The Synergic Effect of Erythrosine and Gold Nanoparticles in Photodynamic Inactivation
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinagreiro, C.S.; Zangirolami, A.; Schaberle, F.A.; Nunes, S.C.; Blanco, K.C.; Inada, N.M.; da Silva, G.J.; Pais, A.A.; Bagnato, V.S.; Arnaut, L.G. Antibacterial photodynamic inactivation of antibiotic-resistant bacteria and biofilms with nanomolar photosensitizer concentrations. ACS Infect. Dis. 2020, 6, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Huang, W. Evaluation of photodynamic inactivation efficiency using conventional and decorative light-emitting diode lamps. Sens. Mater 2017, 29, 1569–1577. [Google Scholar] [CrossRef][Green Version]
- Penha, C.B.; Bonin, E.; da Silva, A.F.; Hioka, N.; Zanqueta, É.B.; Nakamura, T.U.; de Abreu Filho, B.A.; Campanerut-Sá, P.A.Z.; Mikcha, J.M.G. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin. LWT Food Sci. Technol. 2017, 76, 198–202. [Google Scholar] [CrossRef]
- Al-Asmari, F.; Mereddy, R.; Sultanbawa, Y. A novel photosensitization treatment for the inactivation of fungal spores and cells mediated by curcumin. J. Photochem. Photobiol., B 2017, 173, 301–306. [Google Scholar] [CrossRef]
- Ghate, V.S.; Zhou, W.; Yuk, H.G. Perspectives and trends in the application of photodynamic inactivation for microbiological food safety. Compr. Rev. Food Sci. Food Saf. 2019, 18, 402–424. [Google Scholar] [CrossRef]
- Zhu, X.; Zhen, D.; Li, C.; Jiang, N.; Geng, H.; Qiao, Y.; Cai, Q. One-step self-assembly of ZnPc/KMnF3: Yb, Er upconversion photodynamic therapy system for antibacterial applications. Nano 2020, 15, 2050075. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wang, L.H.; Zeng, X.A.; Han, Z.; Brennan, C.S. Non-thermal technologies and its current and future application in the food industry: A review. Int. J. Food Sci. Technol. 2019, 54, 1–13. [Google Scholar] [CrossRef]
- Costa, L.; Faustino, M.A.; Tome, J.P.; Neves, M.G.; Tome, A.C.; Cavaleiro, J.A.; Cunha, A.; Almeida, A. Involvement of type I and type II mechanisms on the photoinactivation of non-enveloped DNA and RNA bacteriophages. J. Photochem. Photobiol. B 2013, 120, 10–16. [Google Scholar] [CrossRef]
- Dong, L.; Qin, J.; Tai, L.; Mou, K.; Liao, X.; Chen, F.; Hu, X. Inactivation of bacillus subtilis by curcumin-mediated photodynamic technology through inducing oxidative stress response. Microorganisms 2022, 10, 802. [Google Scholar] [CrossRef]
- Hasenleitner, M.; Plaetzer, K. In the right light: Photodynamic inactivation of microorganisms using a LED-based illumination device tailored for the antimicrobial application. Antibiotics 2019, 9, 13. [Google Scholar] [CrossRef]
- Yan, Y.; Tan, L.; Li, H.; Chen, B.; Huang, J.; Zhao, Y.; Wang, J.; Ou, J. Photodynamic inactivation of planktonic Staphylococcus aureus by sodium magnesium chlorophyllin and its effect on the storage quality of lettuce. Photochem. Photobiol. Sci. 2021, 20, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.-Y.; Chang, K.-C.; Chen, L.-Y.; Wang, P.-C.; Chou, C.-C.; Wu, Z.-B.; Hu, A. Blue light irradiation triggers the antimicrobial potential of ZnO nanoparticles on drug-resistant Acinetobacter baumannii. J. Photochem. Photobiol. B 2018, 180, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Song, Y.; Pei, J.; Xue, F.; Cui, X.; Xiong, X.; Li, C. The application of photodynamic inactivation to microorganisms in food. Food Chem. X 2021, 12, 100150. [Google Scholar] [CrossRef] [PubMed]
- Souza, T.H.; Sarmento-Neto, J.F.; Souza, S.O.; Raposo, B.L.; Silva, B.P.; Borges, C.P.; Santos, B.S.; Cabral Filho, P.E.; Reboucas, J.S.; Fontes, A. Advances on antimicrobial photodynamic inactivation mediated by Zn(II) porphyrins. J. Photochem. Photobiol. C Photochem. Rev. 2021, 49, 100454. [Google Scholar] [CrossRef]
- Duguay, B.A.; Herod, A.; Pringle, E.S.; Monro, S.M.; Hetu, M.; Cameron, C.G.; McFarland, S.A.; McCormick, C. Photodynamic inactivation of human coronaviruses. Viruses 2022, 14, 110. [Google Scholar] [CrossRef]
- Su, L.; Huang, J.; Li, H.; Pan, Y.; Zhu, B.; Zhao, Y.; Liu, H. Chitosan-riboflavin composite film based on photodynamic inactivation technology for antibacterial food packaging. Int. J. Biol. Macromol. 2021, 172, 231–240. [Google Scholar] [CrossRef]
- Cossu, M.; Ledda, L.; Cossu, A. Emerging trends in the photodynamic inactivation (PDI) applied to the food decontamination. Food Res. Int. 2021, 144, 110358. [Google Scholar] [CrossRef]
- Liu, D.; Gu, W.; Wang, L.; Sun, J. Photodynamic inactivation and its application in food preservation. Crit. Rev. Food Sci. Nutr. 2021, 63, 1–15. [Google Scholar] [CrossRef]
- Amin, R.M.; Mohamed, M.B.; Ramadan, M.A.; Verwanger, T.; Krammer, B. Rapid and sensitive microplate assay for screening the effect of silver and gold nanoparticles on bacteria. Nanomed. Nanotechnol. Biol. Med. 2009, 4, 637–643. [Google Scholar] [CrossRef]
- Shankar, S.; Jaiswal, L.; Aparna, R.; Prasad, R. Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater. Lett. 2014, 137, 75–78. [Google Scholar] [CrossRef]
- Siddique, S.; Chow, J.C. Gold nanoparticles for drug delivery and cancer therapy. Appl. Sci. 2020, 10, 3824. [Google Scholar] [CrossRef]
- Kim, Y.; Park, H.; Lee, J.; Kim, H.; Lee, S. Effect of potassium iodide on erythrosine-mediated photodynamic therapy on Streptococcus mutans biofilms. J. Korean Acad. Pediatr. Dent. 2022, 49, 321–328. [Google Scholar] [CrossRef]
- Yassunaka, N.N.; de Freitas, C.F.; Rabello, B.R.; Santos, P.R.; Caetano, W.; Hioka, N.; Nakamura, T.U.; de Abreu Filho, B.A.; Mikcha, J.M.G. Photodynamic inactivation mediated by erythrosine and its derivatives on foodborne pathogens and spoilage bacteria. Curr. Microbiol. 2015, 71, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Seo, H.; Lee, S.; Park, H.; Lee, J. Susceptibility of Mutans streptococci in the planktonic and biofilm state to erythrosine. J. Korean Acad. Pediatr. Dent. 2019, 46, 135–138. [Google Scholar] [CrossRef][Green Version]
- Lee, Y.-H.; Park, H.-W.; Lee, J.-H.; Seo, H.-W.; Lee, S.-Y. The photodynamic therapy on Streptococcus mutans biofilms using erythrosine and dental halogen curing unit. Int. J. Oral Sci. 2012, 4, 196–201. [Google Scholar] [CrossRef][Green Version]
- Christopher, S. Type II mechanisms of photodynamic action. Light-Act. Pestic. Am. Chem. Soc. 1987, 22–38. [Google Scholar]
- Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Akhtar, F.; Khan, A.U.; Misba, L.; Akhtar, K.; Ali, A. Antimicrobial and antibiofilm photodynamic therapy against vancomycin resistant Staphylococcus aureus (VRSA) induced infection in vitro and in vivo. Eur. J. Pharm. Biopharm. 2021, 160, 65–76. [Google Scholar] [CrossRef]
- Perni, S.; Prokopovich, P.; Pratten, J.; Parkin, I.P.; Wilson, M. Nanoparticles: Their potential use in antibacterial photodynamic therapy. Photochem. Photobiol. Sci. 2011, 10, 712–720. [Google Scholar] [CrossRef]
- Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948. [Google Scholar] [CrossRef]
- Li, D.; Feng, Y.; Zhou, L.; Ye, Z.; Wang, J.; Ying, Y.; Ruan, C.; Wang, R.; Li, Y. Label-free capacitive immunosensor based on quartz crystal Au electrode for rapid and sensitive detection of Escherichia coli O157: H7. Anal. Chim. Acta 2011, 687, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Fukumura, H.; Sato, M.; Kezuka, K.; Sato, I.; Feng, X.; Okumura, S.; Fujita, T.; Yokoyama, U.; Eguchi, H.; Ishikawa, Y. Effect of ascorbic acid on reactive oxygen species production in chemotherapy and hyperthermia in prostate cancer cells. J. Physiol. Sci. 2012, 62, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Bodannes, R.S.; Chan, P.C. Ascorbic acid as a scavenger of singlet oxygen. FEBS Lett. 1979, 105, 195–196. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dong, W.; Shen, S.; Meng, F.; Wang, J.; Yang, K.; Lin, D. Enhancement of E. coli inactivation by photosensitized erythrosine-based solar disinfection under weakly acidic conditions. Water Res. 2022, 212, 118125. [Google Scholar] [CrossRef]
PS−, Au−, L− | No treatment, allowing natural bacterial growth |
PS−, Au−, L+ | Influence of only green light irradiation on bacteria |
PS−, Au+, L− | Influence of only Au NPs on bacteria |
PS−, Au+, L+ | Influence of Au NPs and green light irradiation on bacteria |
PS+, Au+, L− | Influence of erythrosine and Au NPs on bacteria |
PS+, Au−, L+ | Influence of erythrosine and green light irradiation on bacteria |
PS+, Au+, L+ | Influence of erythrosine, Au NPs, and green light irradiation on bacteria |
Time (s) | Condition | CFU | AVG | SD | Death Rate (%) | p-Value (× 10−3) | ||
---|---|---|---|---|---|---|---|---|
0 | PS−, Au−, L− | 436 | 413 | 416 | 422 | 10.20 | 0 | - |
0 | PS−, Au+, L− | 428 | 419 | 430 | 426 | 5.86 | 0 | |
60 | PS+, Au−, L+ | 303 | 286 | 255 | 281 | 19.87 | 33.28 | 0.88718 |
PS+, Au+ (10 nm), L+ | 168 | 191 | 166 | 175 | 11.34 | 58.50 | 0.02169 | |
PS+, Au+ (20 nm), L+ | 170 | 178 | 166 | 171 | 4.988 | 59.37 | 0.00632 | |
PS+, Au+ (30 nm), L+ | 191 | 152 | 184 | 172 | 14.42 | 59.13 | 0.03726 | |
PS+, Au+ (40 nm), L+ | 134 | 120 | 150 | 135 | 12.25 | 68.06 | 0.01416 | |
120 | PS+, Au−, L+ | 247 | 243 | 236 | 242 | 4.54 | 42.61 | 0.02216 |
PS+, Au+ (10 nm), L+ | 140 | 167 | 144 | 150 | 11.897 | 64.35 | 0.01653 | |
PS+, Au+ (20 nm), L+ | 149 | 118 | 123 | 130 | 13.589 | 69.17 | 0.01710 | |
PS+, Au+ (30 nm), L+ | 138 | 132 | 133 | 134 | 2.624 | 68.14 | 0.00270 | |
PS+, Au+ (40 nm), L+ | 135 | 113 | 130 | 126 | 9.416 | 70.12 | 0.00724 | |
180 | PS+, Au−, L+ | 187 | 217 | 181 | 195 | 15.748 | 53.75 | 0.06891 |
PS+, Au+ (10 nm), L+ | 108 | 86 | 87 | 94 | 10.143 | 77.79 | 0.00552 | |
PS+, Au+ (20 nm), L+ | 60 | 72 | 66 | 66 | 4.898 | 84.35 | 0.00153 | |
PS+, Au+ (30 nm), L+ | 87 | 62 | 95 | 81 | 14.055 | 80.71 | 0.01009 | |
PS+, Au+ (40 nm), L+ | 66 | 81 | 77 | 75 | 6.342 | 82.29 | 0.00215 | |
360 | PS+, Au−, L+ | 95 | 95 | 97 | 96 | 0.942 | 77.31 | 0.00146 |
PS+, Au+ (10 nm), L+ | 54 | 34 | 57 | 48 | 10.208 | 88.84 | 0.00333 | |
PS+, Au+ (20 nm), L+ | 54 | 51 | 41 | 49 | 5.557 | 88.46 | 0.00141 | |
PS+, Au+ (30 nm), L+ | 36 | 49 | 60 | 48 | 9.809 | 88.54 | 0.00308 | |
PS+, Au+ (40 nm), L+ | 41 | 45 | 37 | 41 | 3.265 | 90.28 | 0.00094 | |
540 | PS+, Au−, L+ | 10 | 10 | 18 | 13 | 3.771 | 97.00 | 0.00075 |
PS+, Au+ (10 nm), L+ | 3 | 9 | 7 | 6 | 2.494 | 98.50 | 0.00061 | |
PS+, Au+ (20 nm), L+ | 1 | 2 | 4 | 2 | 1.247 | 99.45 | 0.00054 | |
PS+, Au+ (30 nm), L+ | 2 | 3 | 5 | 3 | 1.247 | 99.21 | 0.00054 | |
PS+, Au+ (40 nm), L+ | 0 | 2 | 3 | 2 | 1.247 | 99.60 | 0.00053 |
Conditions | Green | SD | Red | SD | Death Rate: Red/Green × 100 (%) |
---|---|---|---|---|---|
PS−, Au−, L− | 361.6 | 29.85 | 9.8 | 2.86 | 2.71 |
PS+, Au−, L− | 341.4 | 21.69 | 3.8 | 2.04 | 1.11 |
PS−, Au−, L+ | 205.4 | 14.58 | 2.4 | 1.51 | 1.16 |
PS−, Au+ (10 nm), L− | 254.2 | 30.56 | 6.0 | 2.23 | 2.36 |
PS−, Au+ (20 nm), L− | 273.4 | 12.48 | 4.2 | 1.92 | 1.53 |
PS−, Au+ (30 nm), L− | 346.0 | 10.58 | 6.8 | 3.27 | 1.96 |
PS−, Au+ (40 nm), L− | 296.0 | 6.44 | 5.2 | 3.27 | 1.75 |
PS−, Au+ (10 nm), L+ | 273.6 | 20.62 | 7.2 | 3.56 | 2.63 |
PS−, Au+ (20 nm), L+ | 539.4 | 25.11 | 7.6 | 4.39 | 1.40 |
PS−, Au+ (30 nm), L+ | 307.4 | 20.98 | 3.8 | 1.92 | 1.23 |
PS−, Au+ (40 nm), L+ | 324.0 | 25.94 | 6.2 | 1.92 | 1.91 |
PS+, Au−, L+ | 260.2 | 12.15 | 23.8 | 3.11 | 9.14 |
PS+, Au+ (10 nm), L+ | 248.4 | 20.03 | 42.2 | 7.98 | 16.98 |
PS+, Au+ (20 nm), L+ | 270.4 | 6.76 | 48.8 | 7.91 | 18.04 |
PS+, Au+ (30 nm), L+ | 222.0 | 29.29 | 43.6 | 9.12 | 19.63 |
PS+, Au+ (40 nm), L+ | 127.8 | 10.63 | 33.8 | 7.75 | 26.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.-C.; Yang, S.-W.; Xu, Y.-C.; Lu, F.-I. The Synergic Effect of Erythrosine and Gold Nanoparticles in Photodynamic Inactivation. Sustainability 2023, 15, 3621. https://doi.org/10.3390/su15043621
Shi S-C, Yang S-W, Xu Y-C, Lu F-I. The Synergic Effect of Erythrosine and Gold Nanoparticles in Photodynamic Inactivation. Sustainability. 2023; 15(4):3621. https://doi.org/10.3390/su15043621
Chicago/Turabian StyleShi, Shih-Chen, Shu-Wen Yang, Yu-Chen Xu, and Fu-I Lu. 2023. "The Synergic Effect of Erythrosine and Gold Nanoparticles in Photodynamic Inactivation" Sustainability 15, no. 4: 3621. https://doi.org/10.3390/su15043621
APA StyleShi, S.-C., Yang, S.-W., Xu, Y.-C., & Lu, F.-I. (2023). The Synergic Effect of Erythrosine and Gold Nanoparticles in Photodynamic Inactivation. Sustainability, 15(4), 3621. https://doi.org/10.3390/su15043621