Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review
Abstract
:1. Introduction
 The mathematical models of current commonly used SDM, DDM, TDM, and PV modules are explained;
 The characteristics of each metaheuristic method and their enhancements and applications are outlined;
 The statistical results of RMSE, TNFES, SIAE and algorithmic settings of selected metaheuristics are summarized and compared;
 The output characteristics of the PV system are discussed for the dynamic temperature, irradiance, and partial shading, and the variation in parameters and RMSE are analyzed;
 Existing challenges and possible future work focuses are analyzed and provided.
2. PV Models and Problem Formulations
2.1. PV Models
2.1.1. SDM
2.1.2. DDM
2.1.3. TDM
2.1.4. PV Module
2.1.5. PV Model Review
2.2. Problem Formulations
2.3. Indicators Summary
 Friedman test (FT), Wilcoxon rank sum test (WRT), and Wilcoxon signed rank test (WST): they broaden evaluation scales from statistical perspectives;
 In addition, a few works in the literature also use evaluation indicators such as the sum of squares of power, current, and voltage errors (ERR) [61].
3. Methods and Results
3.1. GAs
3.2. DEs
3.3. PSOs
3.4. ABCs
3.5. GWOs
3.6. JAYAs
3.7. TLBOs
3.8. WOAs
3.9. Hybrids
3.10. Others
4. Whole Analysis and Research Prospects
4.1. Data Analysis
 The STD of RMSE reflects the results’ robustness, MIN RMSE means the results’ accuracy, and other RMSEs denote the range and sharpness of the fluctuations in the results. The SDM, DDM and PhotowattPWP201 models of DEDIWPSO had the MIN RMSE (7.730062 × 10^{−4}, 7.182306 × 10^{−4}, and 2.03992 × 10^{−3}), mean RMSE (7.730062 × 10^{−4}, 7.187462 × 10^{−4}, and 2.03992 × 10^{−3}), MAX RMSE (7.730062 × 10^{−4}, 7.3181 × 10^{−4}, and 2.03992 × 10^{−3}) and STD (5.18668 × 10^{−15}, 2.486129 × 10^{−6}, and 2.995389 × 10^{−15}). It is followed by IGSK with MIN RMSE (9.8602188 × 10^{−4}, 9.8248485 × 10^{−4}, and 2.4250749 × 10^{−3}), mean RMSE (9.8602188 × 10^{−4}, 9.8272774 × 10^{−4}, and 2.4250749 × 10^{−3}), MAX MRSE (9.8602188 × 10^{−4}, 9.8602188 × 10^{−4}, and 2.4250749 × 10^{−3}) and STD (3.5821018 × 10^{−17}, 8.9578942 × 10^{−7}, and 2.9226647 × 10^{−17}). Then, EOTLBO, OLBGWO, CSOOJAYA, RLDE, ABCTRR, IWOA, TLBOBSA, HSOA, and SOS followed.
 Figure 4 shows the combined FT ranking for the SDM, DDM, and PhotowattPWP201. It combines the absolute accuracy of the methods in a wide range of cases. GSK ranks first, followed by MCSWOA, IWOA, GCPSO, QILDE, DE/WOA, DMTLBO, HSOA, MLJAYA, SOS, TLABC, PSOST, ABCTRR, IGWO, HDE, TLBOBSA, ISNMWOA, and DPDE. GSK, as a new method achieving the highest accuracy, demonstrates the need to explore the performance of new schemes in this issue. It is worth noting that the rankings of the same methods in different PV models may differ, which indicates that different PV models have varied preferences for algorithms.
 TNFES is related to the computational resources consumed, with a lower TNFES representing a lower computational burden. For the SDM and module, ABCTRR had the fewest TNFES (1000) while other methods basically used a TNFES of 50,000. For the DDM, ABCTRR had the fewest TNFES (5000), while most of the rest consumed a TNFES of 50,000.
4.2. Analysis of Temperature and Irradiance Influences
4.2.1. Uniform Irradiance and Temperature
4.2.2. Partial Shade Conditions
4.3. Analysis of Modified Diode Models’ Works
4.4. Analysis of Dynamic Models’ Works
4.5. Whole Analysis
 The promotion of GA has been rare in recent years, and accuracy is supposed to be enhanced.
 DE’s convergence rate and PSO’s accuracy could improve.
 ABC is weakly exploited and significant in parameter settings.
 GWO and WOA have few parameters and struggle with multidimensional issues.
 JAYA and TLBO’s promotions are flawed in accuracy.
 Hybrid approaches may complicate the implementation and introduce additional parameters.
 New approaches are not sufficiently balanced for specific issues. For example, GSK, SDO, TGA, and SOS are underexploited, and HHO and FPOA are underexplored.
 TNFES is a sign of computational resources, yet its value is almost pitched at 50,000. Reducing TNFES without compromising accuracy is imperative.
 More diodes in the cell model may increase the extraction accuracy. Recently, a four diode model was proposed [47] and the results showed good fitting effect. However, more diodes also indicate more parameters that need to be extracted and solutions are also more intractable. Hence, selecting a suitable PV model for an algorithm is challenging.
 Some of the literature used too few PV cases to demonstrate metaheuristics’ generalizability.
 Metaheuristics’ effectiveness is devoid of practical engineering applications.
 More and exact measured data means more accurate extraction results, but obtaining sufficient highprecision measurements is challenging and costly.
 In engineering, running time is pivotal. Hence, cutting running times is a challenge.
 Multiple matrices are imperative to signal the competitiveness of metaheuristic results, yet some of the literature adopted few matrices for comparison.
4.6. Research Prospects
 Exploration techniques such as chaotic mapping and secondorder oscillation mechanisms can be considered to incorporate into GA. They are envisaged to augment accuracy and robustness.
 DE might be combined with exploitationbased metaheuristics, such as the Search Backtracking Algorithm, or with search mechanisms that accelerate the convergence. PSO demands more diversityraising search mechanisms such as trust region reflection, taboo search, and fitness distance balance. Additionally, studies on adapting their parameters are welltried.
 ABC considers introducing neighborhood search and adaptive mechanisms to speed up the convergence.
 For GWO and WOA, adaptive operators could be inserted to improve applicability in the face of highdimensional issues.
 JAYA and TLBO could borrow the explorationtype mechanisms in CSOOJAYA, MTLBO, and EBLSHADE to improve the overall performance.
 Hybrid methods can identify contributing components through component analysis and remove unimportant components to alleviate implementation redundancy.
 New methods can adopt adaptive learning, neighborhood search, chaotic mapping, and algorithmic blending techniques to enhance their behavior.
 For the parameter extraction, diminishing computational resources’ consumption is at stake. Reducing TNFES while maintaining the same accuracy by introducing different techniques, i.e., local search and reinforcement learning, is a direction worthy of further research.
 Some methods are feasible for lowdimensional issues, and some deliver better performance for highdimensional issues. Meanwhile, the selection of MSDM, MDDM, MTDM, and FDM with 6, 8, 10, and 11 unknown parameters to be included in the cell model is a future research direction for further performance improvement. Hence, it would be interesting to pick the right algorithm improvement to render PV models with desirable accuracy.
 For the issue of too few employed cases, more cases are considered in future research to reveal the methods’ generalizability. Examples include cases at different temperatures and irradiances and cases in partial shade.
 The realtime extraction of PV models’ parameters at different operating conditions is highly suggested. It is excellent work to accurately model the dynamics of photovoltaics for practical engineering problems.
 Faced with the problem of little measured data, inserting deep learning techniques such as neural networks to eliminate erroneous data and expand the amount of data for metaheuristic methods is an effective way to facilitate the extraction accuracy.
 The graphical processing unit (GPU) allows different solutions to be updated simultaneously to raise the efficiency. Thus, metaheuristic methods’ speed improvements can be geared toward direct runtime reductions through GPUlike devices.
 More performance evaluation indicators can demonstrate metaheuristic methods’ overall effectiveness more comprehensively. Therefore, introducing more multifaceted indicators is necessary to enhance persuasiveness.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
 Li, Y.; Chiu, Y.H.; Lin, T.Y. Research on New and Traditional Energy Sources in OECD Countries. Int. J. Environ. Res. Public Health 2019, 16, 1122. [Google Scholar] [CrossRef]
 Ridha, H.M.; Heidari, A.A.; Wang, M.; Chen, H. Boosted mutationbased Harris hawks optimizer for parameters identification of singlediode solar cell models. Energy Convers. Manag. 2020, 209, 112660. [Google Scholar] [CrossRef]
 You, V.; Kakinaka, M. Modern and traditional renewable energy sources and CO(2) emissions in emerging countries. Environ. Sci. Pollut. Res. 2022, 29, 17695–17708. [Google Scholar] [CrossRef] [PubMed]
 Xiong, G.; Li, L.; Mohamed, A.W.; Yuan, X.; Zhang, J. A new method for parameter extraction of solar photovoltaic models using gaining–sharing knowledge based algorithm. Energy Rep. 2021, 7, 3286–3301. [Google Scholar] [CrossRef]
 Lin, S.; Zhang, C.; Ding, L.; Zhang, J.; Liu, X.; Chen, G.; Wang, S.; Chai, J. Accurate Recognition of Building Rooftops and Assessment of LongTerm Carbon Emission Reduction from Rooftop Solar Photovoltaic Systems Fusing GF2 and MultiSource Data. Remote Sens. 2022, 14, 3144. [Google Scholar] [CrossRef]
 Dixit, S. Solar technologies and their implementations: A review. Mater. Today Proc. 2020, 28, 2137–2148. [Google Scholar] [CrossRef]
 Kant Bhatia, S.; Palai, A.K.; Kumar, A.; Kant Bhatia, R.; Kumar Patel, A.; Kumar Thakur, V.; Yang, Y.H. Trends in renewable energy production employing biomassbased biochar. Bioresour. Technol. 2021, 340, 125644. [Google Scholar] [CrossRef]
 Qazi, A.; Hussain, F.; Rahim, N.A.B.D.; Hardaker, G.; Alghazzawi, D.; Shaban, K.; Haruna, K. Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions. IEEE Access 2019, 7, 63837–63851. [Google Scholar] [CrossRef]
 Rojas, D.; Rivera, M.; Wheeler, P. Basic Principles of Solar Energy. In Proceedings of the 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Valparaíso, Chile, 6–9 December 2021; pp. 1–6. [Google Scholar]
 Saidur, R.; BoroumandJazi, G.; Mekhlif, S.; Jameel, M. Exergy analysis of solar energy applications. Renew. Sustain. Energy Rev. 2012, 16, 350–356. [Google Scholar] [CrossRef]
 Zheng, Y.; Weng, Q. Modeling the Effect of Green Roof Systems and Photovoltaic Panels for Building Energy Savings to Mitigate Climate Change. Remote Sens. 2020, 12, 2402. [Google Scholar] [CrossRef]
 Chen, D.Y.; Peng, L.; Zhang, W.Y.; Wang, Y.D.; Yang, L.N. Research on SelfSupervised Building Information Extraction with HighResolution Remote Sensing Images for Photovoltaic Potential Evaluation. Remote Sens. 2022, 14, 5350. [Google Scholar] [CrossRef]
 Humada, A.M.; Darweesh, S.Y.; Mohammed, K.G.; Kamil, M.; Mohammed, S.F.; Kasim, N.K.; Tahseen, T.A.; Awad, O.I.; Mekhilef, S. Modeling of PV system and parameter extraction based on experimental data: Review and investigation. Sol. Energy 2020, 199, 742–760. [Google Scholar] [CrossRef]
 Kumari, P.A.; Geethanjali, P. Parameter estimation for photovoltaic system under normal and partial shading conditions: A survey. Renew. Sustain. Energy Rev. 2018, 84, 1–11. [Google Scholar] [CrossRef]
 Pillai, D.S.; Rajasekar, N. Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems. Renew. Sustain. Energy Rev. 2018, 82, 3503–3525. [Google Scholar] [CrossRef]
 Humada, A.M.; Hojabri, M.; Mekhilef, S.; Hamada, H.M. Solar cell parameters extraction based on single and doublediode models: A review. Renew. Sustain. Energy Rev. 2016, 56, 494–509. [Google Scholar] [CrossRef]
 Selem, S.I.; ElFergany, A.A.; Hasanien, H.M. Artificial electric field algorithm to extract nine parameters of triplediode photovoltaic model. Int. J. Energy Res. 2020, 45, 590–604. [Google Scholar] [CrossRef]
 Xiong, G.; Zhang, J.; Shi, D.; Zhu, L.; Yuan, X.; Yao, G. Modified Search Strategies Assisted Crossover Whale Optimization Algorithm with Selection Operator for Parameter Extraction of Solar Photovoltaic Models. Remote Sens. 2019, 11, 2795. [Google Scholar] [CrossRef]
 Abbassi, R.; Abbassi, A.; Jemli, M.; Chebbi, S. Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches. Renew. Sustain. Energy Rev. 2018, 90, 453–474. [Google Scholar] [CrossRef]
 Li, S.; Gong, W.; Gu, Q. A comprehensive survey on metaheuristic algorithms for parameter extraction of photovoltaic models. Renew. Sustain. Energy Rev. 2021, 141, 110828. [Google Scholar] [CrossRef]
 Xiong, G.; Zhang, J.; Shi, D.; Zhu, L.; Yuan, X. Parameter extraction of solar photovoltaic models with an eitheror teaching learning based algorithm. Energy Convers. Manag. 2020, 224, 113395. [Google Scholar] [CrossRef]
 Ibrahim, H.; Anani, N. Evaluation of Analytical Methods for Parameter Extraction of PV modules. Energy Procedia 2017, 134, 69–78. [Google Scholar] [CrossRef]
 Chin, V.J.; Salam, Z. A New Threepointbased Approach for the Parameter Extraction of Photovoltaic Cells. Appl. Energy 2019, 237, 519–533. [Google Scholar]
 Abbassi, A.; Gammoudi, R.; Ali Dami, M.; Hasnaoui, O.; Jemli, M. An improved singlediode model parameters extraction at different operating conditions with a view to modeling a photovoltaic generator: A comparative study. Sol. Energy 2017, 155, 478–489. [Google Scholar] [CrossRef]
 Nguyen, H.; Nguyen, D.; Ngo, A.P.; Thomas, C. Solar PV Modeling with Lambert W Function: An Exponential Cone Programming Approach. In Proceedings of the 2022 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 25–26 April 2022; pp. 1–5. [Google Scholar]
 Sharadga, H.; Hajimirza, S.; Cari, E.P.T. A Fast and Accurate SingleDiode Model for Photovoltaic Design. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 3030–3043. [Google Scholar] [CrossRef]
 Tina, G.M.; Ventura, C.; Ferlito, S.; De Vito, S. A StateofArtReview on MachineLearning Based Methods for PV. Appl. Sci. 2021, 11, 7550. [Google Scholar] [CrossRef]
 Eslami, M.; Akbari, E.; Seyed Sadr, S.T.; Ibrahim, B.F. A novel hybrid algorithm based on rat swarm optimization and pattern search for parameter extraction of solar photovoltaic models. Energy Sci. Eng. 2022, 10, 2689–2713. [Google Scholar] [CrossRef]
 Huang, T.; Zhang, C.; Ouyang, H.; Luo, G.; Li, S.; Zou, D. Parameter identification for photovoltaic models using an improved learning search algorithm. IEEE Access 2020, 8, 116292–116309. [Google Scholar] [CrossRef]
 RizkAllah, R.M.; Hassanien, A.E. Locomotionbased Hybrid Salp Swarm Algorithm for Estimation of Fuzzy Representationbased Photovoltaic Modules. J. Mod. Power Syst. Clean Energy 2021, 9, 384–394. [Google Scholar] [CrossRef]
 Yu, K.; Liang, J.J.; Qu, B.Y.; Cheng, Z.; Wang, H. Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Appl. Energy 2018, 226, 408–422. [Google Scholar] [CrossRef]
 Oliva, D.; Elaziz, M.A.; Elsheikh, A.H.; Ewees, A.A. A review on metaheuristics methods for estimating parameters of solar cells. J. Power Sources 2019, 435, 126683. [Google Scholar] [CrossRef]
 Venkateswari, R.; Rajasekar, N. Review on parameter estimation techniques of solar photovoltaic systems. Int. Trans. Electr. Energy Syst. 2021, 31, e13113. [Google Scholar] [CrossRef]
 Chen, Z.; Lin, W.; Wu, L.; Long, C.; Peijie, L.; Cheng, S. A capacitor based fast IV characteristics tester for photovoltaic arrays. Energy Procedia 2018, 145, 381–387. [Google Scholar] [CrossRef]
 Toledo, F.J.; Blanes, J.M. Geometric properties of the singlediode photovoltaic model and a new very simple method for parameters extraction. Renew. Energy 2014, 72, 125–133. [Google Scholar] [CrossRef]
 Li, D.; Yang, B.; Li, L.; Li, Q.; Deng, J.; Guo, C. Recent Photovoltaic Cell Parameter Identification Approaches: A Critical Note. Front. Energy Res. 2022, 10, 902749. [Google Scholar] [CrossRef]
 Younis, A.; Bakhit, A.; Onsa, M.; Hashim, M. A comprehensive and critical review of bioinspired metaheuristic frameworks for extracting parameters of solar cell single and double diode models. Energy Rep. 2022, 8, 7085–7106. [Google Scholar] [CrossRef]
 Sun, L.; Wang, J.; Tang, L. A Powerful BioInspired Optimization Algorithm Based PV Cells Diode Models Parameter Estimation. Front. Energy Res. 2021, 9, 675925. [Google Scholar] [CrossRef]
 Shaheen, A.M.; ElSeheimy, R.A.; Xiong, G.; Elattar, E.; Ginidi, A.R. Parameter identification of solar photovoltaic cell and module models via supply demand optimizer. Ain Shams Eng. J. 2022, 13, 101705. [Google Scholar] [CrossRef]
 Qais, M.H.; Hasanien, H.M.; Alghuwainem, S. Parameters extraction of threediode photovoltaic model using computation and Harris Hawks optimization. Energy 2020, 195, 117040. [Google Scholar] [CrossRef]
 Hu, Z.; Gong, W.; Li, S. Reinforcement learningbased differential evolution for parameters extraction of photovoltaic models. Energy Rep. 2021, 7, 916–928. [Google Scholar] [CrossRef]
 Jordehi, A.R. Parameter estimation of solar photovoltaic (PV) cells: A review. Renew. Sustain. Energy Rev. 2016, 61, 354–371. [Google Scholar] [CrossRef]
 Nishioka, K.; Sakitani, N.; Uraoka, Y.; Fuyuki, T. Analysis of multicrystalline silicon solar cells by modified 3diode equivalent circuit model taking leakage current through periphery into consideration. Sol. Energy Mater. Sol. Cells 2007, 91, 1222–1227. [Google Scholar] [CrossRef]
 Suskis, P.; Galkin, I. Enhanced Photovoltaic Panel Model for MATLABSimulink Environment Considering Solar Cell Junction Capacitance. In Proceedings of the 2013 39th Annual Conference of the IEEE Industrial Electronics Society (IECON), Vienna, Austria, 10–13 November 2013; pp. 1613–1618. [Google Scholar]
 Soon, J.J.; Low, K.S. Optimizing Photovoltaic Model for Different Cell Technologies Using a Generalized Multidimension Diode Model. IEEE Trans. Ind. Electron. 2015, 62, 6371–6380. [Google Scholar] [CrossRef]
 Rawa, M.; Calasan, M.; Abusorrah, A.; Alhussainy, A.A.; AlTurki, Y.; Ali, Z.M.; Sindi, H.; Mekhilef, S.; Aleem, S.H.E.A.; Bassi, H. Single Diode Solar Cells—Improved Model and Exact Current–Voltage Analytical Solution Based on Lambert’s W Function. Sensors 2022, 22, 4173. [Google Scholar] [CrossRef] [PubMed]
 Singh, B.; Singla, M.K.; Nijhawan, P. Parameter estimation of four diode solar photovoltaic cell using hybrid algorithm. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 4597–4613. [Google Scholar] [CrossRef]
 Ramadan, A.; Kamel, S.; Hassan, M.H.; Khurshaid, T.; Rahmann, C. An Improved Bald Eagle Search Algorithm for Parameter Estimation of Different Photovoltaic Models. Processes 2021, 9, 1127. [Google Scholar] [CrossRef]
 Abdelminaam, D.S.; Said, M.; Houssein, E.H. Turbulent Flow of WaterBased Optimization Using New Objective Function for Parameter Extraction of Six Photovoltaic Models. IEEE Access 2021, 9, 35382–35398. [Google Scholar] [CrossRef]
 Di Piazza, M.C.; Luna, M.; Vitale, G. Dynamic PV Model Parameter Identification by LeastSquares Regression. IEEE J. Photovolt. 2013, 3, 799–806. [Google Scholar] [CrossRef]
 Abd Elaziz, M.; Thanikanti, S.B.; Ibrahim, I.A.; Lu, S.; Nastasi, B.; Alotaibi, M.A.; Hossain, M.A.; Yousri, D. Enhanced Marine Predators Algorithm for identifying static and dynamic Photovoltaic models parameters. Energy Convers. Manag. 2021, 236, 113971. [Google Scholar] [CrossRef]
 Yousri, D.; Allam, D.; Eteiba, M.B.; Suganthan, P.N. Static and dynamic photovoltaic models’ parameters identification using Chaotic Heterogeneous Comprehensive Learning Particle Swarm Optimizer variants. Energy Convers. Manag. 2019, 182, 546–563. [Google Scholar] [CrossRef]
 Wang, S.; Yu, Y.; Hu, W. Static and dynamic solar photovoltaic models’ parameters estimation using hybrid Rao optimization algorithm. J. Clean. Prod. 2021, 315, 128080. [Google Scholar] [CrossRef]
 Ginidi, A.R.; Shaheen, A.M.; ElSehiemy, R.A.; Elattar, E. Supply demand optimization algorithm for parameter extraction of various solar cell models. Energy Rep. 2021, 7, 5772–5794. [Google Scholar] [CrossRef]
 Chen, H.; Jiao, S.; Wang, M.; Heidari, A.A.; Zhao, X. Parameters identification of photovoltaic cells and modules using diversificationenriched Harris hawks optimization with chaotic drifts. J. Clean. Prod. 2020, 244, 118778. [Google Scholar] [CrossRef]
 Song, S.; Wang, P.; Heidari, A.A.; Zhao, X.; Chen, H. Adaptive Harris hawks optimization with persistent trigonometric differences for photovoltaic model parameter extraction. Eng. Appl. Artif. Intell. 2022, 109, 104608. [Google Scholar] [CrossRef]
 Ridha, H.M.; Hizam, H.; Mirjalili, S.; Othman, M.L.; Ya’acob, M.E.; Ahmadipour, M.; Ismaeel, N.Q. On the problem formulation for parameter extraction of the photovoltaic model: Novel integration of hybrid evolutionary algorithm and Levenberg Marquardt based on adaptive damping parameter formula. Energy Convers. Manag. 2022, 256, 115403. [Google Scholar] [CrossRef]
 Mohammed Ridha, H.; Hizam, H.; Mirjalili, S.; Lutfi Othman, M.; Effendy Ya’acob, M.; Ahmadipour, M. Novel parameter extraction for Single, Double, and three diodes photovoltaic models based on robust adaptive arithmetic optimization algorithm and adaptive damping method of BerndtHallHallHausman. Sol. Energy 2022, 243, 35–61. [Google Scholar] [CrossRef]
 Xiong, G.; Zhang, J.; Shi, D.; Zhu, L.; Yuan, X.; Tan, Z. Winnerleading competitive swarm optimizer with dynamic Gaussian mutation for parameter extraction of solar photovoltaic models. Energy Convers. Manag. 2020, 206, 112450. [Google Scholar] [CrossRef]
 OrtizConde, A.; Trejo, O.; GarciaSanchez, F.J. Direct Extraction of Solar Cell Model Parameters Using Optimization Methods. In Proceedings of the 2021 IEEE Latin America Electron Devices Conference (LAEDC), Mexico, Mexico, 19–21 April 2021; pp. 1–6. [Google Scholar]
 Biswas, P.P.; Suganthan, P.N.; Wu, G.; Amaratunga, G.A.J. Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm. Renew. Energy 2019, 132, 425–438. [Google Scholar] [CrossRef]
 Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef] [PubMed]
 Harrag, A.; Messalti, S. Extraction of Solar Cell Parameters Using Genetic Algorithm. In Proceedings of the 2015 4th International Conference on Electrical Engineering (ICEE), Boumerdes, Algeria, 13–15 December 2015; pp. 13–15. [Google Scholar]
 Kumari, P.A.; Geethanjali, P. Adaptive Genetic Algorithm Based MultiObjective Optimization for Photovoltaic Cell Design Parameter Extraction. Energy Procedia 2017, 117, 432–441. [Google Scholar] [CrossRef]
 Wang, L.; Chen, Z.; Guo, Y.; Hu, W.; Chang, X.; Wu, P.; Han, C.; Li, J. Accurate Solar Cell Modeling via Genetic Neural NetworkBased MetaHeuristic Algorithms. Front. Energy Res. 2021, 9, 696204. [Google Scholar] [CrossRef]
 Storn, R.; Price, K. Differential EvolutionA Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
 Luo, Q.; Peng, W.; Wu, G.; Xiao, Y. Orbital Maneuver Optimization of Earth Observation Satellites Using an Adaptive Differential Evolution Algorithm. Remote Sens. 2022, 14, 1966. [Google Scholar] [CrossRef]
 Jiang, L.L.; Maskell, D.L.; Patra, J.C. Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm. Appl. Energy 2013, 112, 185–193. [Google Scholar] [CrossRef]
 Li, S.; Gu, Q.; Gong, W.; Ning, B. An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Convers. Manag. 2020, 205, 112443. [Google Scholar] [CrossRef]
 Xiong, G.; Zhang, J.; Shi, D.; Zhu, L.; Yuan, X. Parameter extraction of solar photovoltaic models via quadratic interpolation learning differential evolution. Sustain. Energy Fuels 2020, 4, 5595–5608. [Google Scholar] [CrossRef]
 Song, Y.; Wu, D.; Wagdy Mohamed, A.; Zhou, X.; Zhang, B.; Deng, W.; Khalil, A.M. Enhanced Success History Adaptive DE for Parameter Optimization of Photovoltaic Models. Complexity 2021, 2021, 6660115. [Google Scholar] [CrossRef]
 Parida, S.M.; Rout, P.K. Differential evolution with dynamic control factors for parameter estimation of photovoltaic models. J. Comput. Electron. 2021, 20, 330–343. [Google Scholar] [CrossRef]
 Gao, S.; Wang, K.; Tao, S.; Jin, T.; Dai, H.; Cheng, J. A stateoftheart differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Convers. Manag. 2021, 230, 113784. [Google Scholar] [CrossRef]
 Wang, D.; Sun, X.; Kang, H.; Shen, Y.; Chen, Q. Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Rep. 2022, 8, 4724–4746. [Google Scholar] [CrossRef]
 Kharchouf, Y.; Herbazi, R.; Chahboun, A. Parameter’s extraction of solar photovoltaic models using an improved differential evolution algorithm. Energy Convers. Manag. 2022, 251, 114972. [Google Scholar] [CrossRef]
 Dang, J.; Wang, G.; Xia, C.; Jia, R.; Li, P. Research on the parameter identification of PV module based on fuzzy adaptive differential evolution algorithm. Energy Rep. 2022, 8, 12081–12091. [Google Scholar] [CrossRef]
 Zhang, Y.; Wang, S.; Ji, G. A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications. Math. Probl. Eng. 2015, 2015, 931256. [Google Scholar] [CrossRef]
 Dong, C.; Meng, X.; Guo, L.; Hu, J. 3D Sea Surface Electromagnetic Scattering Prediction Model Based on IPSOSVR. Remote Sens. 2022, 14, 4657. [Google Scholar] [CrossRef]
 Ben Hmamou, D.; Elyaqouti, M.; Arjdal, E.; Chaoufi, J.; Saadaoui, D.; Lidaighbi, S.; Aqel, R. Particle swarm optimization approach to determine all parameters of the photovoltaic cell. Mater. Today Proc. 2022, 52, 7–12. [Google Scholar] [CrossRef]
 Ni, B.; Zou, P.; Chen, Y.; Zhang, Z. Identification of Solar Cell Model Parameters based on PSO with Adaptive Elite Mutation. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 1340–1344. [Google Scholar]
 Merchaoui, M.; Sakly, A.; Mimouni, M.F. Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction. Energy Convers. Manag. 2018, 175, 151–163. [Google Scholar] [CrossRef]
 Nunes, H.G.G.; Pombo, J.A.N.; Mariano, S.J.P.S.; Calado, M.R.A.; Felippe de Souza, J.A.M. A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization. Appl. Energy 2018, 211, 774–791. [Google Scholar] [CrossRef]
 Rezaee Jordehi, A. Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules. Sol. Energy 2018, 159, 78–87. [Google Scholar] [CrossRef]
 Kiani, A.T.; Nadeem, M.F.; Ahmed, A.; Sajjad, I.A.; Haris, M.S.; Martirano, L. Optimal Parameter Estimation of Solar Cell using Simulated Annealing Inertia Weight Particle Swarm Optimization (SAIWPSO). In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020; pp. 1–6. [Google Scholar]
 Kiani, A.T.; Nadeem, M.F.; Ahmed, A.; Khan, I.; Elavarasan, R.M.; Das, N. Optimal PV Parameter Estimation via Double Exponential FunctionBased Dynamic Inertia Weight Particle Swarm Optimization. Energies 2020, 13, 4037. [Google Scholar] [CrossRef]
 Gao, S.; Xiang, C.; Lee, T.H. Highly Efficient Photovoltaic Parameter Estimation Using Parallel Particle Swarm Optimization on a GPU. In Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, Japan, 20–23 June 2021; pp. 1–7. [Google Scholar]
 Kiani, A.T.; Nadeem, M.F.; Ahmed, A.; Khan, I.A.; Alkhammash, H.I.; Sajjad, I.A.; Hussain, B. An Improved Particle Swarm Optimization with Chaotic Inertia Weight and Acceleration Coefficients for Optimal Extraction of PV Models Parameters. Energies 2021, 14, 2980. [Google Scholar] [CrossRef]
 Fan, Y.; Wang, P.; Heidari, A.A.; Chen, H.; HamzaTurabieh; Mafarja, M. Random reselection particle swarm optimization for optimal design of solar photovoltaic modules. Energy 2022, 239, 121865. [Google Scholar] [CrossRef]
 Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
 Yan, J.; Chen, Y.; Zheng, J.; Guo, L.; Zheng, S.; Zhang, R. MultiSource Time Series Remote Sensing Feature Selection and Urban Forest Extraction Based on Improved Artificial Bee Colony. Remote Sens. 2022, 14, 4859. [Google Scholar] [CrossRef]
 Chen, X.; Xu, B.; Mei, C.; Ding, Y.; Li, K. Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation. Appl. Energy 2018, 212, 1578–1588. [Google Scholar] [CrossRef]
 Wu, L.; Chen, Z.; Long, C.; Cheng, S.; Lin, P.; Chen, Y.; Chen, H. Parameter extraction of photovoltaic models from measured IV characteristics curves using a hybrid trustregion reflective algorithm. Appl. Energy 2018, 232, 36–53. [Google Scholar] [CrossRef]
 Xu, L.; Bai, L.; Bao, H.; Jiang, J. Parameter Identification of Solar Cell Model Based on Improved Artificial Bee Colony Algorithm. In Proceedings of the 2021 13th International Conference on Advanced Computational Intelligence (ICACI), Wanzhou, China, 14–16 May 2021; pp. 239–244. [Google Scholar]
 Tefek, M.f.F. Artificial bee colony algorithm based on a new local search approach for parameter estimation of photovoltaic systems. J. Comput. Electron. 2021, 20, 2530–2562. [Google Scholar] [CrossRef]
 Garoudja, E.; Filali, W. Photovoltaic Module Parameters Extraction Using BestsoFar ABC Algorithm. In Proceedings of the 2019 International Conference on Advanced Electrical Engineering (ICAEE), Algiers, Algeria, 19–21 November 2019; pp. 1–5. [Google Scholar]
 Duman, S.; Kahraman, H.T.; Sonmez, Y.; Guvenc, U.; Kati, M.; Aras, S. A powerful metaheuristic search algorithm for solving global optimization and realworld solar photovoltaic parameter estimation problems. Eng. Appl. Artif. Intell. 2022, 111, 104763. [Google Scholar] [CrossRef]
 Faris, H.; Aljarah, I.; AlBetar, M.A.; Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput. Appl. 2017, 30, 413–435. [Google Scholar] [CrossRef]
 Vinod, A.; Sinha, A.K. Estimation of parameters for one diode solar PV cell using grey wolf optimizer to obtain exact VI characteristics. J. Eng. Res. 2019, 7, 1–19. [Google Scholar]
 AlShabi, M.; Ghenai, C.; Bettayeb, M.; Ahmad, F.F.; El Haj Assad, M. Multigroup grey wolf optimizer (MGGWO) for estimating photovoltaic solar cell model. J. Therm. Anal. Calorim. 2020, 144, 1655–1670. [Google Scholar] [CrossRef]
 Xavier, F.J.; Pradeep, A.; Premkumar, M.; Kumar, C. Orthogonal LearningBased Gray Wolf Optimizer for Identifying the Uncertain Parameters of Various Photovoltaic Models. Optik 2021, 247, 167973. [Google Scholar] [CrossRef]
 Yesilbudak, M. Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension LearningBased Hunting Search Strategy. Energies 2021, 14, 5735. [Google Scholar] [CrossRef]
 Ramadan, A.E.; Kamel, S.; Khurshaid, T.; Oh, S.R.; Rhee, S.B. Parameter Extraction of Three Diode Solar Photovoltaic Model Using Improved Grey Wolf Optimizer. Sustainability 2021, 13, 6963. [Google Scholar] [CrossRef]
 Zitar, R.A.; AlBetar, M.A.; Awadallah, M.A.; Doush, I.A.; Assaleh, K. An Intensive and Comprehensive Overview of JAYA Algorithm, its Versions and Applications. Arch. Comput. Methods Eng. 2022, 29, 763–792. [Google Scholar] [CrossRef] [PubMed]
 Yu, K.; Liang, J.J.; Qu, B.Y.; Chen, X.; Wang, H. Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers. Manag. 2017, 150, 742–753. [Google Scholar] [CrossRef]
 Wang, L.; Huang, C. A novel Elite Oppositionbased Jaya algorithm for parameter estimation of photovoltaic cell models. Optik 2018, 155, 351–356. [Google Scholar] [CrossRef]
 Luo, X.; Cao, L.; Wang, L.; Zhao, Z.; Huang, C. Parameter identification of the photovoltaic cell model with a hybrid JayaNM algorithm. Optik 2018, 171, 200–203. [Google Scholar] [CrossRef]
 Yu, K.; Qu, B.; Yue, C.; Ge, S.; Chen, X.; Liang, J. A performanceguided JAYA algorithm for parameters identification of photovoltaic cell and module. Appl. Energy 2019, 237, 241–257. [Google Scholar] [CrossRef]
 Luu, T.V.; Nguyen, N.S. Parameters extraction of solar cells using modified JAYA algorithm. Optik 2020, 203, 164034. [Google Scholar] [CrossRef]
 Jian, X.; Weng, Z. A logistic chaotic JAYA algorithm for parameters identification of photovoltaic cell and module models. Optik 2020, 203, 164041. [Google Scholar] [CrossRef]
 Zhang, Y.; Ma, M.; Jin, Z. Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models. Energy 2020, 211, 118644. [Google Scholar] [CrossRef]
 Yang, X.; Gong, W. Oppositionbased JAYA with population reduction for parameter estimation of photovoltaic solar cells and modules. Appl. Soft Comput. 2021, 104, 107218. [Google Scholar] [CrossRef]
 Premkumar, M.; Jangir, P.; Sowmya, R.; Elavarasan, R.M.; Kumar, B.S. Enhanced chaotic JAYA algorithm for parameter estimation of photovoltaic cell/modules. ISA Trans. 2021, 116, 139–166. [Google Scholar] [CrossRef] [PubMed]
 Saadaoui, D.; Elyaqouti, M.; Assalaou, K.; hmamou, D.B.; Lidaighbi, S. Multiple learning JAYA algorithm for parameters identifying of photovoltaic models. Mater. Today Proc. 2022, 52, 108–123. [Google Scholar] [CrossRef]
 Jian, X.; Cao, Y. A Chaotic Second Order Oscillation JAYA Algorithm for Parameter Extraction of Photovoltaic Models. Photonics 2022, 9, 131. [Google Scholar] [CrossRef]
 Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learningbased optimization: A novel method for constrained mechanical design optimization problems. Comput.Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
 Chen, X.; Yu, K.; Du, W.; Zhao, W.; Liu, G. Parameters identification of solar cell models using generalized oppositional teaching learning based optimization. Energy 2016, 99, 170–180. [Google Scholar] [CrossRef]
 Yu, K.; Chen, X.; Wang, X.; Wang, Z. Parameters identification of photovoltaic models using selfadaptive teachinglearningbased optimization. Energy Convers. Manag. 2017, 145, 233–246. [Google Scholar] [CrossRef]
 Ramadan, A.; Kamel, S.; Korashy, A.; Yu, J. Photovoltaic Cells Parameter Estimation Using an Enhanced Teaching–LearningBased Optimization Algorithm. Iran. J. Sci. Technol. Trans. Electr. Eng. 2019, 44, 767–779. [Google Scholar] [CrossRef]
 AbdelBasset, M.; Mohamed, R.; Chakrabortty, R.K.; Sallam, K.; Ryan, M.J. An efficient teachinglearningbased optimization algorithm for parameters identification of photovoltaic models: Analysis and validations. Energy Convers. Manag. 2021, 227, 113614. [Google Scholar] [CrossRef]
 Li, L.; Xiong, G.; Yuan, X.; Zhang, J.; Chen, J. Parameter Extraction of Photovoltaic Models Using a Dynamic SelfAdaptive and Mutual Comparison TeachingLearningBased Optimization. IEEE Access 2021, 9, 52425–52441. [Google Scholar] [CrossRef]
 Mohammed, H.M.; Umar, S.U.; Rashid, T.A. A Systematic and MetaAnalysis Survey of Whale Optimization Algorithm. Comput. Intell. Neurosci. 2019, 2019, 8718571. [Google Scholar] [CrossRef]
 Li, H.; Chang, J.; Xu, F.; Liu, Z.; Yang, Z.; Zhang, L.; Zhang, S.; Mao, R.; Dou, X.; Liu, B. Efficient Lidar Signal Denoising Algorithm Using Variational Mode Decomposition Combined with a Whale Optimization Algorithm. Remote Sens. 2019, 11, 126. [Google Scholar] [CrossRef] [Green Version]
 Xiong, G.; Zhang, J.; Shi, D.; He, Y. Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers. Manag. 2018, 174, 388–405. [Google Scholar] [CrossRef]
 Elazab, O.S.; Hasanien, H.M.; Elgendy, M.A.; Abdeen, A.M. Parameters estimation of single and multiplediode photovoltaic model using whale optimisation algorithm. IET Renew. Power Gener. 2018, 12, 1755–1761. [Google Scholar] [CrossRef]
 Pourmousa, N.; Ebrahimi, S.M.; Malekzadeh, M.; Gordillo, F. Using a novel optimization algorithm for parameter extraction of photovoltaic cells and modules. Eur. Phys. J. Plus 2021, 136, 470. [Google Scholar] [CrossRef]
 Peng, L.; He, C.; Heidari, A.A.; Zhang, Q.; Chen, H.; Liang, G.; Aljehane, N.O.; Mansour, R.F. Information sharing search boosted whale optimizer with NelderMead simplex for parameter estimation of photovoltaic models. Energy Convers. Manag. 2022, 270, 116246. [Google Scholar] [CrossRef]
 Xiong, G.; Zhang, J.; Yuan, X.; Shi, D.; He, Y.; Yao, G. Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm. Sol. Energy 2018, 176, 742–761. [Google Scholar] [CrossRef]
 Long, W.; Cai, S.; Jiao, J.; Xu, M.; Wu, T. A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Convers. Manag. 2020, 203, 112243. [Google Scholar] [CrossRef]
 Rezk, H.; Arfaoui, J.; Gomaa, M.R. Optimal Parameter Estimation of Solar PV Panel Based on Hybrid Particle Swarm and Grey Wolf Optimization Algorithms. Int. J. Interact. Multimed. Artif. Intell. 2021, 6, 145. [Google Scholar] [CrossRef]
 Li, S.; Gong, W.; Wang, L.; Yan, X.; Hu, C. A hybrid adaptive teaching–learningbased optimization and differential evolution for parameter identification of photovoltaic models. Energy Convers. Manag. 2020, 225, 113474. [Google Scholar] [CrossRef]
 Ndi, F.E.; Perabi, S.N.; Ndjakomo, S.E.; Abessolo, G.O. Harris Hawk Optimization Combined with Differential Evolution for the Estimation of Solar Cell Parameter. Int. J. Photoenergy 2022, 2022, 7021658. [Google Scholar] [CrossRef]
 Yu, X.; Wu, X.; Luo, W. Parameter Identification of Photovoltaic Models by Hybrid Adaptive JAYA Algorithm. Mathematics 2022, 10, 183. [Google Scholar] [CrossRef]
 Devarapalli, R.; Rao, B.V.; AlDurra, A. Optimal parameter assessment of Solar Photovoltaic module equivalent circuit using a novel enhanced hybrid GWOSCA algorithm. Energy Rep. 2022, 8, 12282–12301. [Google Scholar] [CrossRef]
 Weng, X.; Liu, Y.; Heidari, A.A.; Cai, Z.; Lin, H.; Chen, H.; Liang, G.; Alsufyani, A.; Bourouis, S. Boosted backtracking search optimization with information exchange for photovoltaic system evaluation. Energy Sci. Eng. 2022, 11, 267–298. [Google Scholar] [CrossRef]
 Naeijian, M.; Rahimnejad, A.; Ebrahimi, S.M.; Pourmousa, N.; Gadsden, S.A. Parameter estimation of PV solar cells and modules using Whippy Harris Hawks Optimization Algorithm. Energy Rep. 2021, 7, 4047–4063. [Google Scholar] [CrossRef]
 Sallam, K.M.; Hossain, M.A.; Chakrabortty, R.K.; Ryan, M.J. An improved gainingsharing knowledge algorithm for parameter extraction of photovoltaic models. Energy Convers. Manag. 2021, 237, 114030. [Google Scholar] [CrossRef]
 Xiong, G.; Zhang, J.; Shi, D.; Yuan, X. Application of SupplyDemandBased Optimization for Parameter Extraction of Solar Photovoltaic Models. Complexity 2019, 2019, 3923691. [Google Scholar] [CrossRef]
 Diab, A.A.Z.; Sultan, H.M.; Aljendy, R.; AlSumaiti, A.S.; Shoyama, M.; Ali, Z.M. Tree Growth Based Optimization Algorithm for Parameter Extraction of Different Models of Photovoltaic Cells and Modules. IEEE Access 2020, 8, 119668–119687. [Google Scholar] [CrossRef]
 Abbassi, R.; Abbassi, A.; Heidari, A.A.; Mirjalili, S. An efficient salp swarminspired algorithm for parameters identification of photovoltaic cell models. Energy Convers. Manag. 2019, 179, 362–372. [Google Scholar] [CrossRef]
 Sharma, A.; Dasgotra, A.; Tiwari, S.K.; Sharma, A.; Jately, V.; Azzopardi, B. Parameter Extraction of Photovoltaic Module Using Tunicate Swarm Algorithm. Electronics 2021, 10, 878. [Google Scholar] [CrossRef]
 Gupta, J.; Nijhawan, P.; Ganguli, S. Parameter extraction of solar PV cell models using novel metaheuristic chaotic tunicate swarm algorithm. Int. Trans. Electr. Energy Syst. 2021, 31, 13244. [Google Scholar] [CrossRef]
 Ramadan, A.; Kamel, S.; Hussein, M.M.; Hassan, M.H. A New Application of Chaos Game Optimization Algorithm for Parameters Extraction of Three Diode Photovoltaic Model. IEEE Access 2021, 9, 51582–51594. [Google Scholar] [CrossRef]
 Long, W.; Jiao, J.; Liang, X.; Xu, M.; Tang, M.; Cai, S. Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm. Energy 2022, 249, 123760. [Google Scholar] [CrossRef]
 Shaban, H.; Houssein, E.H.; PérezCisneros, M.; Oliva, D.; Hassan, A.Y.; Ismaeel, A.A.K.; AbdElminaam, D.S.; Deb, S.; Said, M. Identification of Parameters in Photovoltaic Models through a Runge Kutta Optimizer. Mathematics 2021, 9, 2313. [Google Scholar] [CrossRef]
 Chellaswamy, C.; Taha; Mohammed, S.; Rajasree, R.Y.; Mohammad, J.; Gulshan, S. A Novel Optimization Method for Parameter Extraction of Industrial Solar Cells. In Proceedings of the 2019 Innovations in Power and Advanced Computing Technologies (iPACT), Vellore, India, 22–23 March 2019; pp. 1–6. [Google Scholar]
 Xiong, G.; Zhang, J.; Yuan, X.; Shi, D.; He, Y. Application of Symbiotic Organisms Search Algorithm for Parameter Extraction of Solar Cell Models. Appl. Sci. 2018, 8, 2155. [Google Scholar] [CrossRef]
 Chellaswamy, C.; Ramesh, R. Parameter extraction of solar cell models based on adaptive differential evolution algorithm. Renew. Energy 2016, 97, 823–837. [Google Scholar] [CrossRef]
 Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
Method  Main Contributors  Case  Algorithmic Parameter  Indicator  TNFES  Run 

GA [63]  Harrag et al., CCNS Laboratory, Department of Electronics, Faculty of Technology, Ferhat Abbas University  30XLS  NP = 100, CP = 0.5, MP = 0.02  SE  10,000   
34XLS  
AGA [64]  Kumari et al., School of Electrical Engineering, VIT University    C1 = 0.01, C2 = 0.001       
GNN [65]  Wang et al., Zhengzhou University of Aeronautics  SDM  NP = 30  RMSE  9000  80 
DDM  NP = 50  RMSE  15,000  80 
Method  Main Contributors  Case  Algorithmic Parameter  Indicator  TNFES  Run 

IADE [68]  Jiang et al., School of Computer Engineering, Nanyang Technological University  SDM  Iteration = 8000, a = ln2, b = 0.5  RMSE    30 
PhotowattPWP201  30  
SL80CE36M    
LSHADE [61]  Biswas et al., School of Electrical and Electronic Engineering, Nanyang Technological University  Kyocera KC200GT  NP = 50, F = rand (0.1, 0.5), CR = rand (0.1, 0.5)  ERR  50,000  30 
Shell SQ85  
Shell ST40  
DE3P [23]  Chin et al., Centre of Electrical Energy Systems, School of Electrical Engineering, Universiti Teknologi Malaysia  SDM  NP = 50, F = 0.7, CR = 0.8  RMSE SIAE MIAE  2500  35 
PhotowattPWP201  
STM640/36  
STP6120/36  
EJADE [69]  Li et al., School of Computer Engineering, Hubei University of Arts and Science  SDM  NP_{max} = 50, NP_{min} = 4  RMSE  10,000  30 
DDM  20,000  
PhotowattPWP201  10,000  
STM640/36  15,000  
STP6120/36  15,000  
QILDE [70]  Xiong et al., Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University  SDM  F = rand (0.1, 1), CR = rand (0, 1)  RMSE FT  10,000  50 
DDM  20,000  50  
PhotowattPWP201  10,000  50  
STM640/36  30,000  50  
STP6120/36  30,000  50  
Sharp NDR250A5  30,000  50  
EBLSHADE [71]  Song et al., School of Computer Science and Technology, Shandong Technology and Business University  SDM  NP = 50, H = 100, w1 = 0.2, w2 = 0.6, pmin = 0.05, pmax = 0.2  RMSE IAE  4000  30 
DDM  10,000  30  
PhotowattPWP201  5000  30  
STM640/36  10,000  30  
STP6120/36  15,000  30  
DEDCF [72]  Parida et al., Department of Electrical Engineering, ITER, Siksha O Anusandhan  SDM  NP = 10D, F = rand (0.1, 0.9), CR = rand (0, 1)  RMSE MIAE  10,000  50 
DDM  14,000  50  
PhotowattPWP201  10,000  50  
DPDE [73]  Gao et al., Faculty of Engineering, University of Toyama  SDM  NP = 18D, H = 5, p = 0.11  RMSE SIAE WRT FT  50,000  30 
DDM  
TDM  
PhotowattPWP201  
STM640/36  
STP6120/36  
RLDE [41]  Hu et al., School of Computer Science, China University of Geosciences  SDM  NP = 30, f = −0.1 or 0 or 0.1, CR = 0.9  RMSE  30,000  30 
DDM  
PhotowattPWP201  
STM640/36  
STP6120/36  
HDE [74]  Wang et al., School of Software, Yunnan University  SDM  NP = 30, p = 0.1  RMSE WRT FT  50,000  30 
DDM  
TDM  
PhotowattPWP201  
STM640/36  
STP6120/36  
MSDE [75]  Kharchouf et al., University Abdelmalek Essadi, FSTT  SDM  NP = 10D, F = 0.7, CR = 0.8  RMSE  10,000  30 
DDM  14,000  
PhotowattPWP201  10,000  
STM640/36  10,000  
FADE [76]  Dang et al., Institute for Electrical Power and Integrated Energy of Shaanxi Province, Xi’an University of Technology  PhotowattPWP201  NP = 25, uF^{init} = 0.7, CR^{init} = 0.5  RMSE SIAE  75,000  30 
STM640/36  
STP6120/36 
Method  Case  SIAE  MIN RMSE  Mean RMSE  MAX RMSE  STD of RMSE  Rank 

IADE [68]  SDM    9.8900 × 10^{−4}        N/A 
PhotowattPWP201    2.4000 × 10^{−3}        
SL80CE36M    1.15 × 10^{−2}        
DE3P [23]  SDM  0.0172  8.1291 × 10^{−4}        N/A 
PhotowattPWP201  0.0505  2.422747 × 10^{−3}        
STM640/36  0.0210  1.774 × 10^{−3}        
STP6120/36  0.2091  1.4091 × 10^{−2}        
EJADE [69]  SDM    9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}  5.13 × 10^{−17}  4.333 
DDM    9.8248 × 10^{−4}  9.8363 × 10^{−4}  9.8602 × 10^{−4}  1.36 × 10^{−6}  
PhotowattPWP201    2.4251 × 10^{−3}  2.4251 × 10^{−3}  2.4251 × 10^{−3}  3.27 × 10^{−17}  
STM640/36    1.7298 × 10^{−3}  1.7298 × 10^{−3}  1.7298 × 10^{−3}  5.94 × 10^{−18}  
STP6120/36    1.6601 × 10^{−2}  1.6601 × 10^{−2}  1.6601 × 10^{−2}  2.33 × 10^{−17}  
QILDE [70]  SDM  0.01770381  9.8602 × 10^{−4}  9.8603 × 10^{−4}  9.8616 × 10^{−4}  2.7839 × 10^{−8}  4.333 
DDM  0.01731807  9.8248 × 10^{−4}  9.8480 × 10^{−4}  9.8968 × 10^{−4}  1.5868 × 10^{−6}  
PhotowattPWP201  0.04178701  2.4251 × 10^{−3}  2.4257 × 10^{−3}  2.4370 × 10^{−3}  2.2436 × 10^{−6}  
STM640/36  0.02177419  1.7298 × 10^{−3}  1.7298 × 10^{−3}  1.7298 × 10^{−3}  1.1295 × 10^{−17}  
STP6120/36  0.27797426  1.6601 × 10^{−2}  1.6601 × 10^{−2}  1.6601 × 10^{−2}  2.8518 × 10^{−14}  
Sharp NDR250A5  0.21759981  1.1183 × 10^{−2}  1.1183 × 10^{−2}  1.1183 × 10^{−2}  5.1647 × 10^{−10}  
EBLSHADE [71]  SDM    9.8602 × 10^{−4}  9.8602 × 10^{−4}    1.9169 × 10^{−15}  5.833 
DDM    9.8295 × 10^{−4}  9.8574 × 10^{−4}    1.2825 × 10^{−6}  
PhotowattPWP201    2.4251 × 10^{−3}  2.4251 × 10^{−3}    2.8821 × 10^{−17}  
STM640/36    1.7298 × 10^{−3}  1.7298 × 10^{−3}    6.40591 × 10^{−14}  
STP6120/36    1.6601 × 10^{−2}  1.6601 × 10^{−2}    8.0544 × 10^{−16}  
DEDCF [72]  SDM    7.730062 × 10^{−4}        2 
DDM    7.419648 × 10^{−4}        
PhotowattPWP201    2.05296 × 10^{−3}        
DPDE [73]  SDM  0.02153  9.86021877891470 × 10^{−4}  9.86021877891542 × 10^{−4}  9.86021877891588 × 10^{−4}  2.57114481592195 × 10^{−17}  5.333 
DDM  0.021276  9.82484827161920 × 10^{−4}  9.82549779378988 × 10^{−4}  9.83081420487992 × 10^{−4}  1.51333797156833 × 10^{−7}  
TDM  0.021275  9.82484851785319 × 10^{−4}  9.83096769943567 × 10^{−4}  9.86188097663681 × 10^{−4}  1.02284590208062 × 10^{−6}  
PhotowattPWP201  0.048924  2.42507486809506 × 10^{−3}  2.42507486809511 × 10^{−3}  2.42507486809514 × 10^{−3}  1.82238517018742 × 10^{−17}  
STM640/36  0.021903  1.72981370994065 × 10^{−3}  1.72981370994068 × 10^{−3}  1.72981370994070 × 10^{−3}  1.09732017119964 × 10^{−17}  
STP6120/36  0.317128  1.66006031250851 × 10^{−2}  1.66006031250854 × 10^{−2}  1.66006031250855 × 10^{−2}  7.66886076234863 × 10^{−17}  
RLDE [41]  SDM    9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}  3.4834 × 10^{−17}  4.333 
DDM    9.8248 × 10^{−4}  9.8695 × 10^{−4}  9.8457 × 10^{−4}  1.7498 × 10^{−6}  
PhotowattPWP201    2.4251 × 10^{−3}  2.4251 × 10^{−3}  2.4251 × 10^{−3}  6.3084 × 10^{−17}  
STM640/36    1.7298 × 10^{−3}  1.7298 × 10^{−3}  1.7298 × 10^{−3}  1.5784 × 10^{−17}  
STP6120/36    1.6601 × 10^{−2}  1.6601 × 10^{−2}  1.6601 × 10^{−2}  1.9764 × 10^{−16}  
HDE [74]  SDM  0.021527  9.86021877891313 × 10^{−4}  9.86021877891456 × 10^{−4}  9.86021877891534 × 10^{−4}  4.56994495305984 × 10^{−17}  4.667 
DDM  0.021275  9.82484851785123 × 10^{−4}  9.84154478759700 × 10^{−4}  9.86021877891565 × 10^{−4}  1.67264373173134 × 10^{−6}  
TDM  0.021275  9.82484851785213 × 10^{−4}  9.82852008467139 × 10^{−4}  9.88358683960422 × 10^{−4}  1.08111146060101 × 10^{−6}  
PhotowattPWP201  0.048924  2.42507486809496 × 10^{−4}  2.42507486809504 × 10^{−4}  2.42507486809510 × 10^{−3}  3.15406568173825 × 10^{−17}  
STM640/36  0.021903  1.72981370994065 × 10^{−3}  1.72981370994068 × 10^{−3}  1.72981370994070 × 10^{−3}  7.89430228096153 × 10^{−18}  
STP6120/36  0.31713  1.66006031250847 × 10^{−2}  1.66006031250851 × 10^{−2}  1.66006031250855 × 10^{−2}  1.86128634500124 × 10^{−16}  
MSDE [75]  SDM    7.7692 × 10^{−4}        1.333 
DDM    7.63 × 10^{−4}        
PhotowattPWP201    1.7298 × 10^{−3}        
STM640/36    2.0529 × 10^{−3}        
FADE [76]  PhotowattPWP201  0.0489237  2.42507 × 10^{−3}  2.42507 × 10^{−3}  2.42507 × 10^{−3}    N/A 
STM640/36  0.0219033  1.72981 × 10^{−3}  1.72981 × 10^{−3}  1.72981 × 10^{−3}    
STP6120/36  0.3171278  1.66006 × 10^{−2}  1.66006 × 10^{−2}  1.66006 × 10^{−2}   
Method  Main Contributors  Case  Algorithmic Parameter  Indicator  TNFES  Run 

PSO [79]  Ben et al., Laboratory of Electronics, Signal Processing and Physical Modeling, Faculty of Sciences of Agadir Ibn Zohr University  SDM  NP = 50, Iteration = 1000, w = 0.4, c_{1} = c_{2} = 2  RMSE IAE     
PSOAEM [80]  Ni et al., Institute of Equipment Supervision and Inspection; Suzhou Nuclear Power Research Institute    NP = 50    10,000   
MPSO [81]  Merchaoui et al., Electrical Department, National Engineering School of Monastir, University of Monastir  SDM  NP = 60, Iteration = 2000, w = 0.4, c_{1} = c_{2} = 2  RMSE IAE     
DDM  
PhotowattPWP201  
IFRI25060  
GCPSO [82]  Nunes et al., Department of Electromechanical Engineering, University of Beira Interior  SDM  NP = 20D, Iteration = 10,000, w = 0.55, c_{1} = 1, c_{2} = 2  RMSE SIAE    100 
DDM  
PhotowattPWP201  
Sharp NDR250A5  
ELPSO [83]  Rezaee et al., Department of Electrical Engineering, LashteneshaZibakenar Branch, Islamic Azad University  SDM  NP = 991, c_{1} = 1, c_{2} = 2  RMSE IAE  101,000  30 
DDM  NP = 1489, c_{1} = 1, c_{2} = 2  151,500  
STM640/36  NP = 991, c_{1} = 1, c_{2} = 2  101,000  
SAIWPSO [84]  Kiani et al., Department of Electrical Engineering, University of Engineering and Technology, Taxila  SDM  NP = 100, Iteration = 10,000,  RMSE    100 
DDM  
DEDIWPSO [85]  Kiani et al., Department of Electrical Engineering, University of Engineering and Technology, Taxila  SDM  NP = 100, Iteration = 10,000, w^{init} = 0.8  RMSE IAE    30 
DDM  
PhotowattPWP201  
JKM330P72  
PPSO [86]  Gao et al., Department of Electrical and Computer Engineering, National University of Singapore  SDM  DDM: NP = 6400, Others: NP = 3200, w = 0.5, c_{1} = 2.5, c_{2} = 1.6  RMSE  640,000  30 
DDM  2,560,000  
PhotowattPWP201  640,000  
PSOST [87]  Kiani et al., Department of Electrical Engineering, University of Engineering and Technology, Taxila  SDM  NP = 100, Iteration = 10,000,  RMSE SIAE    30 
DDM  
PhotowattPWP201  
JKM330P72  
PSOCS [88]  Fan et al., College of Electrical and Electronic Engineering, Wenzhou University  SDM  NP = 30  RMSE  20,000  30 
DDM  
PhotowattPWP201  
SM55    
KC200GT  
ST40 
Method  Case  SIAE  MIN RMSE  Mean RMSE  MAX RMSE  STD of RMSE  Rank 

MPSO [81]  SDM    7.7301 × 10^{−4}        4 
DDM    7.4444 × 10^{−4}        
PhotowattPWP201    2.0530 × 10^{−3}        
IFRI25060    7.5589 × 10^{−3}        
GCPSO [82]  SDM  0.01763274  7.730063 × 10^{−4}  7.730063 × 10^{−4}  7.730065 × 10^{−4}  4.055839W11  2.667 
DDM  0.01637239  7.182745 × 10^{−4}  7.301380 × 10^{−4}  7.417141 × 10^{−4}  5.371802 × 10^{−6}  
PhotowattPWP201  0.04400032  2.046535 × 10^{−3}  2.046535 × 10^{−3}  2.046536 × 10^{−3}  1.105194 × 10^{−10}  
Sharp NDR250A5  0.21867809  7.697717 × 10^{−3}  7.697717 × 10^{−3}  7.697719 × 10^{−3}  2.395516 × 10^{−10}  
ELPSO [83]  SDM    7.7301 × 10^{−4}  7.7314 × 10^{−4}  7.7455 × 10^{−4}  3.4508 × 10^{−7}  N/A 
DDM    7.4240 × 10^{−4}  7.5904 × 10^{−4}  7.9208 × 10^{−4}  9.4291 × 10^{−6}  
STM640/36    2.1803 × 10^{−3}  2.2503 × 10^{−3}  3.7160 × 10^{−3}  2.9211 × 10^{−4}  
SAIWPSO [84]  SDM    7.73006 × 10^{−4}  7.73006 × 10^{−4}  7.73006 × 10^{−4}  5.49562 × 10^{−15}  N/A 
DDM    7.41937 × 10^{−4}  7.42261 × 10^{−4}  7.54275 × 10^{−4}  1.41853 × 10^{−6}  
DEDIWPSO [85]  SDM    7.730062 × 10^{−4}  7.730062 × 10^{−4}  7.730062 × 10^{−4}  5.18668 × 10^{−15}  1.5 
DDM    7.182306 × 10^{−4}  7.187462 × 10^{−4}  7.318100 × 10^{−4}  2.486129 × 10^{−6}  
PhotowattPWP201    2.03992 × 10^{−3}  2.03992 × 10^{−3}  2.03992 × 10^{−3}  2.995389 × 10^{−15}  
JKM330P72    4.3113 × 10^{−2}  4.3113 × 10^{−2}  4.3113 × 10^{−2}    
PPSO [86]  SDM    9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}  7.0798 × 10^{−13}  5.167 
DDM    9.8248 × 10^{−4}  9.8323 × 10^{−4}  9.8602 × 10^{−4}  1.3436 × 10^{−6}  
PhotowattPWP201    2.4250 × 10^{−3}  2.4250 × 10^{−3}  2.4250 × 10^{−3}  2.8947 × 10^{−13}  
PSOST [87]  SDM  0.0214710  7.73006 × 10^{−4}  7.73006 × 10^{−4}  7.73006 × 10^{−4}  5.18622 × 10^{−15}  1.833 
DDM  0.0212734  7.183701 × 10^{−4}  7.187382 × 10^{−4}  7.218291 × 10^{−4}  1.318531 × 10^{−6}  
PhotowattPWP201  0.055499  2.03992 × 10^{−3}  2.03992 × 10^{−3}  2.03992 × 10^{−3}  2.91529 × 10^{−15}  
JKM330P72    4.3114 × 10^{−2}  4.3114 × 10^{−2}  4.3114 × 10^{−2}  6.2983 × 10^{−17}  
PSOCS [88]  SDM    9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8603 × 10^{−4}  1.7459 × 10^{−9}  5.833 
DDM    9.8297 × 10^{−4}  1.0286 × 10^{−3}  1.4133 × 10^{−4}  9.9217 × 10^{−5}  
PhotowattPWP201    2.4251 × 10^{−3}  2.4252 × 10^{−3}  2.4282 × 10^{−3}  5.9113 × 10^{−7}  
SM55    3.8067 × 10^{−3}        
KC200GT    2.5402 × 10^{−2}        
ST40    7.3431 × 10^{−4}       
Method  Main Contributors  Case  Algorithmic Parameter  Indicator  TNFES  Run 

TLABC [91]  Chen et al., School of Electrical and Information Engineering, Jiangsu University  SDM  NP = 50, limit = 200, scale factor F = rand (0, 1)  RMSE SIAE  50,000  30 
DDM  
PhotowattPWP201  
ABCTRR [92]  Wu et al., College of Physics and Information Engineering, Fuzhou University  SDM  NP = 10, limit = 10  RMSE SIAE  1000  1000 
DDM  NP = 10, limit = 20  5000  
PhotowattPWP201  NP = 10, limit = 10  1000  
IABC [93]  Xu et al., College of Mathematics and Physics, Inner Mongolia University for Nationalities  SDM  NP = 50, limit = 50  RMSE IAE  50,000   
DDM  
ABCLs [94]  Tefek et al., Department of Computer Engineering, Osmaniye Korkut Ata University  SDM  NP = 100, limit = 250  RMSE IAE  50,000  30 
DDM  NP = 100, limit = 500  
PhotowattPWP201  NP = 100, limit = 250  
Bestsofar ABC [95]  Garoudja et al., Centre de Développement des Technologies Avancées, CDTA  SDM  NP = 150, limit = 750  RMSE  35,000   
LG395N2W  
FDB TLABC [96]  Duman et al., Electrical Engineering, Engineering and Natural Sciences Faculty, Bandirma Onyedi Eylul University  SDM  NP = 50, limit = 200, scale factor F = rand (0, 1)  RMSE SIAE MIAE  50,000  51 
DDM  70,000  51  
PhotowattPWP201  50,000  51  
STM640/36  50,000    
STP6120/36  50,000   
Method  Case  SIAE  MIN RMSE  Mean RMSE  MAX RMSE  STD of RMSE  Rank 

TLABC [92]  SDM  0.02152738  9.86022 × 10^{−4}  9.98523 × 10^{−4}  1.03970 × 10^{−3}  1.86022 × 10^{−5}  3.667 
DDM  0.00135397  9.84145 × 10^{−4}  1.05553 × 10^{−3}  1.05553 × 10^{−3}  1.55034 × 10^{−4}  
PhotowattPWP201  0.04880919  2.42507 × 10^{−3}  2.42647 × 10^{−3}  2.44584 × 10^{−3}  3.99568 × 10^{−6}  
ABCTRR [92]  SDM  0.02152687  9.860219 × 10^{−4}  9.860219 × 10^{−4}  9.860219 × 10^{−4}  6.15 × 10^{−17}  3 
DDM  0.02127522  9.824849 × 10^{−4}  9.825556 × 10^{−4}  9.860219 × 10^{−4}  4.95 × 10^{−7}  
PhotowattPWP201  0.04892367  2.425075 × 10^{−3}  2.425075 × 10^{−3}  2.425075 × 10^{−3}  9.68 × 10^{−17}  
IABC [93]  SDM    9.8602 × 10^{−4}        N/A 
DDM    9.8248 × 10^{−4}        
ABCLs [94]  SDM    9.8602 × 10^{−4}        2 
DDM    9.8257 × 10^{−4}        
PhotowattPWP201    2.4251 × 10^{−4}        
Bestsofar ABC [95]  SDM    0.027        N/A 
LG395N2W    0.013        
FDB TLABC [96]  SDM  0.017633  7.7301 × 10^{−4}        1.333 
DDM  0.017001  7.4194 × 10^{−4}        
PhotowattPWP201    2.054 × 10^{−3}        
STM640/36    1.7319 × 10^{−3}        
STP6120/36    1.4251 × 10^{−2}       
Method  Main Contributors  Case  Algorithmic Parameter  Indicator  TNFES  Run 

GWO [98]  Vinod et al., Department of Electrical Engineering, Speciality of Optmization in Engineering, National Institute of Technology, Silchar, India  SDM  NP = 50  RMSE, IAE  50,000   
MGGWO [99]  AlShabi et al., Mechanical and Nuclear Engineering Department, University of Sharjah, Sharjah, UAE  SDM  NP = 20  RMSE, MIAE  1,000,000   
OLBGWO [100]  Xavier et al., Bule Hora University  SDM  NP = 30, Orthogonal experiment levels: 3, Orthogonal experiment factors: 4  RMSE SIAE WRT  30,000  30 
DDM  
PhotowattPWP201  
ST40  
KC200GT  
IGWO [101]  Yesilbudak, Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Nevsehir Haci Bektas V eli University  SDM  NP = 15  RMSE IAE  25,000  50 
DDM  
TDM  
PhotowattPWP201  
IGWO [102]  Ramadan et al., Department of Electrical Engineering, Faculty of Engineering, Aswan University  TDM  NP = 1000, Iteration = 5000, r1 = rand, r2 = rand  RMSE    30 
PhotowattPWP201 
Method  Case  SIAE  MIN RMSE  Mean RMSE  MAX RMSE  STD of RMSE  Rank 

GWO [98]  SDM    9.94378 × 10^{−4}        N/A 
MGGWO [99]  SDM    4 × 10^{−4}        N/A 
OLBGWO [100]  SDM    9.86 × 10^{−4}  9.86 × 10^{−4}  9.86 × 10^{−4}  1.4 × 10^{−8}  1.333 
DDM    9.83 × 10^{−4}  9.85 × 10^{−4}  9.86 × 10^{−4}  1.78 × 10^{−6}  
PhotowattPWP201    2.4 × 10^{−3}  2.4 × 10^{−3}  2.4 × 10^{−3}  2.4284 × 10^{−9}  
ST40    9.5666 × 10^{−4}        
KC200GT    2.48 × 10^{−2}        
IGWO [101]  SDM  0.02152728  9.8602 × 10^{−4}        1.667 
DDM  0.02127500  9.824852 × 10^{−4}        
TDM  0.02128348  9.8251 × 10^{−4}        
PhotowattPWP201  0.04892353  2.425075 × 10^{−3}        
IGWO [102]  TDM    9.8331 × 10^{−4}  9.84 × 10^{−4}  9.85 × 10^{−4}  6.60404 × 10^{−7}  N/A 
PhotowattPWP201    2.4276291 × 10^{−3}  2.432 × 10^{−3}  2.438 × 10^{−3}  5.26003 × 10^{−6} 
Method  Main Contributors  Case  Algorithmic Parameter  Indicator  TNFES  Run 

IJAYA [104]  Yu et al., School of Electrical Engineering, Zhengzhou University  SDM  NP = 20  RMSE IAE  50,000  30 
DDM  
PhotowattPWP201  
EOJaya [105]  Wang et al., Department of Systems Engineering and Engineering Management, City University of Hong Kong  SDM  NP = 150  RMSE  1,500,000  50 
DDM  
JayaNM [106]  Luo et al., School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB)  SDM  NP = 150  RMSE  1,500,000   
PGJAYA [107]  Yu et al., School of Electrical Engineering, Zhengzhou University  SDM  NP = 20  RMSE  50,000  30 
DDM  
PhotowattPWP201  
MJA [108]  Luu et al., Faculty of Electronics Technology, Industrial University of Ho Chi Minh City  SDM  NP^{init} = 10D, NP^{min} = D, r = rand (−0.5, 0.5),  RMSE    30 
DDM  
LCJAYA [109]  Jian et al., School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology  SDM  NP = 20  RMSE  50,000  30 
DDM  
PhotowattPWP201  
CLJAYA [110]  Zhang et al., School of Electrical and Information Engineering, Tianjin University  SDM  NP = 20  RMSE MIAE  20,000   
DDM  50,000  
PhotowattPWP201  30,000  
EJAYA [111]  Yang et al., School of Computer Science, China University of Geosciences  SDM  NP = 30, rate Ra = 0.3  RMSE WST  30,000  30 
DDM  
PhotowattPWP201  
STM640/36  
STP6120/36  
CJAYA [112]  Premkumar et al., Department of Electrical and Electronics Engineering, GMR Institute of Technology  SDM  NP = 30  RMSE IAE WST  50,000  30 
DDM  NP = 50  
STM640/36  NP = 80  
STP6120/36  NP = 80  
MLJAYA [113]  Saadaoui et al., Laboratory of Materials and Renewable Energies, Faculty of Science, Ibn Zohr University  SDM  NP = 30, F = 3randn  RMSE SIAE    30 
DDM  
PhotowattPWP201  
CSOOJAYA [114]  Jian et al., School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology  SDM  NP = 20  RMSE IAE  50,000  30 
DDM  
PhotowattPWP201 
Method  Case  SIAE  MIN RMSE  Mean RMSE  MAX RMSE  STD of RMSE  Rank 

IJAYA [104]  SDM    9.8603 × 10^{−4}  9.9204 × 10^{−4}  1.0622 × 10^{−3}  1.4033 × 10^{−5}  6.5 
DDM    9.8293 × 10^{−4}  1.0269 × 10^{−3}  1.4055 × 10^{−3}  9.8325 × 10^{−5}  
PhotowattPWP201    2.4251 × 10^{−3}  2.4289 × 10^{−3}  2.4393 × 10^{−3}  3.7755 × 10^{−6}  
EOJaya [105]  SDM    9.8603 × 10^{−4}        N/A 
DDM    9.8262 × 10^{−4}        
JayaNM [106]  SDM    9.8602 × 10^{−4}        N/A 
PGJAYA [107]  SDM    9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}  1.4485 × 10^{−9}  3.833 
DDM    9.8263 × 10^{−4}  9.8582 × 10^{−4}  9.9499 × 10^{−4}  2.5375 × 10^{−6}  
PhotowattPWP201    2.425075 × 10^{−3}  2.425144 × 10^{−3}  2.426764 × 10^{−3}  3.071420 × 10^{−7}  
MJA [108]  SDM    9.860218 × 10^{−4}  9.860218 × 10^{−4}  9.860218 × 10^{−4}  1.99 × 10^{−17}  N/A 
DDM    9.824848 × 10^{−4}  9.8260 × 10^{−4}  9.860218 × 10^{−4}  6.46 × 10^{−7}  
LCJAYA [109]  SDM    9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}  5.6997 × 10^{−16}  3.5 
DDM    9.8250 × 10^{−4}  9.8308 × 10^{−4}  9.8602 × 10^{−4}  1.3118 × 10^{−6}  
PhotowattPWP201    2.425075 × 10^{−3}  2.425075 × 10^{−3}  2.425075 × 10^{−3}  2.415229 × 10^{−16}  
CLJAYA [110]  SDM    9.8602 × 10^{−4}        3.167 
DDM    9.8249 × 10^{−4}        
PhotowattPWP201    2.425075 × 10^{−3}        
EJAYA [111]  SDM    9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}  6.80 × 10^{−17}  3.5 
DDM    9.8248 × 10^{−4}  9.8448 × 10^{−4}  9.8602 × 10^{−4}  1.51 × 10^{−6}  
PhotowattPWP201    2.4251 × 10^{−3}  2.4251 × 10^{−3}  2.4251 × 10^{−4}  6.39 × 10^{−17}  
STM640/36    1.7298 × 10^{−3}  1.7298 × 10^{−3}  1.7298 × 10^{−3}  1.47 × 10^{−17}  
STP6120/36    1.6601 × 10^{−2}  1.6601 × 10^{−2}  1.6601 × 10^{−2}  2.68 × 10^{−16}  
CJAYA [112]  SDM    9.8625 × 10^{−4}  9.8878 × 10^{−4}  9.8991 × 10^{−4}  4.5584 × 10^{−8}  N/A 
DDM    1.0145 × 10^{−3}  1.01458 × 10^{−3}  1.0365 × 10^{−3}  7.5514 × 10^{−5}  
STM640/36    1.7242 × 10^{−3}  1.7289 × 10^{−3}  1.7845 × 10^{−3}  1.4751 × 10^{−7}  
STP6120/36    1.6285 × 10^{−2}  1.6299 × 10^{−2}  1.6302 × 10^{−2}  3.2565 × 10^{−7}  
MLJAYA [113]  SDM  0.01781248  9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}    3.667 
DDM  0.0176  9.8294 × 10^{−4}  1.0618 × 10^{−3}  1.42102 × 10^{−3}    
PhotowattPWP201  0.04686375  2.4250748 × 10^{−3}  2.44395 × 10^{−3}  2.49419 × 10^{−3}    
CSOOJAYA [114]  SDM    9.860219 × 10^{−4}  9.860219 × 10^{−4}  9.860219 × 10^{−4}  4.717305 × 10^{−17}  3.833 
DDM    9.824849 × 10^{−4}  9.824849 × 10^{−4}  9.824849 × 10^{−4}  5.576332 × 10^{−17}  
PhotowattPWP201    2.425075 × 10^{−3}  2.425075 × 10^{−3}  2.425075 × 10^{−3}  2.699858 × 10^{−17} 
Method  Main Contributors  Case  Algorithmic Parameter  Indicator  TNFES  Run 

GOTLBO [116]  Chen et al., School of Electrical and Information Engineering, Jiangsu University  SDM  NP = 20, SDM: Jr = 0.1, DDM: Jr = 0  RMSE  10,000  30 
DDM  20,000  
SATLBO [117]  Yu et al., Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology  SDM  NP = 40  RMSE  50,000  30 
DDM  
PhotowattPWP201  
ETLBO [118]  Ramadan et al., Department of Electrical Engineering, Faculty of Engineering, Aswan University  SDM  NP = 200, Iteration = 5000,  RMSE IAE     
DDM  
STM640/36  
STP6120/36  
EOTLBO [21]  Xiong et al., Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University  SDM  NP = 50  RMSE WRT FT  20,000  50 
DDM  
PhotowattPWP201  
Sharp NDR250A5  
MTLBO [119]  AbdelBasset et al., Faculty of Computers and Informatics, Zagazig University  SDM  NP = 50  RMSE  50,000  30 
DDM  
PhotowattPWP201  
STM640/36  
STP6120/36  
DMTLBO [120]  Li et al., Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University  SDM  NP = 50  RMSE SIAE  50,000  30 
DDM  
PhotowattPWP201  
STM640/36  
STP6120/36 
Method  Case  SIAE  MIN RMSE  Mean RMSE  MAX RMSE  STD of RMSE  Rank 

GOTLBO [116]  SDM    9.87442 × 10^{−4}  1.33488 × 10^{−3}  1.98244 × 10^{−3}  2.99407 × 10^{−4}  N/A 
DDM    9.83177 × 10^{−4}  1.24360 × 10^{−3}  1.78774 × 10^{−3}  2.09115 × 10^{−4}  
SATLBO [117]  SDM    9.86022 × 10^{−4}  9.87795 × 10^{−4}  9.94939 × 10^{−6}  2.30015 × 10^{−6}  3.667 
DDM    9.828037 × 10^{−4}  9.981111 × 10^{−4}  1.047045 × 10^{−3}  1.951533 × 10^{−5}  
PhotowattPWP201    2.425075 × 10^{−3}  2.425428 × 10^{−3}  2.429130 × 10^{−3}  7.410517 × 10^{−7}  
ETLBO [118]  SDM    9.86022 × 10^{−4}        N/A 
DDM    9.8241 × 10^{−4}        
STM640/36    1.7759 × 10^{−3}        
STP6120/36    1.6172 × 10^{−2}        
EOTLBO [21]  SDM    9.86021878 × 10^{−4}  9.86021878 × 10^{−4}  9.86021878 × 10^{−4}  4.12665088 × 10^{−17}  1.667 
DDM    9.82484852 × 10^{−4}  9.84733697 × 10^{−4}  9.89424104 × 10^{−4}  1.69176118 × 10^{−6}  
PhotowattPWP201    2.42507487 × 10^{−3}  2.42507487 × 10^{−3}  2.42507487 × 10^{−3}  3.61995116 × 10^{−17}  
Sharp NDR250A5    1.11833356 × 10^{−2}  1.11839904 × 10^{−2}  1.12154997 × 10^{−2}  4.54767027 × 10^{−6}  
MTLBO [119]  SDM    9.860219 × 10^{−4}  9.860219 × 10^{−4}  9.860219 × 10^{−4}  1.9292748 × 10^{−17}  2.667 
DDM    9.824849 × 10^{−4}  9.824855 × 10^{−4}  9.825026 × 10^{−4}  3.3000000 × 10^{−9}  
PhotowattPWP201    2.4250749 × 10^{−3}  2.4250749 × 10^{−3}  2.4250749 × 10^{−3}  1.3070107 × 10^{−17}  
STM640/36    1.7298137 × 10^{−3}  1.7298137 × 10^{−3}  1.7298137 × 10^{−3}  5.9363718 × 10^{−18}  
STP6120/36    1.66006031 × 10^{−2}  1.66006031 × 10^{−2}  1.66006031 × 10^{−2}  8.0041380 × 10^{−17}  
DMTLBO [120]  SDM  0.0178  9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}  2.07 × 10^{−17}  2 
DDM  0.0176  9.8248 × 10^{−4}  9.8406 × 10^{−4}  9.8638 × 10^{−4}  1.53 × 10^{−6}  
PhotowattPWP201  0.0411  2.4251 × 10^{−3}  2.4251 × 10^{−3}  2.4251 × 10^{−3}  2.15 × 10^{−17}  
STM640/36  0.0215  1.7298 × 10^{−3}  1.7298 × 10^{−3}  1.7298 × 10^{−3}  5.74 × 10^{−14}  
STP6120/36  0.2741  1.6601 × 10^{−2}  1.6601 × 10^{−2}  1.6601 × 10^{−2}  4.55 × 10^{−10} 
Method  Main Contributors  Case  Algorithmic Parameter  Indicator  TNFES  Run 

WOA [124]  Elazab et al., Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University  KC200GT  NP = 30, Iteration = 500,    15,000   
IWOA [123]  Xiong et al., Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University  SDM  NP = 50, Iteration = 2000,  RMSE SIAE WRT, FT    50 
DDM  
PhotowattPWP201  
MCSWOA [18]  Xiong et al., Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University  SDM  NP = 50  RMSE SIAE FT  50,000  50 
DDM  
PhotowattPWP201  
STM640/36  
STP6120/36  
Sharp NDR250A5  
SWOA [125]  Pourmousa et al., Department of Electrical Engineering, Iran University of Science and Technology  SDM  NP = 30, Iteration = 5000,  RMSE IAE    30 
DDM  
TDM  
PhotowattPWP201  
ISNMWOA [126]  Peng et al., Department of Computer Science and Artificial Intelligence, Wenzhou University  SDM  NP = 30  RMSE SIAE  20,000   
DDM  
TDM  
PhotowattPWP201 
Method  Case  SIAE  MIN RMSE  Mean RMSE  MAX RMSE  STD of RMSE  Rank 

IWOA [123]  SDM  0.01770338  9.860219 × 10^{−4}  9.860219 × 10^{−4}  9.860219 × 10^{−4}  5.12 × 10^{−16}  2.667 
DDM  0.01735511  9.824849 × 10^{−4}  9.826140 × 10^{−4}  9.860219 × 10^{−4}  9.86 × 10^{−5}  
PhotowattPWP201  0.04176116  2.425075 × 10^{−3}  2.425075 × 10^{−3}  2.425075 × 10^{−3}  2.90 × 10^{−17}  
MCSWOA [18]  SDM  0.01770381  9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}  4.8373 × 10^{−10}  3.167 
DDM  0.01730633  9.8250 × 10^{−4}  1.0078 × 10^{−3}  1.1903 × 10^{−3}  3.7264 × 10^{−5}  
PhotowattPWP201  0.04178694  2.4251 × 10^{−3}  2.4252 × 10^{−3}  2.4270 × 10^{−3}  3.2927 × 10^{−7}  
STM640/36  0.02177346  1.7298 × 10^{−3}  1.7311 × 10^{−3}  1.7364 × 10^{−3}  1.0774 × 10^{−6}  
STP6120/36  0.27780418  1.6601 × 10^{−2}  1.6632 × 10^{−2}  1.6741 × 10^{−2}  2.6486 × 10^{−5}  
Sharp NDR250A5  0.21759970  1.1183 × 10^{−2}  1.1187 × 10^{−2}  1.1244 × 10^{−2}  9.1358 × 10^{−6}  
SWOA [125]  SDM    9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}    2 
DDM    9.8249 × 10^{−4}  9.8250 × 10^{−4}  9.8251 × 10^{−4}    
TDM    9.8033 × 10^{−4}  9.8051 × 10^{−4}  9.8154 × 10^{−4}    
PhotowattPWP201    2.4250 × 10^{−3}  2.4250 × 10^{−3}  2.4250 × 10^{−3}    
ISNMWOA [126]  SDM  0.021527008  9.8602 × 10^{−4}        2.167 
DDM  0.021275213  9.8248 × 10^{−4}        
TDM  0.021275347  9.8248 × 10^{−4}        
PhotowattPWP201  0.048923833  2.4251 × 10^{−3}       
Method  Main Contributors  Case  Algorithmic Parameter  Indicator  TNFES  Run 

DE/WOA [127]  Xiong et al., Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University  SDM  NP = 40, F = rand (0.1, 1), CR = rand (0, 1)  RMSE MIAE  50,000  50 
DDM  
PhotowattPWP201  
GWOCS [128]  Long et al., Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics  SDM  NP = 30  RMSE IAE FT  50,000  30 
DDM  
PhotowattPWP201  
STM640/36  
PSOGWO [129]  Rezk et al., College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University  PhotowattPWP201  Iteration = 1200  RMSE MIAE     
STE4/100  Iteration = 6000  
FSM  Iteration = 2000  
ATLDE [130]  Li et al., School of Computer Science, China University of Geosciences  SDM  NP = 50, F = rand, CR = 0.9  RMSE SIAE WRT  30,000  30 
DDM  
STM640/36  
STP6120/36  
HHODE [131]  Ndi et al., Technology and Applied Sciences Laboratory, University of Douala  SDM  Iteration = 3000  RMSE    20 
DDM  
HAJAYADE [132]  Yu et al., School of Management Science and Engineering, Nanjing University of Information Science and Technology  SDM  NP = 20, CR = 0.5  RMSE WST  50,000  30 
DDM  
PhotowattPWP201  
STM640/36  
STP6120/36  
EHGWOSCA [133]  Devarapalli et al., Department of EEE, Lendi Institute of Engineering and Technology  SDM  Iteration = 500  ERR    30 
DDM  
Shell S75  
Shell CS6K280M  
Shell ST40  
HPSODOX [47]  Singh et al., Electrical and Instrumentation Engineering Department, Thapar Institute of Engineering and Technology  SDM    RMSE FT     
DDM  
TDM  
FDM  
TLBOBSA [134]  Weng et al., Department of Computer Science and Artificial Intelligence, Wenzhou University  SDM  NP = 30  RMSE SIAE  20,000  30 
DDM  
TDM  
PhotowattPWP201 
Method  Case  SIAE  MIN RMSE  Mean RMSE  MAX RMSE  STD of RMSE  Rank 

DE/WOA [127]  SDM  0.01770392  9.860219 × 10^{−4}  9.860219 × 10^{−4}  9.860219 × 10^{−4}  3.545178 × 10^{−17}  2.333 
DDM  0.01731808  9.824849 × 10^{−4}  9.829703 × 10^{−4}  9.860377 × 10^{−4}  9.152178 × 10^{−7}  
PhotowattPWP201  0.04178725  2.425075 × 10^{−3}  2.425092 × 10^{−3}  2.425442 × 10^{−3}  6.270718 × 10^{−8}  
GWOCS [128]  SDM    9.8607 × 10^{−4}  9.8874 × 10^{−4}  9.9095 × 10^{−4}  2.4696 × 10^{−6}  3.5 
DDM    9.8334 × 10^{−4}  9.9411 × 10^{−4}  1.0017 × 10^{−3}  9.5937 × 10^{−6}  
PhotowattPWP201    2.4251 × 10^{−3}  2.4261 × 10^{−3}  2.4275 × 10^{−3}  1.1967 × 10^{−6}  
STM640/36    1.7337 × 10^{−3}  1.7457 × 10^{−3}  1.7528 × 10^{−3}  1.0447 × 10^{−5}  
PSOGWO [129]  PhotowattPWP201  0.06292  3.06 × 10^{−3}        N/A 
STE4/100  0.00384  3.0574 × 10^{−4}        
FSM  0.16023  9.14 × 10^{−3}        
ATLDE [130]  SDM  0.0177  9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}  2.44 × 10^{−17}  N/A 
DDM  0.0173  9.8218 × 10^{−4}  9.8372 × 10^{−4}  9.8603 × 10^{−4}  1.37 × 10^{−6}  
STM640/36  0.0218  1.7298 × 10^{−3}  1.7298 × 10^{−3}  1.7298 × 10^{−3}  8.22 × 10^{−18}  
STP6120/36  0.2780  1.6601 × 10^{−2}  1.6601 × 10^{−2}  1.6601 × 10^{−2}  1.02 × 10^{−16}  
HHODE [131]  SDM    1.4664 × 10^{−3}        N/A 
DDM    1.5978 × 10^{−3}        
HAJAYADE [132]  SDM    9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}  0  2.833 
DDM    9.8294 × 10^{−4}  9.8641 × 10^{−4}  9.96 × 10^{−4}  2.8534 × 10^{−6}  
PhotowattPWP201    2.4251 × 10^{−3}  2.4251 × 10^{−3}  2.4251 × 10^{−3}  3.2215 × 10^{−15}  
STM640/36    1.7298 × 10^{−3}  1.7298 × 10^{−3}  1.7298 × 10^{−3}  3.6569 × 10^{−16}  
STP6120/36    1.6601 × 10^{−2}  1.6601 × 10^{−2}  1.6606 × 10^{−2}  9.2421 × 10^{−7}  
HPSODOX [47]  SDM    6.4923 × 10^{−9}        N/A 
DDM    6.5120 × 10^{−9}        
TDM    6.5424 × 10^{−9}        
FDM    6.5656 × 10^{−9}        
TLBOBSA [134]  SDM  0.021526887  9.86902 × 10^{−4}  9.8602 × 10^{−4}  9.8603 × 10^{−4}  5.64965 × 10^{−10}  1.667 
DDM  0.021312577  9.8155 × 10^{−4}  1.1334 × 10^{−3}  2.2181 × 10^{−3}  3.0012 × 10^{−4}  
TDM  0.021263898  9.82553 × 10^{−4}  1.2081 × 10^{−3}  3.0608 × 10^{−3}  4.9433 × 10^{−4}  
PhotowattPWP201  0.048923676  2.42507 × 10^{−3}  2.42535 × 10^{−3}  2.43167 × 10^{−3}  1.21238 × 10^{−6} 
Method  Main Contributors  Case  Algorithmic Parameter  Indicator  TNFES  Run 

WHHO [135]  Naeijian et al., Department of Electrical Engineering, Babol Noshirvani University of Technology  SDM  NP = 30, Iteration = 5000,  RMSE IAE    30 
DDM  
TDM  
PhotowattPWP201  
GSK [4]  Xiong et al., Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University  SDM  NP = 30, k_{r} = 0.9, k_{f} = 0.5, K = 10, p = 0.1  RMSE SIAE FT  30,000  30 
DDM  50,000  
PhotowattPWP201  30,000  
STM640/36  30,000  
STP6120/36  30,000  
IGSK [136]  Sallam et al., The Faculty of Computers and Information, Zagazig University  SDM  NP^{init} = 25, k_{r} = 0.9, k_{f} = 0.5, K = 10, p = 0.1  RMSE WST  10,000  30 
DDM  20,000  
PhotowattPWP201  10,000  
STM640/36  15,000  
STP6120/36  15,000  
SDO [137]  Xiong et al., Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University  SDM  NP = 20  RMSE SIAE WRT FT  50,000  50 
DDM  
PVM 752 GaAs  
STM640/36  
STP6120/36  
TGA [138]  Diab et al., Electrical Engineering Department, Faculty of Engineering, Minia University  SDM  NP = 500, Iteration = 500,  RMSE     
DDM  
TDM  
PVM 752 GaAs  
PhotowattPWP201  
STE 20/100  
SSA [139]  Abbassi et al., University of Kairouan, Institute of Applied Sciences and Technology of Kasserine (ISSATKas)  TITAN1250  NP = 30, Iteration = 100,  RMSE IAE    30 
TSA [140]  Sharma et al., Research and Development Department, University of Petroleum and Energy Studies  PhotowattPWP201  NP = 30  RMSE, SIAE, FT  50,000  30 
CGO [142]  Ramadan et al., Department of Electrical Engineering, Faculty of Engineering, Aswan University  TDM  Iteration = 1000  RMSE IAE    15 
PhotowattPWP201  
HSOA [143]  Long et al., Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics  SDM  NP = 30, f_{cmax} = 2, f_{cmin} = 0, F = 0.5  RMSE SIAE FT  50,000  20 
DDM  
PhotowattPWP201  
RUN [144]  Shaban et al., Faculty of Computers and Information, Minia University  SDM  NP = 30, Iteration = 1000, a = 20, b = 12  RMSE IAE FT    30 
DDM  
TDM  
FPOA [145]  Chellaswamy et al., Department of ECE, Lords Institute of Engineering and Technology  Sample2, Sample5  β = 1.45, S_{p} = 0.85  MIAE     
CTSA [141]  Gupta et al., Electrical and Instrumentation Engineering Department, Thapar Institute of Engineering and Technology  DDM  NP = 50, Iteration = 1000  RMSE SIAE     
TDM  
SOS [146]  Xiong et al., Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University  SDM  NP = 50  RMSE SIAE WRT  50,000  50 
DDM  
PhotowattPWP201 
Method  Case  SIAE  MIN RMSE  Mean RMSE  MAX RMSE  STD of RMSE  Rank 

WHHO [135]  SDM    9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}    2.667 
DDM    9.82487 × 10^{−4}  9.8249 × 10^{−4}  9.8250 × 10^{−4}    
TDM    9.80751 × 10^{−4}  9.8085 × 10^{−4}  9.8149 × 10^{−4}    
PhotowattPWP201    2.4250 × 10^{−3}  2.4250 × 10^{−3}  2.4250 × 10^{−3}    
GSK [4]  SDM  0.0174  9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}  2.18 × 10^{−17}  3 
DDM  0.0175  9.8248 × 10^{−4}  9.8280 × 10^{−4}  9.8602 × 10^{−4}  8.72 × 10^{−7}  
PhotowattPWP201  0.0411  2.4251 × 10^{−3}  2.4251 × 10^{−3}  2.4251 × 10^{−3}  1.04 × 10^{−9}  
STM640/36  0.0218  1.7298 × 10^{−3}  1.7298 × 10^{−3}  1.7298 × 10^{−3}  6.25 × 10^{−18}  
STP6120/36  0.2829  1.6601 × 10^{−2}  1.6601 × 10^{−2}  1.6601 × 10^{−2}  1.44 × 10^{−16}  
IGSK [136]  SDM    9.8602188 × 10^{−4}  9.8602188 × 10^{−4}  9.8602188 × 10^{−4}  3.5821018 × 10^{−17}  3.33 
DDM    9.8248485 × 10^{−4}  9.8272774 × 10^{−4}  9.8602188 × 10^{−4}  8.9578942 × 10^{−7}  
PhotowattPWP201    2.4250749 × 10^{−3}  2.4250749 × 10^{−3}  2.4250749 × 10^{−3}  2.9226647 × 10^{−17}  
STM640/36    1.7298137 × 10^{−3}  1.7298137 × 10^{−3}  1.7298137 × 10^{−3}  7.0155794 × 10^{−18}  
STP6120/36    1.6600603 × 10^{−2}  1.6600603 × 10^{−2}  1.6600603 × 10^{−2}  1.7069489 × 10^{−16}  
SDO [137]  SDM  0.01770381  9.8602 × 10^{−4}  9.8603 × 10^{−4}  9.8616 × 10^{−4}  2.5141 × 10^{−8}  N/A 
DDM  0.01730620  9.8250 × 10^{−4}  9.8822 × 10^{−4}  1.0271 × 10^{−3}  8.8518 × 10^{−6}  
PVM 752 GaAs  0.00593491  2.3487 × 10^{−4}  3.1727 × 10^{−4}  3.7700 × 10^{−4}  2.7687 × 10^{−5}  
STM640/36  0.02177419  1.7298 × 10^{−3}  1.7703 × 10^{−3}  1.9500 × 10^{−3}  4.5108 × 10^{−5}  
STP6120/36  0.27797428  1.6601 × 10^{−2}  1.6683 × 10^{−2}  1.6866 × 10^{−2}  7.1751 × 10^{−5}  
TGA [138]  SDM    9.750530454421328 × 10^{−4}        2.667 
DDM    8.488244232381 × 10^{−4}        
TDM    8.251052783901371 × 10^{−4}        
PVM 752 GaAs    9.037521972258222 × 10^{−4}        
PhotowattPWP201    3.819491771269 × 10^{−3}        
STE 20/100    9.28071173 × 10^{−4}        
SSA [139]  TITAN1250(366)    2.9681 × 10−04        N/A 
TITAN1250(810.2)    1.5777 × 10−06        
TSA [140]  PhotowattPWP201  0.0594  5.06 × 10^{−4}  1.45 × 10^{−3}  2.34 × 10^{−2}  1.25 × 10^{−3}  N/A 
CGO [142]  TDM    9.82 × 10^{−4}  9.82 × 10^{−4}  9.82 × 10^{−4}  1.24841 × 10^{−9}  N/A 
PhotowattPWP201    2.425075 × 10^{−3}  2.425092 × 10^{−3}  2.4251 × 10^{−3}  1.44688 × 10^{−8}  
HSOA [143]  SDM  0.0177065  9.8602 × 10^{−4}  1.0479 × 10^{−3}  1.1683 × 10^{−3}  5.3832 × 10^{−5}  4 
DDM  0.017402  9.8376 × 10^{−4}  1.1175 × 10^{−3}  1.7642 × 10^{−3}  1.9107 × 10^{−4}  
PhotowattPWP201  0.041788  2.4251 × 10^{−3}  2.4251 × 10^{−3}  2.4253 × 10^{−3}  4.1556 × 10^{−8}  
RUN [144]  SDM    9.86242 × 10^{−4}  1.479894 × 10^{−3}  2.444572 × 10^{−3}  4.30699 × 10^{−4}  N/A 
DDM    9.87168 × 10^{−4}  1.481762 × 10^{−3}  2.947571 × 10^{−3}  5.14117 × 10^{−4}  
TDM    9.89133 × 10^{−4}  1.581238 × 10^{−3}  6.239595 × 10^{−3}  1.078762 × 10^{−3}  
CTSA [141]  DDM  0.2621  1.0239 × 10^{−8}  2.1185 × 10^{−8}  9.6017 × 10^{−8}  3.9865 × 10^{−8}  N/A 
TDM  0.0075  1.0036 × 10^{−6}  3.4906 × 10^{−6}  9.4766 × 10^{−6}  2.7057 × 10^{−6}  
SOS [146]  SDM  0.0181  9.8609 × 10^{−4}  1.0245 × 10^{−3}  1.1982 × 10^{−3}  5.2184 × 10^{−5}  5.333 
DDM  0.0182  9.8518 × 10^{−4}  1.0627 × 10^{−3}  1.3498 × 10^{−3}  9.6141 × 10^{−5}  
PhotowattPWP201  0.0421  2.4251 × 10^{−3}  2.4361 × 10^{−3}  2.5103 × 10^{−3}  1.7503 × 10^{−5} 
Method  Case  MIN RMSE  Mean RMSE  MAX RMSE  STD of RMSE  Rank 

ABCTRR [92]  SDM  9.860219 × 10^{−4}  9.860219 × 10^{−4}  9.860219 × 10^{−4}  6.15 × 10^{−17}  5.958 
DDM  9.824849 × 10^{−4}  9.825556 × 10^{−4}  9.860219 × 10^{−4}  4.95 × 10^{−7}  
PhotowattPWP201  2.425075 × 10^{−3}  2.425075 × 10^{−3}  2.425075 × 10^{−3}  9.68 × 10^{−17}  
RLDE [41]  SDM  9.8602 × 10^{−4}  9.8602 × 10^{−4}  9.8602 × 10^{−4}  3.4834 × 10^{−17}  5.125 
DDM  9.8248 × 10^{−4}  9.8695 × 10^{−4}  9.8457 × 10^{−4}  1.7498 × 10^{−6}  
PhotowattPWP201  2.4251 × 10^{−3}  2.4251 × 10^{−3}  2.4251 × 10^{−3}  6.3084 × 10^{−17}  
OLBGWO [100]  SDM  9.86 × 10^{−4}  9.86 × 10^{−4}  9.86 × 10^{−4}  1.4 × 10^{−8}  4.583 
DDM  9.83 × 10^{−4}  9.85 × 10^{−4}  9.86 × 10^{−4}  1.78 × 10^{−6}  
PhotowattPWP201  2.4 × 10^{−3}  2.4 × 10^{−3}  2.4 × 10^{−3}  2.4284 × 10^{−9}  
CSOOJAYA [114]  SDM  9.860219 × 10^{−4}  9.860219 × 10^{−4}  9.860219 × 10^{−4}  4.717305 × 10^{−17}  4.917 
DDM  9.824849 × 10^{−4}  9.824849 × 10^{−4}  9.824849 × 10^{−4}  5.576332 × 10^{−17}  
PhotowattPWP201  2.425075 × 10^{−3}  2.425075 × 10^{−3}  2.425075 × 10^{−3}  2.699858 × 10^{−17}  
DEDIWPSO [85]  SDM  7.730062 × 10^{−4}  7.730062 × 10^{−4}  7.730062 × 10^{−4}  5.18668 × 10^{−15}  2.5 
DDM  7.182306 × 10^{−4}  7.187462 × 10^{−4}  7.318100 × 10^{−4}  2.486129 × 10^{−6}  
PhotowattPWP201  2.03992 × 10^{−3}  2.03992 × 10^{−3}  2.03992 × 10^{−3}  2.995389 × 10^{−15}  
EOTLBO [21]  SDM  9.86021878 × 10^{−4}  9.86021878 × 10^{−4}  9.86021878 × 10^{−4}  4.12665088 × 10^{−17}  4.5 
DDM  9.82484852 × 10^{−4}  9.84733697 × 10^{−4}  9.89424104 × 10^{−4}  1.69176118 × 10^{−6}  
PhotowattPWP201  2.42507487 × 10^{−3}  2.42507487 × 10^{−3}  2.42507487 × 10^{−3}  3.61995116 × 10^{−17}  
IWOA [123]  SDM  9.860219 × 10^{−4}  9.860219 × 10^{−4}  9.860219 × 10^{−4}  5.12 × 10^{−16}  6.375 
DDM  9.824849 × 10^{−4}  9.826140 × 10^{−4}  9.860219 × 10^{−4}  9.86 × 10^{−5}  
PhotowattPWP201  2.425075 × 10^{−3}  2.425075 × 10^{−3}  2.425075 × 10^{−3}  2.90 × 10^{−17}  
TLBOBSA [134]  SDM  9.86902 × 10^{−4}  9.8602 × 10^{−4}  9.8603 × 10^{−4}  5.64965 × 10^{−10}  8.292 
DDM  9.8155 × 10^{−4}  1.1334 × 10^{−3}  2.2181 × 10^{−3}  3.0012 × 10^{−4}  
PhotowattPWP201  2.42507 × 10^{−3}  2.42535 × 10^{−3}  2.43167 × 10^{−3}  1.21238 × 10^{−6}  
IGSK [136]  SDM  9.8602188 × 10^{−4}  9.8602188 × 10^{−4}  9.8602188 × 10^{−4}  3.5821018 × 10^{−17}  4.333 
DDM  9.8248485 × 10^{−4}  9.8272774 × 10^{−4}  9.8602188 × 10^{−4}  8.9578942 × 10^{−7}  
PhotowattPWP201  2.4250749 × 10^{−3}  2.4250749 × 10^{−3}  2.4250749 × 10^{−3}  2.9226647 × 10^{−17}  
HSOA [143]  SDM  9.8602 × 10^{−4}  1.0479 × 10^{−3}  1.1683 × 10^{−3}  5.3832 × 10^{−5}  9.333 
DDM  9.8376 × 10^{−4}  1.1175 × 10^{−3}  1.7642 × 10^{−3}  1.9107 × 10^{−4}  
PhotowattPWP201  2.4251 × 10^{−3}  2.4251 × 10^{−3}  2.4253 × 10^{−3}  4.1556 × 10^{−8}  
SOS [146]  SDM  9.8609 × 10^{−4}  1.0245 × 10^{−3}  1.1982 × 10^{−3}  5.2184 × 10^{−5}  10.083 
DDM  9.8518 × 10^{−4}  1.0627 × 10^{−3}  1.3498 × 10^{−3}  9.6141 × 10^{−5}  
PhotowattPWP201  2.4251 × 10^{−3}  2.4361 × 10^{−3}  2.5103 × 10^{−3}  1.7503 × 10^{−5} 
Radiation /W/m^{2}  Temperature /°C  I_{ph}/A  I_{ssd}/μA  n  R_{s}/Ω  R_{sh}/Ω  RMSE 

Variable  Fixed  
1000  25  8.22920506  2.19226333 × 10^{−10}  0.34555194  149.79495733  52.64769156  2.87908987 × 10^{−3} 
800  25  6.58249378  2.57655463 × 10^{−10}  0.34314866  190.38069917  52.99842155  2.40659465 × 10^{−3} 
600  25  4.93738274  2.27177693 × 10^{−10}  0.34433472  250.19011038  52.72470592  3.70428705 × 10^{−3} 
400  25  3.29180014  1.99109819 × 10^{−10}  0.34972198  372.27107651  52.42424407  1.44743443 × 10^{−3} 
200  25  1.64555637  2.50815014 × 10^{−10}  0.34381397  769.17560620  52.94945965  1.23547582 × 10^{−3} 
Fixed  Variable  
1000  25  8.22811095  2.49012735 × 10^{−10}  0.34410634  152.34953496  52.92528529  5.10117026 × 10^{−3} 
1000  40  8.30308470  2.50259970 × 10^{−9}  0.34496529  149.56870789  52.70878667  4.12556209 × 10^{−3} 
1000  55  8.37565108  2.31628311 × 10^{−8}  0.34480573  153.53100022  52.79148663  8.96621362 × 10^{−3} 
1000  70  8.45187588  1.62391869 × 10^{−7}  0.34518787  146.10502751  52.62434432  1.10992599 × 10^{−2} 
Method  Case  Radiation  Temperature  Describe 

FDBTLABC [96]  SM55, ST40, KC200GT  √  √  Experiments were designed for five sets of irradiances at 25 °C and three sets of temperature at 1000 W/m^{2}, with RMSEs consistently lying in the order of 1 × 10^{−5} in the three modules, much better than LSHADE, LSHADEEPSIN, and LSHADESPACMA. 
IADE [68]  SL80CE36M  √  √  Four sets of discriminative parameters and minimum RMSEs (0.0115, 0.006, 0.0071, 0.0154) were obtained from experiments fitting PV data for four different sets of environmental parameters at two temperatures and two irradiances in random combinations. 
DE3P [23]  SM55, RSM50, ST40  √  √  Experiments were carried out with five sets of irradiances at constant temperature and three sets of temperature at constant irradiance, with a maximum RMSE of 0.0148 in the results, which is still an acceptable error. 
EJADE [69]  SM55, KC200GT  √  √  The optimal average RMSE was obtained consistently with eight competing algorithms for experiments at different irradiances and temperatures. The RMSEs were of order 1 × 10^{−4} at 25 °C for 200~800 W/m^{2} and 1 × 10^{−3} for the other experiments. 
AGA [64]      √  A PV cell fitting experiment at different temperatures was designed, and the initial and postsimulation parameter values for the standard case were given. 
GWO [98]      √  Ten sets of experiments at different temperatures (−5 °C~45 °C) were designed and showed an enormous advantage in comparison experiments with MMA, with RMSEs almost of order 1 × 10^{−3} overall. 
OLBGWO [100]  ST40, KC200GT  √  √  The experimental design was the same as that of FDBTLABC. The ST40 module’s RMSEs were at or near the 1 × 10^{−4} order of magnitude. In the KC200GT module, the RMSEs were at or near the 1 × 10^{−3} order of magnitude. 
EJAYA [111]  SM55, KC200GT  √  √  The experimental design was the same as EJADE. The SM55 experiments’ RMSEs were in order 1 × 10^{−4}, and the other experiments’ RMSEs were in order 1 × 10^{−3}. 
MPSO [81]  SM55, ST40, KC200GT  √  √  The experimental design was the same as FDBTLABC. In the KC200GT, the RMSEs were of order 1 × 10^{−3}; in the other experiments, the RMSEs were of order 1 × 10^{−4}. 
GCPSO [82]  Sharpe NDR250A5  √  √  Five experiments with different temperatures and irradiances were designed to obtain high fitting accuracy, with an RMSE of order 1 × 10^{−3}. 
DEDIWPSO [85]  JKM330P  √  √  Experiments were designed for five different irradiances and temperatures, RMSE values were obtained consistently, and all RMSEs were of order 1 × 10^{−3}. 
PSOST [87,88]  JKM330P  √  √  The same experimental design as DEDIWPSO, with RMSEs of order 1 × 10^{−3} and standard deviations of RMSEs on order 1 × 10^{−17}. 
PSOCS [88]  SM55, ST40, KC200GT  √  √  The experimental design was the same as FDBTLABC, with RMSE concentrated at the order of magnitude 1 × 10^{−2} and 1 × 10^{−3}. 
EOTLBO [21]  Sharpe NDR250A5  √  √  The experimental design was the same as GCPSO, with RMSEs concentrated at orders 1 × 10^{−2} and 1 × 10^{−3}, and significantly better than the ten comparative algorithms in the text. 
MTLBO [119]  SM55, ST40  √  √  The experimental design was the same as FDBTLABC, whose RMSEs were concentrated on orders 1 × 10^{−3} and 1 × 10^{−4} and converged slightly faster than ITLBO. 
WOA [124]  KC200GT  √  √  The fitting experiments were implemented with SDM, DDM, and TDM. The SDM error was 1.6%, the DDM error was 0.3%, and the TDM error was 0.08%. It indicates that, with sufficient computational resources, TDM > DDM > SDM in terms of accuracy. 
ISNMWOA [126]  SM55, ST40, KC200GT  √  √  The experimental design was the same as FDBTLABC, with the RMSEs concentrated on orders 1 × 10^{−3} and 1 × 10^{−4}. It showed that ISNMWOA still has high accuracy at low temperatures and irradiance. 
SWOA [125]  SM55, SW255, KC200GT  √  √  Experiments were designed for five irradiances and seven temperatures. The RMSEs were concentrated around 1 × 10^{−2} for the irradiance experiments and around 1 × 10^{−3} for the temperature experiments. 
DE/WOA [127]  JAM660295W4BB  √  √  Experiments with five irradiances and four temperatures were implemented. Significantly better RMSEs were consistently achieved compared to seven competing algorithms, and all results were concentrated around 1 × 10^{−5}. 
HPSODOX [47]    \  √  Seven sets of experiments from −5 to 25 °C were designed. Of these, the RMSEs were located in order 1 × 10^{−9} at 25 °C and in order 1 × 10^{−8} at different temperatures. 
TLBOBSA [134]  SM55, KC200GT  √  √  The experimental design was the same as EJADE. The experimental results were similar to EJAYA and slightly worse overall. 
IGSK [136]  SM55, ST40  √  √  The experimental design was the same as MTLBO, with 11 RMSEs at the 1 × 10^{−4} order of magnitude and 6 RMSEs at the 1 × 10^{−3} order of magnitude in 17 experiments. 
Case  I_{ph}/A  I_{ssd}/μA  n  R_{s}/Ω  R_{sh}/Ω  RMSE 

STC  8.22879884  2.32498946 × 10^{−10}  1.37930864 × 10^{0}  602.77198763  211.10041272  1.31085496 × 10^{−6} 
PSC1  8.40661915  3.20394383 × 10^{−15}  1.62587931 × 10^{−16}  18.94997935  149.17780560  6.96889061 × 10^{−1} 
PSC2  6.93947342  1.16187272 × 10^{−14}  2.40441463 × 10^{−16}  20.81282985  155.76285151  3.71532656 × 10^{−1} 
PSC3  6.52880635  5.19579219 × 10^{−12}  1.10570546 × 10^{−14}  28.77275463  188.22179994  4.55796025 × 10^{−1} 
Parameter  IBES MSDM  TFWO MSDM  IBES MDDM  TFWO MDDM  IBES MTDM  TFWO MTDM 

I_{ph}/A  0.760713  0.760774525  0.760494  0.760783023  0.760473235  0.760780283 
R_{s}/Ω  0.032091  0.037372671  0.015196  0.036835645  0.013865736  0.036749141 
R_{sh}/Ω  54.30519  53.7186078  54.05261  55.8909553  55.47156858  55.52672891 
R_{sm}/Ω  0.00352  0.5  0.02792  0.01025276  0.027870684  0.5 
I_{ssd}_{1}/μA  3.71 × 10^{−7}  3.23 × 10^{−7}  1.00 × 10^{−10}  9.17 × 10^{−7}  1.00 × 10^{−10}  7.63 × 10^{−7} 
I_{ssd}_{2}/μA      6.69 × 10^{−7}  2.07 × 10^{−7}  7.52 × 10^{−7}  2.47 × 10^{−9} 
I_{ssd}_{3}/μA          1.00 × 10^{−10}  2.24 × 10^{−7} 
n_{1}  1.4835  1.48118376  1.00  1.999992291  1.133059042  2 
n_{2}      1.525277  1.443600817  1.537322148  2 
n_{3}          1.004574508  1.450312839 
PE5DSSE    2.5278 × 10^{−5}    2.51 × 10^{−5}    2.509 × 10^{−5} 
MIN RMSE  9.61 × 10^{−4}    7.49 × 10^{−4}    7.39055 × 10^{−4}   
Mean RMSE  1.507 × 10^{−3}    1.201 × 10^{−3}    7.64 × 10^{−4}   
MAX RMSE  2.847 × 10^{−3}    3.378 × 10^{−3}    7.81 × 10^{−4}   
STD of RMSE  7.61 × 10^{−4}    8.95 × 10^{−4}    2.21 × 10^{−5}   
Type  Positive  Negative 

GAs 
 
DEs 


PSOs 


ABCs 
 
GWOs 
 
JAYAs 
 
TLBOs 
 
WOAs 


GSKs 
 
SDOs 


HHOs 
 
TGAs 


SOSs 


FPOAs 


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Z.; Xiong, G.; Fu, X. Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review. Sustainability 2023, 15, 3312. https://doi.org/10.3390/su15043312
Gu Z, Xiong G, Fu X. Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review. Sustainability. 2023; 15(4):3312. https://doi.org/10.3390/su15043312
Chicago/Turabian StyleGu, Zaiyu, Guojiang Xiong, and Xiaofan Fu. 2023. "Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review" Sustainability 15, no. 4: 3312. https://doi.org/10.3390/su15043312