/working_papers/twp90.pdf (accessed on 5 October 2022).
- Artlert, K.; Chaleeraktrakoon, C.; Van Nguyen, V.T. Modeling and analysis of rainfall processes in the context of climate change for Mekong, Chi, and Mun River Basins (Thailand). J. Hydro-Environ. Res. 2013, 7, 2–17. [Google Scholar] [CrossRef]
- Promping, T.; Tingsanchali, T. Effects of Climate Change and Land-use Change on Future Inflow to a Reservoir: A Case Study of Sirikit Dam, Upper Nan River Basin, Thailand. Gmsarn Int. J. 2022, 16, 366–376. [Google Scholar]
- Igarashi, K.; Koichiro, K.; Tanaka, N.; Aranyabhaga, N. Prediction of the Impact of Climate Change and Land Use Change on Flood Discharge in the Song Khwae District, Nan Province, Thailand. J. Clim. Chang. 2019, 5, 1–8. [Google Scholar] [CrossRef]
- Smith, K.G. Standards for grading texture of erosional topography. Am. J. Sci. 1950, 248, 655–668. [Google Scholar] [CrossRef]
- FAO. FAO Digital Soil Map of the World (DSMW). Available online: https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1026564/ (accessed on 3 March 2023).
- Pakoksung, K.; Takagi, M. Effect of land cover change in runoff estimation on flood event; case study in the upper part area of Nan river basin, Thailand. In Proceedings of the 37th Asian Conference on Remote Sensing, ACRS 2016, Colombo, Sri Lanka, 17–21 October 2016; Volume 3, pp. 1788–1797. [Google Scholar]
- Koontanakulvong, S.; Pakoksung, K. Impact of Land Use Change on Runoff Volume in Upper Nan Basin Area. In Proceedings of the 2nd EIT International Conference on Water Resources Engineering, Chiangrai, Thailand, 5–6 September 2013. [Google Scholar]
- Paiboonvorachat, C.; Oyana, T.J. Land-cover changes and potential impacts on soil erosion in the nan watershed, Thailand. Int. J. Remote Sens. 2011, 32, 6587–6609. [Google Scholar] [CrossRef]
- Jirasirichote, A.; Ninsawat, S.; Shrestha, S.; Tripathi, N.K. Performance of AnnAGNPS model in predicting runoff and sediment yields in Nan Province, Thailand. Heliyon 2021, 7, e08396. [Google Scholar] [CrossRef]
- Li, C.; Fang, H. Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model. Catena 2021, 201, 105199. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Jha, M.K. SWAT: Model Use, Calibration, and Validation. Am. Soc. Agric. Biol. Eng. 2012, 55, 1491–1508. [Google Scholar]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Aawar, T.; Khare, D. Assessment of climate change impacts on streamflow through hydrological model using SWAT model: A case study of Afghanistan. Model. Earth Syst. Environ. 2020, 6, 1427–1437. [Google Scholar] [CrossRef]
- Chow, V.T. Open-Channel Hydraulics; McGraw Hill: New York, NY, USA, 1959. [Google Scholar]
- Jung, I.K.; Park, J.Y.; Park, G.A.; Lee, M.S.; Kim, S.J. A grid-based rainfall-runoff model for flood simulation including paddy fields. Paddy Water Environ. 2011, 9, 275–290. [Google Scholar] [CrossRef]
- Curtis, J. Manning’s n Values for Various Land Covers. To Use for Dam Breach Analyses by NRCS in Kansas, No. February, pp. 1–2, 2016. Available online: https://rashms.com/wp-content/uploads/2021/01/Mannings-n-values-NLCD-NRCS.pdf (accessed on 8 October 2022).
- Bobee, B.B.; Robitaille, R. The Use of the Pearson Type 3 and Log Pearson Type 3 Distribution Revisited. Water Resour. Res. 1977, 13, 427–443. [Google Scholar] [CrossRef]
- Kumar, R. Flood Frequency Analysis of the Rapti River Basin using Log Pearson Type-III and Gumbel Extreme Value-1 Methods. J. Geol. Soc. India 2019, 94, 480–484. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainly Programs—A User Manual; Swiss Federal Institute of Aquatic Science and Technology, Eawag: Dübendorf, Switzerland, 2015. [Google Scholar] [CrossRef]
- Guo, J.; Su, X. Parameter sensitivity analysis of SWAT model for streamflow simulation with multisource precipitation datasets. Hydrol. Res. 2019, 50, 861–877. [Google Scholar] [CrossRef] [Green Version]
- Golmohammadi, G.; Prasher, S.; Madani, A.; Rudra, R. Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology 2014, 1, 20–39. [Google Scholar] [CrossRef] [Green Version]
- Gitau, M.W.; Chaubey, I. Regionalization of SWAT model parameters for use in ungauged watersheds. Water 2010, 2, 849–871. [Google Scholar] [CrossRef]
- Yang, M.; Xu, J.; Yin, D.; He, S.; Zhu, S.; Li, S. Modified Multi–Source Water Supply Module of the SWAT–WARM Model to Simulate Water Resource Responses under Strong Human Activities in the Tang–Bai River Basin. Sustainability 2022, 14, 15016. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Towner, J.; Cloke, H.L.; Zsoter, E.; Flamig, Z.; Hoch, J.M.; Bazo, J.; de Perez, E.C.; Stephens, E.M. Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin. Hydrol. Earth Syst. Sci. 2019, 23, 3057–3080. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.E.; Nakicenovic, N.; Rafaj, P. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Bevans, R. An Introduction to t Test: Definitions, Formula and Examples; Scribbr: Amsterdam, The Netherlands, 2022; Available online: https://www.scribbr.com/statistics/t-test/ (accessed on 18 December 2022).
- Tuo, Y.; Duan, Z.; Disse, M.; Chiogna, G. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy). Sci. Total Environ. 2016, 573, 66–82. [Google Scholar] [CrossRef] [Green Version]
- Nontikansak, P.; Shrestha, S.; Shanmugam, M.S.; Loc, H.H.; Virdis, S.G.P. Rainfall extremes under climate change in the Pasak River Basin, Thailand. J. Water Clim. Chang. 2022, 13, 3729–3746. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Barros, V.; Burton, I.; Campbell-Lendrum, D.; Cardona, O.-D.; Cutter, S.L.; Dube, O.P.; Ebi, K.L.; Field, C.B.; Handmer, J.W.; et al. Climate Change 2021: The Physical Science Basis Summary for Policymakers; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Vongvisessomjai, S. Tropical cyclone disasters in the Gulf of Thailand. Songklanakarin J. Sci. Technol. 2009, 31, 213–227. [Google Scholar]
- Kure, S.; Tebakari, T. Hydrological impact of regional climate change in the Chao Phraya River Basin, Thailand. Hydrol. Res. Lett. 2012, 6, 53–58. [Google Scholar] [CrossRef]
- Hunukumbura, P.B.; Tachikawa, Y. River discharge projection under climate change in the Chao Phraya River basin, Thailand, using the MRI-GCM3.1S dataset. J. Meteorol. Soc. Jpn. 2012, 90, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y. Satellite-based investigation of flood-affected rice cultivation areas in Chao Phraya River Delta, Thailand. ISPRS J. Photogramm. Remote Sens. 2013, 86, 77–88. [Google Scholar] [CrossRef]
- Kotera, A.; Nagano, T.; Hanittinan, P.; Koontanakulvong, S. Assessing the degree of flood damage to rice crops in the Chao Phraya delta, Thailand, using MODIS satellite imaging. Paddy Water Environ. 2016, 14, 271–280. [Google Scholar] [CrossRef]
- Nara, P.; Mao, G.-G.; Yen, T.-B. Climate Change Impacts on Agricultural Products in Thailand: A Case Study of Thai Rice at the Chao Phraya River Basin. APCBEE Procedia 2014, 8, 136–140. [Google Scholar] [CrossRef] [Green Version]
GCM | Scenario | Deviation |
---|---|---|
EC-Earth | RCP4.5 | 6281.9 |
RCP8.5 | 5505.4 | |
HadGEM2 | RCP4.5 | 6890.2 |
RCP8.5 | 6080.0 | |
MPI-ESM-MR | RCP4.5 | 4191.5 |
RCP8.5 | 2914.7 |
Group | Obs. | Mean | Variance | P(T ≤ t) Two-Tail | Significance |
---|---|---|---|---|---|
Historical | 41 | 1385 | 45,535 | - | - |
RCP 4.5 | 61 | 1649 | 80,816 | 5.47 × 10−7 * | Significantly different |
RCP 8.5 | 61 | 1639 | 69,372 | 5.68 × 10−7 * | Significantly different |
Station | Parameter | Definition | Min. | Max. |
---|---|---|---|---|
N1 | ALPHA_BF | Baseflow alpha factor | 0 | 0.5 |
CANMX | Maximum canopy storage | 0 | 100 | |
N64 | CH_K2 | Effective hydraulic conductivity in the main channel | −0.01 | 500 |
Station | Group | Obs. | Mean | P(T ≤ t) Two-Tail | Significance |
---|---|---|---|---|---|
N1 | Historical | 35 | 51,538 | - | |
MPI-ESM-MR RCP4.5 | 56 | 53,829 | 0.3968 | Not sig. different | |
MPI-ESM-MR RCP8.5 | 56 | 54,148 | 0.3269 | Not sig. different | |
N64 | Historical | 35 | 40,868 | - | - |
MPI-ESM-MR RCP4.5 | 56 | 41,001 | 0.9495 | Not sig. different | |
MPI-ESM-MR RCP8.5 | 56 | 41,244 | 0.8560 | Not sig. different |
Area | Date | Manning | Total Match | Accuracy (%) |
---|---|---|---|---|
Muang Nan | 26 Aug 2018 | Normal | 29,540 | 91.8 |
Wiangsa | 17 Aug 2018 | Minimum | 99,472 | 87.2 |
Study Area | Scenario | Percent Difference (%) | ||||||
---|---|---|---|---|---|---|---|---|
RP1 | RP2 | RP5 | RP10 | RP20 | RP50 | RP100 | ||
Muang Nan | RCP 4.5 | 12.5 | 18.5 | 33.5 | 31.6 | 28.7 | 21.7 | 18.6 |
RCP 8.5 | 20.6 | 21.9 | 35.4 | 37.3 | 33.3 | 25.4 | 23.7 | |
Wiangsa | RCP 4.5 | −2.8 | 5.9 | 3.8 | 5.0 | 4.5 | 3.4 | 5.3 |
RCP 8.5 | 2.7 | 7.0 | 3.8 | 8.9 | 10.0 | 8.8 | 9.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satriagasa, M.C.; Tongdeenok, P.; Kaewjampa, N. Assessing the Implication of Climate Change to Forecast Future Flood Using SWAT and HEC-RAS Model under CMIP5 Climate Projection in Upper Nan Watershed, Thailand. Sustainability 2023, 15, 5276. https://doi.org/10.3390/su15065276
Satriagasa MC, Tongdeenok P, Kaewjampa N. Assessing the Implication of Climate Change to Forecast Future Flood Using SWAT and HEC-RAS Model under CMIP5 Climate Projection in Upper Nan Watershed, Thailand. Sustainability. 2023; 15(6):5276. https://doi.org/10.3390/su15065276
Chicago/Turabian StyleSatriagasa, Muhammad Chrisna, Piyapong Tongdeenok, and Naruemol Kaewjampa. 2023. "Assessing the Implication of Climate Change to Forecast Future Flood Using SWAT and HEC-RAS Model under CMIP5 Climate Projection in Upper Nan Watershed, Thailand" Sustainability 15, no. 6: 5276. https://doi.org/10.3390/su15065276
APA StyleSatriagasa, M. C., Tongdeenok, P., & Kaewjampa, N. (2023). Assessing the Implication of Climate Change to Forecast Future Flood Using SWAT and HEC-RAS Model under CMIP5 Climate Projection in Upper Nan Watershed, Thailand. Sustainability, 15(6), 5276. https://doi.org/10.3390/su15065276