Urban Greening as a Response to Climate-Related Heat Risk: A Social–Geographical Review
Abstract
:1. Introduction
2. Materials and Methods
- Population: cities worldwide
- Intervention: urban greening as an adaptation measure
- Context: climate-related heat stress
3. Results
3.1. Study Background
3.2. Geography
3.3. Urban Greening Interventions
4. Discussion
- How is urban greening studied?
- Which regions are represented?
- In which social–geographical context are studies located?
- Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- Gencer, E.; Folorunsho, R.; Linkin, M.; Wang, X.; Natenzon, C.E.; Wajih, S.; Mani, N.; Esquivel, M.; Ali Ibrahim, S.; Tsuneki, H.; et al. Disasters and Risk in Cities. In Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network; Rosenzweig, C., Solecki, W., Romero-Lankao, P., Mehrotra, S., Dhakal, S., Ali Ibrahim, S., Eds.; Cambridge University Press: New York, NY, USA, 2018; pp. 61–98. [Google Scholar]
- Huang, K.; Li, X.; Liu, X.; Seto, K.C. Projecting Global Urban Land Expansion and Heat Island Intensification through 2050. Environ. Res. Lett. 2019, 14, 114037. [Google Scholar] [CrossRef] [Green Version]
- Revi, A.; Satterthwaite, D.E.; Aragón-Durand, F.; Corfee-Morlot, J.; Kiunsi, R.B.R.; Pelling, M.; Roberts, D.C.; Solecki, W. Urban Areas; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 535–612. [Google Scholar]
- Bader, D.A.; Blake, R.; Grimm, A.; Hamdi, R.; Kim, Y.; Horton, R.; Rosenzweig, C. Urban Climate Science. In Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network; Rosenzweig, C., Solecki, W., Romero-Lankao, P., Mehrotra, S., Dhakal, S., Ali Ibrahim, S., Eds.; Cambridge University Press: New York, NY, USA, 2018; pp. 27–60. [Google Scholar]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.L.; Engelbrecht, F.; et al. Impacts of 1.5 °C Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC Secretariat: Geneva, Switzerland, 2018; in press. [Google Scholar]
- Mishra, V.; Ganguly, A.R.; Nijssen, B.; Lettenmaier, D.P. Changes in Observed Climate Extremes in Global Urban Areas. Environ. Res. Lett. 2015, 10, 024005. [Google Scholar] [CrossRef]
- Oke, T.R. (Ed.) Urban Climates; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-0-521-84950-0. [Google Scholar]
- Argüeso, D.; Evans, J.P.; Pitman, A.J.; Di Luca, A. Effects of City Expansion on Heat Stress under Climate Change Conditions. PLoS ONE 2015, 10, e0117066. [Google Scholar] [CrossRef] [PubMed]
- Suzuki-Parker, A.; Kusaka, H.; Yamagata, Y. Assessment of the Impact of Metropolitan-Scale Urban Planning Scenarios on the Moist Thermal Environment under Global Warming: A Study of the Tokyo Metropolitan Area Using Regional Climate Modeling. Adv. Meteorol. 2015, 2015, 693754. [Google Scholar] [CrossRef] [Green Version]
- Atwoli, L.; Baqui, A.H.; Benfield, T.; Bosurgi, R.; Godlee, F.; Hancocks, S.; Horton, R.; Laybourn-Langton, L.; Monteiro, C.A.; Norman, I.; et al. Call for Emergency Action to Limit Global Temperature Increases, Restore Biodiversity, and Protect Health. BMJ 2021, 374, n1734. [Google Scholar] [CrossRef]
- Barata, M.M.L.; Kinney, P.L.; Dear, K.; Ligeti, E.; Ebi, K.L.; Hess, J.; Dickinson, T.; Quinn, A.K.; Obermaier, M.; Silva Sousa, D.; et al. Urban Health. In Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network; Rosenzweig, C., Solecki, W., Romero-Lankao, P., Mehrotra, S., Dhakal, S., Ali Ibrahim, S., Eds.; Cambridge University Press: New York, NY, USA, 2018; pp. 363–398. [Google Scholar]
- Vicedo-Cabrera, A.M.; Scovronick, N.; Sera, F.; Royé, D.; Schneider, R.; Tobias, A.; Astrom, C.; Guo, Y.; Honda, Y.; Hondula, D.M.; et al. The Burden of Heat-Related Mortality Attributable to Recent Human-Induced Climate Change. Nat. Clim. Chang. 2021, 11, 492–500. [Google Scholar] [CrossRef]
- Sandholz, S.; Sett, D.; Greco, A.; Wannewitz, M.; Garschagen, M. Rethinking Urban Heat Stress: Assessing Risk and Adaptation Options across Socioeconomic Groups in Bonn, Germany. Urban Clim. 2021, 37, 100857. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Beagley, J.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; et al. The 2020 Report of The Lancet Countdown on Health and Climate Change: Responding to Converging Crises. Lancet 2021, 397, 129–170. [Google Scholar] [CrossRef] [PubMed]
- Benz, S.A.; Burney, J.A. Widespread Race and Class Disparities in Surface Urban Heat Extremes Across the United States. Earth’s Future 2021, 9, e2021EF002016. [Google Scholar] [CrossRef]
- de Coninck, H.; Revi, A.; Babiker, M.; Bertoldi, P.; Buckeridge, M.; Cartwright, A.; Dong, W.; Ford, J.; Fuss, S.; Hourcade, J.; et al. Strengthening and Implementing the Global Response. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC Secretariat: Geneva, Switzerland, 2018; pp. 313–443, in press. [Google Scholar]
- Yiannakou, A.; Salata, K.-D. Adaptation to Climate Change through Spatial Planning in Compact Urban Areas: A Case Study in the City of Thessaloniki. Sustainability 2017, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Biswas, M.H.A.; Dey, P.R.; Islam, M.S.; Mandal, S. Mathematical Model Applied to Green Building Concept for Sustainable Cities Under Climate Change. J. Contemp. Urban Aff. 2021, 6, 36–50. [Google Scholar] [CrossRef]
- Dodman, D.; Hayward, B.; Pelling, M.; Broto, V.C.; Chow, W.; Chu, E.; Dawson, R.; Khirfan, L.; McPhearson, T.; Prakash, A.; et al. Cities, Settlements and Key Infrastructure. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M.M.B., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 907–1040. [Google Scholar]
- Sethi, M.; Lamb, W.; Minx, J.; Creutzig, F. Climate Change Mitigation in Cities: A Systematic Scoping of Case Studies. Environ. Res. Lett. 2020, 15, 093008. [Google Scholar] [CrossRef]
- Gómez Martín, E.; Giordano, R.; Pagano, A.; van der Keur, P.; Máñez Costa, M. Using a System Thinking Approach to Assess the Contribution of Nature Based Solutions to Sustainable Development Goals. Sci. Total Environ. 2020, 738, 139693. [Google Scholar] [CrossRef]
- Shackleton, C.M. Urban Green Infrastructure for Poverty Alleviation: Evidence Synthesis and Conceptual Considerations. Front. Sustain. Cities 2021, 3, 710549. [Google Scholar] [CrossRef]
- Schipper, E.L.F.; Revi, A.; Preston, B.L.; Carr, E.R.; Eriksen, S.H.; Fernández-Carril, L.R.; Glavovic, B.; Hilmi, N.J.M.; Ley, D.; Mukerji, R.; et al. Climate Resilient Development Pathways. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M.M.B., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 2655–2807. [Google Scholar]
- Culwick, C.; Bobbins, K.; Cartwright, A.; Oelofse, G.; Mander, M.; Dunsmore, S. A Framework for a Green Infrastructure Planning Approach in the Gauteng City-Region; Gauteng City-Region Observatory: Johannesburg, South Africa, 2016. [Google Scholar]
- Shishegar, N. The Impacts of Green Areas on Mitigating Urban Heat Island Effect. Int. J. Environ. Sustain. 2014, 9, 119–130. [Google Scholar] [CrossRef]
- Balany, F.; Ng, A.W.; Muttil, N.; Muthukumaran, S.; Wong, M.S. Green Infrastructure as an Urban Heat Island Mitigation Strategy—A Review. Water 2020, 12, 3577. [Google Scholar] [CrossRef]
- Knight, T.; Price, S.; Bowler, D.; Hookway, A.; King, S.; Konno, K.; Richter, R.L. How Effective Is ‘Greening’ of Urban Areas in Reducing Human Exposure to Ground-Level Ozone Concentrations, UV Exposure and the ‘Urban Heat Island Effect’? An Updated Systematic Review. Environ. Evid. 2021, 10, 12. [Google Scholar] [CrossRef]
- Leal Filho, W.; Wolf, F.; Castro-Díaz, R.; Li, C.; Ojeh, V.N.; Gutiérrez, N.; Nagy, G.J.; Savić, S.; Natenzon, C.E.; Quasem Al-Amin, A.; et al. Addressing the Urban Heat Islands Effect: A Cross-Country Assessment of the Role of Green Infrastructure. Sustainability 2021, 13, 753. [Google Scholar] [CrossRef]
- Nesbitt, L.; Meitner, M.J.; Sheppard, S.R.J.; Girling, C. The Dimensions of Urban Green Equity: A Framework for Analysis. Urban For. Urban Green. 2018, 34, 240–248. [Google Scholar] [CrossRef]
- Hoover, F.-A.; Meerow, S.; Grabowski, Z.J.; McPhearson, T. Environmental Justice Implications of Siting Criteria in Urban Green Infrastructure Planning. J. Environ. Policy Plan. 2021, 23, 665–682. [Google Scholar] [CrossRef]
- Wüstemann, H.; Kalisch, D.; Kolbe, J. Access to Urban Green Space and Environmental Inequalities in Germany. Landsc. Urban Plan. 2017, 164, 124–131. [Google Scholar] [CrossRef]
- Kronenberg, J.; Haase, A.; Łaszkiewicz, E.; Antal, A.; Baravikova, A.; Biernacka, M.; Dushkova, D.; Filčak, R.; Haase, D.; Ignatieva, M.; et al. Environmental Justice in the Context of Urban Green Space Availability, Accessibility, and Attractiveness in Postsocialist Cities. Cities 2020, 106, 102862. [Google Scholar] [CrossRef]
- Kabisch, N.; Haase, D. Green Justice or Just Green? Provision of Urban Green Spaces in Berlin, Germany. Landsc. Urban Plan. 2014, 122, 129–139. [Google Scholar] [CrossRef]
- Liotta, C.; Kervinio, Y.; Levrel, H.; Tardieu, L. Planning for Environmental Justice-Reducing Well-Being Inequalities through Urban Greening. Environ. Sci. Policy 2020, 112, 47–60. [Google Scholar] [CrossRef]
- Angelo, H. Added Value? Denaturalizing the “Good” of Urban Greening. Geogr. Compass 2019, 13, e12459. [Google Scholar] [CrossRef]
- James, K.L.; Randall, N.P.; Haddaway, N.R. A Methodology for Systematic Mapping in Environmental Sciences. Environ. Evid. 2016, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Berrang-Ford, L.; Döbbe, F.; Garside, R.; Haddaway, N.; Lamb, W.F.; Minx, J.C.; Viechtbauer, W.; Welch, V.; White, H. Editorial: Evidence Synthesis for Accelerated Learning on Climate Solutions. Campbell Syst. Rev. 2020, 16, e1128. [Google Scholar] [CrossRef]
- Berrang-Ford, L.; Pearce, T.; Ford, J.D. Systematic Review Approaches for Climate Change Adaptation Research. Reg. Environ. Chang. 2015, 15, 755–769. [Google Scholar] [CrossRef] [Green Version]
- Haddaway, N.R.; Macura, B.; Whaley, P.; Pullin, A.S. ROSES RepOrting Standards for Systematic Evidence Syntheses: Pro Forma, Flow-Diagram and Descriptive Summary of the Plan and Conduct of Environmental Systematic Reviews and Systematic Maps. Environ. Evid. 2018, 7, 7. [Google Scholar] [CrossRef]
- Berrang-Ford, L.; Siders, A.R.; Lesnikowski, A.; Fischer, A.P.; Callaghan, M.W.; Haddaway, N.R.; Mach, K.J.; Araos, M.; Shah, M.A.R.; Wannewitz, M.; et al. A Systematic Global Stocktake of Evidence on Human Adaptation to Climate Change. Nat. Clim. Chang. 2021, 11, 989–1000. [Google Scholar] [CrossRef]
- Zvobgo, L.; Johnston, P.; Williams, P.A.; Trisos, C.H.; Simpson, N.P. Global Adaptation Mapping Initiative Team The Role of Indigenous Knowledge and Local Knowledge in Water Sector Adaptation to Climate Change in Africa: A Structured Assessment. Sustain. Sci. 2022, 17, 2077–2092. [Google Scholar] [CrossRef]
- Petzold, J.; Joe, E.T.; Kelman, I.; Magnan, A.K.; Mirbach, C.; Nagle Alverio, G.; Nunn, P.D.; Ratter, B.M.W. The Global Adaptation Mapping Initiative Team Between Tinkering and Transformation: A Contemporary Appraisal of Climate Change Adaptation Research on the World’s Islands. Front. Clim. 2023, 4, 1072231. [Google Scholar] [CrossRef]
- Leal Filho, W.; Totin, E.; Franke, J.A.; Andrew, S.M.; Abubakar, I.R.; Azadi, H.; Nunn, P.D.; Ouweneel, B.; Williams, P.A.; Simpson, N.P. Understanding Responses to Climate-Related Water Scarcity in Africa. Sci. Total Environ. 2022, 806, 150420. [Google Scholar] [CrossRef]
- Simpson, N.P.; Williams, P.A.; Mach, K.J.; Berrang-Ford, L.; Biesbroek, R.; Haasnoot, M.; Segnon, A.C.; Campbell, D.; Musah-Surugu, J.I.; Joe, E.T.; et al. Adaptation to Compound Climate Risks: A Systematic Global Stocktake. iScience 2023, 26, 105926. [Google Scholar] [CrossRef] [PubMed]
- Ulibarri, N.; Ajibade, I.; Galappaththi, E.K.; Joe, E.T.; Lesnikowski, A.; Mach, K.J.; Musah-Surugu, J.I.; Nagle Alverio, G.; Segnon, A.C.; Siders, A.R.; et al. A Global Assessment of Policy Tools to Support Climate Adaptation. Clim. Policy 2022, 22, 77–96. [Google Scholar] [CrossRef]
- Bozada, T.; Borden, J.; Workman, J.; Del Cid, M.; Malinowski, J.; Luechtefeld, T. Sysrev: A FAIR Platform for Data Curation and Systematic Evidence Review. Front. Artif. Intell. 2021, 4, 685298. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Resseger, M.; Tobio, K. Inequality in Cities. J. Reg. Sci. 2009, 49, 617–646. [Google Scholar] [CrossRef]
- Hamnett, C. Urban Inequality. In Handbook of Urban Geography; Schwanen, T., van Kempen, R., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2019; pp. 242–254. [Google Scholar]
- IBM. IBM SPSS Statistics for Windows, Version 28.0; IBM SPSS: New York, NY, USA, 2021. [Google Scholar]
- Haddaway, N.R.; Feierman, A.; Grainger, M.J.; Gray, C.T.; Tanriver-Ayder, E.; Dhaubanjar, S.; Westgate, M.J. EviAtlas: A Tool for Visualising Evidence Synthesis Databases. Environ. Evid. 2019, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, R.; Kabisch, N. Parks Under Stress: Air Temperature Regulation of Urban Green Spaces Under Conditions of Drought and Summer Heat. Front. Environ. Sci. 2022, 10, 849965. [Google Scholar] [CrossRef]
- Vincent, K.; Cundill, G. The Evolution of Empirical Adaptation Research in the Global South from 2010 to 2020. Clim. Dev. 2021, 14, 25–38. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Almazroui, M.; Bucchignani, E.; Driouech, F.; El Rhaz, K.; Kurnaz, L.; Nikulin, G.; Ntoumos, A.; Ozturk, T.; et al. Business-as-Usual Will Lead to Super and Ultra-Extreme Heatwaves in the Middle East and North Africa. npj Clim. Atmos. Sci. 2021, 4, 20. [Google Scholar] [CrossRef]
- Dipeolu, A.A.; Akpa, O.M.; Fadamiro, A.J. Mitigating Environmental Sustainability Challenges and Enhancing Health in Urban Communities: The Multi-Functionality of Green Infrastructure. J. Contemp. Urban Aff. 2020, 4, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Ambrey, C.L. Urban Greenspace, Physical Activity and Wellbeing: The Moderating Role of Perceptions of Neighbourhood Affability and Incivility. Land Use Policy 2016, 57, 638–644. [Google Scholar] [CrossRef]
- Ambrey, C.L.; Shahni, T.J. Greenspace and Wellbeing in Tehran: A Relationship Conditional on a Neighbourhood’s Crime Rate? Urban For. Urban Green. 2017, 27, 155–161. [Google Scholar] [CrossRef]
- Säumel, I.; Weber, F.; Kowarik, I. Toward Livable and Healthy Urban Streets: Roadside Vegetation Provides Ecosystem Services Where People Live and Move. Environ. Sci. Policy 2016, 62, 24–33. [Google Scholar] [CrossRef]
- Sugiyama, T.; Thompson, C.W.; Alves, S. Associations Between Neighborhood Open Space Attributes and Quality of Life for Older People in Britain. Environ. Behav. 2009, 41, 3–21. [Google Scholar] [CrossRef]
- Tok, E.; Agdas, M.G.; Ozkok, M.K.; Kuru, A. Socio-Psychological Effects of Urban Green Areas: Case of Kirklareli City Center. J. Contemp. Urban Aff. 2020, 4, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Anguelovski, I.; Connolly, J.J.T.; Masip, L.; Pearsall, H. Assessing Green Gentrification in Historically Disenfranchised Neighborhoods: A Longitudinal and Spatial Analysis of Barcelona. Urban Geogr. 2018, 39, 458–491. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, J. Economic Impacts of a Linear Urban Park on Local Businesses: The Case of Gyeongui Line Forest Park in Seoul. Landsc. Urban Plan. 2019, 181, 139–147. [Google Scholar] [CrossRef]
- Cole, H.V.S.; Garcia Lamarca, M.; Connolly, J.J.T.; Anguelovski, I. Are Green Cities Healthy and Equitable? Unpacking the Relationship between Health, Green Space and Gentrification. J. Epidemiol. Community Health 2017, 71, 1118–1121. [Google Scholar] [CrossRef] [Green Version]
- Shokry, G.; Connolly, J.J.; Anguelovski, I. Understanding Climate Gentrification and Shifting Landscapes of Protection and Vulnerability in Green Resilient Philadelphia. Urban Clim. 2020, 31, 100539. [Google Scholar] [CrossRef]
- Dialesandro, J.; Brazil, N.; Wheeler, S.; Abunnasr, Y. Dimensions of Thermal Inequity: Neighborhood Social Demographics and Urban Heat in the Southwestern U.S. Int. J. Environ. Res. Public Health 2021, 18, 941. [Google Scholar] [CrossRef] [PubMed]
- Hajat, S.; O’Connor, M.; Kosatsky, T. Health Effects of Hot Weather: From Awareness of Risk Factors to Effective Health Protection. Lancet 2010, 375, 856–863. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C.J. Including the Urban Heat Island in Spatial Heat Health Risk Assessment Strategies: A Case Study for Birmingham, UK. Int. J. Health Geogr. 2011, 10, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, S.-Y.; Kim, T.; Ham, S.; Choi, S.; Park, C.-R. Importance of Urban Green at Reduction of Particulate Matters in Sihwa Industrial Complex, Korea. Sustainability 2020, 12, 7647. [Google Scholar] [CrossRef]
- Onishi, A.; Cao, X.; Ito, T.; Shi, F.; Imura, H. Evaluating the Potential for Urban Heat-Island Mitigation by Greening Parking Lots. Urban For. Urban Green. 2010, 9, 323–332. [Google Scholar] [CrossRef]
- Lin, J.; Qiu, S.; Tan, X.; Zhuang, Y. Measuring the Relationship between Morphological Spatial Pattern of Green Space and Urban Heat Island Using Machine Learning Methods. Build. Environ. 2023, 228, 109910. [Google Scholar] [CrossRef]
Key Element | Search String |
---|---|
Population: cities | (urban OR city OR cities OR town* OR metro* OR municipal*) |
AND | |
Intervention: adaptation | (adapt* OR resilien* OR (risk NEAR/3 manag*) OR (risk NEAR/3 reduc*)) |
AND | |
Intervention: urban greening | (urban greening OR nature-based climate adaptation* OR green urban area* OR ecosystem-based adaptation* OR nature-based solutions* OR nature-based approaches* OR nature-based design OR nature-based responses* OR urban forestry* OR green space* OR green infrastructure* OR urban green space*) |
AND | |
Context: climate change | (climat* OR global warming) |
AND | |
Context: heat stress | (heat stress* OR heat risk* OR heat*) |
Category/Variable Name | Input Format or Label |
---|---|
(a) Metadata | |
Year of publication | numeric |
Type of publication (single answer) |
|
Journal discipline | according to Clarivate ESI journal list or SJR journal rankings, as applicable |
(b) Location of study | |
Continent |
|
Country | open |
City | open |
Coordinates |
|
Climatic Zone | after Köppen–Geiger |
Number of Inhabitants (city) | Numeric |
Country category | after the World Bank income groups |
(c) Thematic | |
Type of urban greening (multiple answers possible) |
|
Accessibility |
|
Scale |
|
Land uses |
|
Socio-economic context of the neighbourhood (if there was a lack of information in the article, secondary data was used to answer this field) |
|
Climate impact/hazard (multiple answers possible) |
|
Temperature measured? |
|
Is a temperature reduction measurable? |
|
Where was the temperature reduction measurable (if applicable)? (multiple answers possible) |
|
Thermal comfort increase reported or subjective temperature reduction perceived? |
|
Type of study/method (multiple answers possible) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petzold, J.; Mose, L. Urban Greening as a Response to Climate-Related Heat Risk: A Social–Geographical Review. Sustainability 2023, 15, 4996. https://doi.org/10.3390/su15064996
Petzold J, Mose L. Urban Greening as a Response to Climate-Related Heat Risk: A Social–Geographical Review. Sustainability. 2023; 15(6):4996. https://doi.org/10.3390/su15064996
Chicago/Turabian StylePetzold, Jan, and Lukas Mose. 2023. "Urban Greening as a Response to Climate-Related Heat Risk: A Social–Geographical Review" Sustainability 15, no. 6: 4996. https://doi.org/10.3390/su15064996