The Effect of the Potamogeton crispus on Phosphorus Changes throughout Growth and Decomposition: A Comparison of Indoor and Outdoor Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Indoor Experiments
2.2.1. Sediment
2.2.2. Experimental Submerged Macrophyte
2.3. Sampling and Analyses
2.4. Determination of Physical and Chemical Indexes
2.5. Statistical Analysis
3. Results
3.1. Physical and Chemical Indexes of Lake Yimeng
3.2. Physical and Chemical Indexes of Water in the Indoor Experiment
3.3. The Pore Water Concentrations of the Indoor Experiment
3.4. Comparison of Indoor and Field Data
4. Discussion
4.1. Effect of P. crispus on the Concentrations of P Forms in the Overlying Water in Lake Yimeng
4.2. Effect of P. crispus on the Concentrations of P Forms in the Overlying Water in the Indoor Experiment
4.3. Effects of Environmental Factors on the Concentrations of P Forms in the Overlying Water
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling eutrophication by reducing both nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.L.; Zwart, G.; Wu, J.; Agterveld, M.; Liu, S.; Hahn, M.W. Submersed macrophytes play a key role in structuring bacterioplankton community composition in the large, shallow, subtropical Taihu Lake, China. Environ. Microbiol. 2007, 9, 2765–2774. [Google Scholar] [CrossRef] [PubMed]
- Zang, N.; Zhu, J.; Wang, X.; Liao, Y.J.; Cao, G.Z.; Li, C.H.; Liu, Q.; Yang, Z.F. Eutrophication risk assessment considering joint effects of water quality and water quantity for a receiving reservoir in the South-to-North Water Transfer Project, China. J. Clean. Prod. 2022, 331, 129966. [Google Scholar] [CrossRef]
- Jana, S.; Choudhuri, M.A. Effects of plant growth regulators on Hill activity of submerged aquatic plants during induced senescence. Aquat. Bot. 1984, 18, 371–376. [Google Scholar] [CrossRef]
- Franceschini, M.C.; Murphy, K.J.; Moore, I.; Kennedy, M.P.; Martínez, F.S.; Willems, F.; De Wysiecki, M.L.; Sichingabula, H. Impacts on freshwater macrophytes produced by small invertebrate herbivores: Afrotropical and Neotropical wetlands compared. Hydrobiologia 2020, 847, 3931–3950. [Google Scholar] [CrossRef]
- Wilhelm, G.; Doris, S. Infuence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia 1988, 170, 245–266. [Google Scholar]
- Cao, X.Y.; Wan, L.L.; Xiao, J.; Chen, X.Y.; Zhou, Y.Y.; Wang, Z.C.; Song, C.L. Environmental effects by introducing Potamogeton crispus to recover a eutrophic Lake. Sci. Total Environ. 2018, 621, 360–367. [Google Scholar] [CrossRef]
- Li, X.W.; Chu, Q.S.; Tang, N.; Abduro Ogo, H.; Xing, W. Functional trait-based potential invasiveness of exotic submerged macrophytes and their effects on sediment bacterial community. Hydrobiologia 2022, 849, 3061–3077. [Google Scholar] [CrossRef]
- Schorer, A.; Schneider, S.; Melzer, A. The importance of submerged macrophytes as indicators for the nutrient concentration in a small stream (Rotbach, Bavaria). Limnol.—Ecol. Manag. Inland Waters 2000, 30, 351–358. [Google Scholar] [CrossRef]
- Auvray, F.; van Hullebusch, E.D.; Deluchat, V.; Baudu, M. Laboratory investigation of the phosphorus removal (SRP and TP) from eutrophic lake water treated with aluminium. Water Res. 2006, 40, 2713–2719. [Google Scholar] [CrossRef]
- Monteiro, F.M.; Moura, G.C.d.; Severiano, J.d.S.; Mendes, C.F.; Barbosa, J.E.d.L. Submerged macrophytes support cyanobacteria and microcystin production in a drawdown tropical semi-arid reservoir. Aquat. Ecol. 2021, 55, 875–890. [Google Scholar] [CrossRef]
- Hao, B.B.; Roejkjaer, A.F.; Wu, H.P.; Cao, Y.; Jeppesen, E.; Li, W. Responses of primary producers in shallow lakes to elevated temperature: A mesocosm experiment during the growing season of Potamogeton crispus. Aquat. Sci. 2018, 80, 34–44. [Google Scholar] [CrossRef]
- Wang, J.Q.; Song, Y.Z.; Wang, G.X. Causes of large Potamogeton crispus L. population increase in Xuanwu Lake. Environ. Sci. Pollut. Res. 2017, 24, 5144–5151. [Google Scholar] [CrossRef] [PubMed]
- Leoni, B.; Marti, C.L.; Forasacco, E.; Mattavelli, M.; Soler, V.; Fumagalli, P.; Imberger, J.; Rezzonico, S.; Garibaldi, L. The contribution of Potamogeton crispus to the phosphorus budget of an urban shallow lake: Lake Monger, Western Australia. Limnology 2016, 17, 175–182. [Google Scholar] [CrossRef]
- Sarvala, J.; Helminen, H.; Heikkilä, J. Invasive submerged macrophytes complicate management of a shallow boreal lake: A 42-year history of monitoring and restoration attempts in Littoistenjärvi, SW Finland. Hydrobiologia 2020, 847, 4575–4599. [Google Scholar] [CrossRef]
- Chorus, I.; Köhler, A.; Beulker, C.; Fastner, J.; van de Weyer, K.; Hegewald, T.; Hupfer, M. Decades needed for ecosystem components to respond to a sharp and drastic phosphorus load reduction. Hydrobiologia 2020, 847, 4621–4651. [Google Scholar] [CrossRef]
- Malaviya, P.; Singh, A.; Anderson, T.A. Aquatic phytoremediation strategies for chromium removal. Rev. Environ. Sci. Bio/Technol. 2020, 19, 897–944. [Google Scholar] [CrossRef]
- Liu, Y.; Aznarez, C.; Jeppesen, E.; He, H.; Li, W.; Levi, E.E.; Pacheco, J.P.; Cao, Y. Responses of submerged macrophytes and periphyton to warming under two nitrogen scenarios: A microcosm study. Hydrobiologia 2021, 848, 1333–1346. [Google Scholar] [CrossRef]
- Fujiwara, M.; Koyama, M.; Akizuki, S.; Watanabe, K.; Ishikawa, K.; Ban, S.; Toda, T. Seasonal Changes in the Chemical Composition and Anaerobic Digestibility of Harvested Submerged Macrophytes. BioEnergy Res. 2020, 13, 683–692. [Google Scholar] [CrossRef]
- Wang, L.Z.; Liu, Q.J.; Hu, C.W.; Liang, R.J.; Qiu, J.C.; Wang, Y. Phosphorus release during decomposition of the submerged macrophyte Potamogeton crispus. Limnology 2018, 19, 355–366. [Google Scholar] [CrossRef]
- Goulden, P.D.; Brooksbank, P. The determination of total phosphate in natural waters. Analytica Chimica Acta 1975, 80, 183–187. [Google Scholar] [CrossRef]
- Ruban, V.; López-Sánchez, J.F.; Pardo, P.; Rauret, G.; Muntau, H.; Quevauviller, P. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments—A synthesis of recent works. Fresenius J. Anal. Chem. 2001, 370, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.R.; Cole, C.V.; Watanable, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circular No. 939, US Government Printing Office: Washington, DC, USA, 1954; pp. 1–19. [Google Scholar]
- Tan, K.H. Soil Sampling, Preparation and Analysis; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Institute of Soil Science; Chinese Academy of Sciences. Physico-Chemistry Analyze of Soil; Shanghai Science and Technology Publishing Company: Shanghai, China, 1978. (In Chinese) [Google Scholar]
- Gage, M.A.; Gorham, E. Alkaline phosphatase activity and cellular phosphorus as an index of the phosphorus status of phytoplankton in Minnesota lakes. Freshw. Biol. 1985, 15, 227–233. [Google Scholar] [CrossRef]
- García-Nieto, P.J.; García-Gonzalo, E.; Alonso Fernández, J.R.; Díaz Muñiz, C. A New Predictive Model for Evaluating Chlorophyll-a Concentration in Tanes Reservoir by Using a Gaussian Process Regression. Water Resour. Manag. 2020, 34, 4921–4941. [Google Scholar] [CrossRef]
- Wang, J.Q.; Song, Y.Z.; Xue, Y. Influence Scope of Potamogeton crispus Population on Lake Waterquality during the Growth Period in Xuanwu Lake, China. J. Water Chem. Technol. 2020, 42, 491–497. [Google Scholar] [CrossRef]
- Barko, J.W.; Gunnison, D.; Carpenter, S.R. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat. Bot. 1991, 41, 41–65. [Google Scholar] [CrossRef]
- Stephen, D.; Moss, B.; Phillips, G. Do rooted macrophytes increase sediment phosphorus release? In Shallow Lakes ’95: Trophic Cascades in Shallow Freshwater and Brackish Lakes; Kufel, L., Prejs, A., Rybak, J.I., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 1997; pp. 27–34. [Google Scholar]
- Mi, W.J.; Zhu, D.W.; Zhou, Y.Y.; Zhou, H.D.; Yang, T.W.; Hamilton, D.P. Influence of Potamogeton crispus growth on nutrients in the sediment and water of Lake Tangxunhu. Hydrobiologia 2008, 603, 139–146. [Google Scholar] [CrossRef]
- Song, K.; Winters, C.; Xenopoulos, M.A.; Marsalek, J.; Frost, P.C. Phosphorus cycling in urban aquatic ecosystems: Connecting biological processes and water chemistry to sediment P fractions in urban stormwater management ponds. Biogeochemistry 2017, 132, 203–212. [Google Scholar] [CrossRef]
- Wang, L.; Yang, T.W.; Zhu, D.W.; Hamilton, D.; Nie, Z.N.; Liu, L.Q.; Wan, X.Q.; Zhu, C.M. Growth and turion formation of Potamogeton crispus in response to different phosphorus concentrations in water. Aquat. Ecol. 2013, 47, 87–97. [Google Scholar] [CrossRef]
- Jiang, X.; Jin, X.; Yao, Y.; Li, L.; Wu, F. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Res. 2008, 42, 2251–2259. [Google Scholar] [CrossRef]
- Ma, B.; Zhou, Z.Y.; Zhang, C.P.; Zhang, G.; Hu, Y.J. Inorganic phosphorus fractions in the rhizosphere of xerophytic shrubs in the Alxa Desert. J. Arid. Environ. 2009, 73, 55–61. [Google Scholar] [CrossRef]
- Gao, J.; Xiong, Z.t.; Zhang, J.; Zhang, W.; Mba, F.O. Phosphorus removal from water of eutrophic Lake Donghu by five submerged macrophytes. De Salination 2009, 242, 193–204. [Google Scholar] [CrossRef]
- Wang, J.F.; Chen, J.G.; Yu, P.P.; Yang, X.H.; Zhang, L.J.; Geng, Z.L.; He, K.K. Oxygenation and synchronous control of nitrogen and phosphorus release at the sediment-water interface using oxygen nano-bubble modified material. Sci. Total Environ. 2020, 725, 138258. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.G.; Jiang, W.Q.; Nie, Z.B.; Qi, P.; Jiao, Y.; Peng, J.X.; Bian, D.J. Study on the mechanisms of enhanced biological nitrogen and phosphorus removal by denitrifying phosphorus removal in a Micro-pressure swirl reactor. Bioresour. Technol. 2022, 364, 128093. [Google Scholar] [CrossRef]
- Kennedy, L.G.; Hutchins, S.R. The geological, microbiological, and engineering constraints of in-site bioremediation as applied to BTEX cleanup in Park City, Kansas. Remediation 1992–1993, 3, 83–107. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Gu, G. The effect of propionic to acetic acid ratio on anaerobic-aerobic (low dissolved oxygen) biological phosphorus and nitrogen removal. Bioresour. Technol. 2008, 99, 4400–4407. [Google Scholar] [CrossRef] [PubMed]
- Stumm, W. The acceleration of the hydrogeochemical cycling of phosphorus. Water Res. 1973, 7, 131–144. [Google Scholar] [CrossRef]
- Jin, X.; Wang, S.; Pang, Y.; Chang Wu, F. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environ. Pollut. 2006, 139, 288–295. [Google Scholar] [CrossRef]
- Wang, S.; Jin, X.; Bu, Q.; Jiao, L.; Wu, F. Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids Surf. A Physicochem. Eng. Asp. 2008, 316, 245–252. [Google Scholar] [CrossRef]
- Kleeberg, A. Impact of aquatic macrophyte decomposition on sedimentary nutrient and metal mobilization in the initial stages of ecosystem development. Aquat. Bot. 2013, 105, 41–49. [Google Scholar] [CrossRef]
- Barlow, K.; Nash, D.; Turral, H.; Grayson, R. Phosphorus uptake and release in surface drains. Agric. Water Manag. 2003, 63, 109–123. [Google Scholar] [CrossRef]
- Gross, E.M.; Hilt, S.; Lombardo, P.; Mulderij, G. Searching for allelopathic effects of submerged macrophytes on phytoplankton—State of the art and open questions. Hydrobiologia 2007, 584, 77–88. [Google Scholar] [CrossRef]
- Ding, Y.Q.; Qin, B.Q.; Xu, H.; Wang, X.D. Effects of sediment and turbulence on alkaline phosphatase activity and photosynthetic activity of phytoplankton in the shallow hyper-eutrophic Lake Taihu, China. Environ. Sci. Pollut. Res. 2016, 23, 16183–16193. [Google Scholar] [CrossRef] [PubMed]
- Barik, S.K.; Purushothaman, C.S.; Mohanty, A.N. Phosphatase activity with reference to bacteria and phosphorus in tropical freshwater aquaculture pond systems. Aquac. Res. 2015, 32, 819–832. [Google Scholar] [CrossRef]
- Rydberg, J.; Cooke, C.A.; Tolu, J.; Wolfe, A.P.; Vinebrooke, R.D. An assessment of chlorophyll preservation in lake sediments using multiple analytical techniques applied to the annually laminated lake sediments of Nylandssjön. J. Paleolimnol. 2020, 64, 379–388. [Google Scholar] [CrossRef]
- Chaffin, J.D.; Kane, D.D.; Stanislawczyk, K.; Parker, E.M. Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): Implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements. Environ. Sci. Pollut. Res. 2018, 25, 25175–25189. [Google Scholar] [CrossRef] [PubMed]
Sediment and Water | Indicators | Init | Content |
---|---|---|---|
TP | (mg·kg−1) | 630.46 | |
IP | (mg·kg−1) | 497.01 | |
OP | (mg·kg−1) | 111.47 | |
Sediment | Olsen-P | (mg·kg−1) | 75.98 |
TN | (mg·kg−1) | 1810.13 | |
OM | (mg·kg−1) | 42,844.44 | |
CEC | (cmol·kg−1) | 160.32 | |
TP | (mg·L−1) | 0.10 ± 0.01 | |
PP | (mg·L−1) | 0.07 ± 0.01 | |
DTP | (mg·L−1) | 0.02 ± 0.00 | |
SRP | (mg·L−1) | 0.01 ± 0.00 | |
Water | DOP | (mg·L−1) | 0.01 ± 0.00 |
TN | (mg·L−1) | 1.11 ± 0.12 | |
–N | (mg·L−1) | 0.19 ± 0.02 | |
–N | (mg·L−1) | 0.09 ± 0.00 | |
DO | (mg·L−1) | 9.57 ± 0.51 | |
pH | 7.62 ± 0.22 |
Items | Experiment Treatment | TP | DTP | PP | SRP | DOP | Chl-a | APA | Biomass | pH | DO |
---|---|---|---|---|---|---|---|---|---|---|---|
Average | Field P. crispus area | 0.14 | 0.10 | 0.04 | 0.04 | 0.06 | 0.13 | 30.14 | 405.72 | 8.20 | 8.66 |
Indoor treatment | 0.15 | 0.11 | 0.04 | 0.08 | 0.03 | 0.13 | 24.42 | 101.19 | 8.00 | 7.24 | |
Field—Indoor | F value | 0.005 | 0.147 | 0.565 | 3.133 | 3.225 | 0.02 | 2.019 | 16.095 | 1.791 | 4.429 |
p value | 0.942 | 0.703 | 0.456 | 0.083 | 0.079 | 0.887 | 0.162 | 0 | 0.187 | 0.041 | |
Average | Field Non-aquatic plant area | 0.13 | 0.07 | 0.06 | 0.05 | 0.02 | 0.15 | 42.36 | 0.00 | 8.17 | 8.20 |
Indoor control | 0.11 | 0.05 | 0.06 | 0.04 | 0.03 | 0.07 | 15.42 | 0.00 | 7.36 | 5.30 | |
Field—Indoor | F value | 1.649 | 6.649 | 0.000 | 1.712 | 14.582 | 8.876 | 132.922 | 58.489 | 171.429 | |
p value | 0.206 | 0.013 | 0.987 | 0.197 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | ||
Standard deviation | Field P. crispus area | 0.07 | 0.05 | 0.03 | 0.02 | 0.04 | 0.11 | 12.35 | 258.31 | 0.39 | 1.80 |
Indoor treatment | 0.16 | 0.13 | 0.04 | 0.11 | 0.04 | 0.11 | 11.16 | 67.39 | 0.65 | 2.61 | |
Field Non-aquatic plant area | 0.04 | 0.02 | 0.02 | 0.02 | 0.01 | 0.08 | 7.96 | 0.00 | 0.33 | 0.57 | |
Indoor control | 0.04 | 0.01 | 0.04 | 0.02 | 0.02 | 0.04 | 2.02 | 0.00 | 0.27 | 0.91 | |
Range | Field P. crispus area | 0.21 | 0.15 | 0.08 | 0.09 | 0.12 | 0.31 | 40.00 | 1000.00 | 1.85 | 6.37 |
Indoor treatment | 0.56 | 0.43 | 0.12 | 0.41 | 0.16 | 0.29 | 35.00 | 210.65 | 2.00 | 7.87 | |
Field Non-aquatic plant area | 0.15 | 0.08 | 0.10 | 0.06 | 0.04 | 0.29 | 27.00 | 0.00 | 1.43 | 1.98 | |
Indoor control | 0.17 | 0.05 | 0.13 | 0.07 | 0.05 | 0.11 | 7.00 | 0.00 | 0.89 | 3.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, L.; Song, H.; Dong, B.; Wang, Y.; Yu, W.; Wu, Y.; Wu, X.; Ge, X. The Effect of the Potamogeton crispus on Phosphorus Changes throughout Growth and Decomposition: A Comparison of Indoor and Outdoor Studies. Sustainability 2023, 15, 3372. https://doi.org/10.3390/su15043372
Wang L, Zhang L, Song H, Dong B, Wang Y, Yu W, Wu Y, Wu X, Ge X. The Effect of the Potamogeton crispus on Phosphorus Changes throughout Growth and Decomposition: A Comparison of Indoor and Outdoor Studies. Sustainability. 2023; 15(4):3372. https://doi.org/10.3390/su15043372
Chicago/Turabian StyleWang, Lizhi, Liying Zhang, Hongli Song, Bin Dong, Yun Wang, Wanni Yu, Yuanzhi Wu, Xiaodong Wu, and Xuguang Ge. 2023. "The Effect of the Potamogeton crispus on Phosphorus Changes throughout Growth and Decomposition: A Comparison of Indoor and Outdoor Studies" Sustainability 15, no. 4: 3372. https://doi.org/10.3390/su15043372
APA StyleWang, L., Zhang, L., Song, H., Dong, B., Wang, Y., Yu, W., Wu, Y., Wu, X., & Ge, X. (2023). The Effect of the Potamogeton crispus on Phosphorus Changes throughout Growth and Decomposition: A Comparison of Indoor and Outdoor Studies. Sustainability, 15(4), 3372. https://doi.org/10.3390/su15043372